Skip to main content

Energy Balance, Epigenetics, and Prostate Cancer

  • Chapter
  • First Online:
Epigenetics, Energy Balance, and Cancer

Abstract

While many genetic alterations have been demonstrated in advanced and metastatic prostate cancer, epigenetic modifications resulting from positive energy balance may play an important role in mediating gene-nutrient interactions that promote the initial development and later progression of this very common form of cancer. Latent prostate cancer incidence increases with aging and is found in 80 % of men aged 80. Among middle-aged men in industrialized nations eating a Western diet, aging increases the incidence of sarcopenia and abdominal/visceral obesity and is commonly associated with increases in insulin-like growth factor 1, inflammatory cytokines, and increased estrogen/androgen ratios. Therefore, the prostate gland is exposed to environmental and endogenous stresses with aging, related to a state of positive energy balance, increasing adiposity, and inflammation. DNA methylation, histone modifications, and microRNA expression in prostate cancer, secondary to positive energy balance and epigenetic modifications, can mediate gene–nutrient interactions in the prostate. The loss of expression of Glutathione-S-Transferase-π 1 (GSTP1) occurs in 90 % of prostate tumors via methylation of CpG islands in its promoter. Soy and green tea polyphenols have been shown to modify prostate tumor epigenetics. Balanced nutritional interventions combined with antioxidant-rich fruits and vegetables together with aerobic and resistance exercise should be examined with regard to their effects on the epigenetics of prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhavan-Niaki H, Samadani AA (2013) DNA methylation and cancer development: molecular mechanism. Cell Biochem Biophys 67(2):501–513. doi:10.1007/s12013-013-9555-2

    Article  CAS  PubMed  Google Scholar 

  2. Anderson OS, Sant KE, Dolinoy DC (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem 23(8):853–859. doi:10.1016/j.jnutbio.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Babenko O, Kovalchuk I, Metz GA (2012) Epigenetic programming of neurodegenerative diseases by an adverse environment. Brain Res 1444:96–111. doi:10.1016/j.brainres.2012.01.038

    Article  CAS  PubMed  Google Scholar 

  4. Baccarelli A, Ghosh S (2012) Environmental exposures, epigenetics and cardiovascular disease. Curr Opin Clin Nutr Metab Care 15(4):323–329. doi:10.1097/MCO.0b013e328354bf5c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11(10):726–734. doi:10.1038/nrc3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bennett-Baker PE, Wilkowski J, Burke DT (2003) Age-associated activation of epigenetically repressed genes in the mouse. Genetics 165(4):2055–2062

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Berruti A, Dogliotti L, Terrone C, Cerutti S, Isaia G, Tarabuzzi R, Reimondo G, Mari M, Ardissone P, De Luca S, Fasolis G, Fontana D, Rossetti SR, Angeli A, Gruppo Onco Urologico Piemontese (G.O.U.P.), Rete Oncologica Piemontese. (2002) Changes in bone mineral density, lean body mass and fat content as measured by dual energy x-ray absorptiometry in patients with prostate cancer without apparent bone metastases given androgen deprivation therapy. J Urol 167(6):2361–2367; discussion 2367

    Article  PubMed  Google Scholar 

  8. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21. doi:10.1101/gad.947102

    Article  CAS  PubMed  Google Scholar 

  9. Bramswig NC, Kaestner KH (2012) Epigenetics and diabetes treatment: an unrealized promise? Trends Endocrinol Metab 23(6):286–291. doi:10.1016/j.tem.2012.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579–591. doi:10.1038/nrc1408

    Article  CAS  PubMed  Google Scholar 

  11. Chervona Y, Costa M (2012) Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res 2(5):589–597

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Crujeiras AB, Parra D, Goyenechea E, Abete I, Gonzalez-Muniesa P, Martinez JA (2008) Energy restriction in obese subjects impact differently two mitochondrial function markers. J Physiol Biochem 64(3):211–219

    Article  CAS  PubMed  Google Scholar 

  13. Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22(22):4632–4642. doi:10.1200/JCO.2004.07.151

    Article  CAS  PubMed  Google Scholar 

  14. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. doi:10.1016/j.cell.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  15. De Marzo AM, Marchi VL, Epstein JI, Nelson WG (1999) Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 155(6):1985–1992. doi:10.1016/S0002-9440(10)65517-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dizdar O, Alyamac E (2004) Obesity: an endocrine tumor? Med Hypotheses 63(5):790–792. doi:10.1016/j.mehy.2004.01.046

    Article  PubMed  Google Scholar 

  17. Epstein JI, Carmichael MJ, Partin AW, Walsh PC (1994) Small high grade adenocarcinoma of the prostate in radical prostatectomy specimens performed for nonpalpable disease: pathogenetic and clinical implications. J Urol 151(6):1587–1592

    CAS  PubMed  Google Scholar 

  18. Fang M, Chen D, Yang CS (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137(1 Suppl):223S–228S

    CAS  PubMed  Google Scholar 

  19. Fang MZ, Chen D, Sun Y, Jin Z, Christman JK, Yang CS (2005) Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin Cancer Res 11(19 Pt 1):7033–7041. doi:10.1158/1078-0432.CCR-05-0406

    Article  CAS  PubMed  Google Scholar 

  20. Fang MZ, Wang Y, Ai N, Hou Z, Sun Y, Lu H, Yang CS (2003) Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63(22):7563–7570

    CAS  PubMed  Google Scholar 

  21. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440. doi:10.1038/nature05919

    Article  CAS  PubMed  Google Scholar 

  22. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33. doi:10.1038/nrg1748

    Article  CAS  PubMed  Google Scholar 

  23. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suñer D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102(30):10604–10609. doi:10.1073/pnas.0500398102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 266(1):6–11. doi:10.1016/j.canlet.2008.02.026

    Article  CAS  PubMed  Google Scholar 

  25. Gerhauser C (2013) Cancer chemoprevention and nutriepigenetics: state of the art and future challenges. Top Curr Chem 329:73–132. doi:10.1007/128_2012_360

    Article  CAS  PubMed  Google Scholar 

  26. Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514. doi:10.1146/annurev.biochem.74.010904.153721

    Article  CAS  PubMed  Google Scholar 

  27. Govindarajan B, Klafter R, Miller MS, Mansur C, Mizesko M, Bai X, LaMontagne K Jr, Arbiser JL (2002) Reactive oxygen-induced carcinogenesis causes hypermethylation of p16(Ink4a) and activation of MAP kinase. Mol Med 8(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gut P, Verdin E (2013) The nexus of chromatin regulation and intermediary metabolism. Nature 502(7472):489–498. doi:10.1038/nature12752

    Article  CAS  PubMed  Google Scholar 

  29. Guz J, Foksinski M, Siomek A, Gackowski D, Rozalski R, Dziaman T, Szpila A, Olinski R (2008) The relationship between 8-oxo-7,8-dihydro-2′-deoxyguanosine level and extent of cytosine methylation in leukocytes DNA of healthy subjects and in patients with colon adenomas and carcinomas. Mutat Res 640(1-2):170–173. doi:10.1016/j.mrfmmm.2007.12.013

    Article  CAS  PubMed  Google Scholar 

  30. Hardy TM, Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3(4):503–518. doi:10.2217/epi.11.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hedlund TE, Johannes WU, Miller GJ (2003) Soy isoflavonoid equol modulates the growth of benign and malignant prostatic epithelial cells in vitro. Prostate 54(1):68–78. doi:10.1002/pros.10137

    Article  PubMed  Google Scholar 

  32. Heichman KA, Warren JD (2012) DNA methylation biomarkers and their utility for solid cancer diagnostics. Clin Chem Lab Med 50(10):1707–1721. doi:10.1515/cclm-2011-0935

    Article  CAS  PubMed  Google Scholar 

  33. Henning SM, Wang P, Said J, Magyar C, Castor B, Doan N, Tosity C, Moro A, Gao K, Li L, Heber D (2012) Polyphenols in brewed green tea inhibit prostate tumor xenograft growth by localizing to the tumor and decreasing oxidative stress and angiogenesis. J Nutr Biochem 23(11):1537–1542. doi:10.1016/j.jnutbio.2011.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ho E, Beaver LM, Williams DE, Dashwood RH (2011) Dietary factors and epigenetic regulation for prostate cancer prevention. Adv Nutr 2(6):497–510. doi:10.3945/an.111.001032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hursting SD, Digiovanni J, Dannenberg AJ, Azrad M, Leroith D, Demark-Wahnefried W, Kakarala M, Brodie A, Berger NA (2012) Obesity, energy balance, and cancer: new opportunities for prevention. Cancer Prev Res (Phila) 5(11):1260–1272. doi:10.1158/1940-6207.CAPR-12-0140

    Article  CAS  Google Scholar 

  36. Jones PA, Liang G (2009) Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10(11):805–811. doi:10.1038/nrg2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kala R, Peek GW, Hardy TM, Tollefsbol TO (2013) MicroRNAs: an emerging science in cancer epigenetics. J Clin Bioinforma 3(1):6. doi:10.1186/2043-9113-3-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kato K, Long NK, Makita H, Toida M, Yamashita T, Hatakeyama D, Hara A, Mori H, Shibata T (2008) Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer 99(4):647–654. doi:10.1038/sj.bjc.6604521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khosla S, Dean W, Brown D, Reik W, Feil R (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64(3):918–926

    Article  CAS  PubMed  Google Scholar 

  40. Lambert JD, Sang S, Lu AY, Yang CS (2007) Metabolism of dietary polyphenols and possible interactions with drugs. Curr Drug Metab 8(5):499–507

    Article  CAS  PubMed  Google Scholar 

  41. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220. doi:10.1038/nrg2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee WJ, Shim JY, Zhu BT (2005) Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids. Mol Pharmacol 68(4):1018–1030. doi:10.1124/mol.104.008367

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH (2005) Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 65(15):6934–6942. doi:10.1158/0008-5472.CAN-04-4604

    Article  CAS  PubMed  Google Scholar 

  44. Li Y, Yuan YY, Meeran SM, Tollefsbol TO (2010) Synergistic epigenetic reactivation of estrogen receptor-alpha (ERalpha) by combined green tea polyphenol and histone deacetylase inhibitor in ERalpha-negative breast cancer cells. Mol Cancer 9:274. doi:10.1186/1476-4598-9-274

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lim SO, Gu JM, Kim MS, Kim HS, Park YN, Park CK, Cho JW, Park YM, Jung G (2008) Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135(6):2128–2140. doi:10.1053/j.gastro.2008.07.027, 2140 e2121-2128

    Article  CAS  PubMed  Google Scholar 

  46. Link A, Balaguer F, Goel A (2010) Cancer chemoprevention by dietary polyphenols: promising role for epigenetics. Biochem Pharmacol 80(12):1771–1792. doi:10.1016/j.bcp.2010.06.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu L, Kron KJ, Pethe VV, Demetrashvili N, Nesbitt ME, Trachtenberg J, Ozcelik H, Fleshner NE, Briollais L, van der Kwast TH, Bapat B (2011) Association of tissue promoter methylation levels of APC, TGFbeta2, HOXD3 and RASSF1A with prostate cancer progression. Int J Cancer 129(10):2454–2462. doi:10.1002/ijc.25908

    Article  CAS  PubMed  Google Scholar 

  48. Lovat F, Valeri N, Croce CM (2011) MicroRNAs in the pathogenesis of cancer. Semin Oncol 38(6):724–733. doi:10.1053/j.seminoncol.2011.08.006

    Article  CAS  PubMed  Google Scholar 

  49. Malins DC, Johnson PM, Wheeler TM, Barker EA, Polissar NL, Vinson MA (2001) Age-related radical-induced DNA damage is linked to prostate cancer. Cancer Res 61(16):6025–6028

    CAS  PubMed  Google Scholar 

  50. Marti A, Martinez-Gonzalez MA, Martinez JA (2008) Interaction between genes and lifestyle factors on obesity. Proc Nutr Soc 67(1):1–8. doi:10.1017/S002966510800596X

    Article  CAS  PubMed  Google Scholar 

  51. Mateescu B, Batista L, Cardon M, Gruosso T, de Feraudy Y, Mariani O, Nicolas A, Meyniel JP, Cottu P, Sastre-Garau X, Mechta-Grigoriou F (2011) miR-141 and miR-200a act on ovarian tumorigenesis by controlling oxidative stress response. Nat Med 17(12):1627–1635. doi:10.1038/nm.2512

    Article  CAS  PubMed  Google Scholar 

  52. McCabe MT, Low JA, Daignault S, Imperiale MJ, Wojno KJ, Day ML (2006) Inhibition of DNA methyltransferase activity prevents tumorigenesis in a mouse model of prostate cancer. Cancer Res 66(1):385–392. doi:10.1158/0008-5472.CAN-05-2020

    Article  CAS  PubMed  Google Scholar 

  53. Meeran SM, Ahmed A, Tollefsbol TO (2010) Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenet 1(3-4):101–116. doi:10.1007/s13148-010-0011-5

    Article  CAS  Google Scholar 

  54. Meeran SM, Patel SN, Li Y, Shukla S, Tollefsbol TO (2012) Bioactive dietary supplements reactivate ER expression in ER-negative breast cancer cells by active chromatin modifications. PLoS One 7(5), e37748. doi:10.1371/journal.pone.0037748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Milagro FI, Mansego ML, De Miguel C, Martinez JA (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol Aspects Med 34(4):782–812. doi:10.1016/j.mam.2012.06.010

    Article  CAS  PubMed  Google Scholar 

  56. Montenegro MF, Saez-Ayala M, Pinero-Madrona A, Cabezas-Herrera J, Rodriguez-Lopez JN (2012) Reactivation of the tumour suppressor RASSF1A in breast cancer by simultaneous targeting of DNA and E2F1 methylation. PLoS One 7(12), e52231. doi:10.1371/journal.pone.0052231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Morrissey C, Buser A, Scolaro J, O’Sullivan J, Moquin A, Tenniswood M (2002) Changes in hormone sensitivity in the ventral prostate of aging Sprague-Dawley rats. J Androl 23(3):341–351

    CAS  PubMed  Google Scholar 

  58. Nair S, Barve A, Khor TO, Shen GX, Lin W, Chan JY, Cai L, Kong AN (2010) Regulation of Nrf2- and AP-1-mediated gene expression by epigallocatechin-3-gallate and sulforaphane in prostate of Nrf2-knockout or C57BL/6J mice and PC-3 AP-1 human prostate cancer cells. Acta Pharmacol Sin 31(9):1223–1240. doi:10.1038/aps.2010.147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakamura Y, Tsuji S, Tonogai Y (2000) Determination of the levels of isoflavonoids in soybeans and soy-derived foods and estimation of isoflavonoids in the Japanese daily intake. J AOAC Int 83(3):635–650

    CAS  PubMed  Google Scholar 

  60. Nandakumar V, Vaid M, Katiyar SK (2011) (-)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 32(4):537–544. doi:10.1093/carcin/bgq285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Neilson AP, Hopf AS, Cooper BR, Pereira MA, Bomser JA, Ferruzzi MG (2007) Catechin degradation with concurrent formation of homo- and heterocatechin dimers during in vitro digestion. J Agric Food Chem 55(22):8941–8949. doi:10.1021/jf071645m

    Article  CAS  PubMed  Google Scholar 

  62. Neilson AP, Song BJ, Sapper TN, Bomser JA, Ferruzzi MG (2010) Tea catechin auto-oxidation dimers are accumulated and retained by Caco-2 human intestinal cells. Nutr Res 30(5):327–340. doi:10.1016/j.nutres.2010.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pandey M, Shukla S, Gupta S (2010) Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells. Int J Cancer 126(11):2520–2533. doi:10.1002/ijc.24988

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Park LK, Friso S, Choi SW (2012) Nutritional influences on epigenetics and age-related disease. Proc Nutr Soc 71(1):75–83. doi:10.1017/S0029665111003302

    Article  CAS  PubMed  Google Scholar 

  65. Ptak C, Petronis A (2008) Epigenetics and complex disease: from etiology to new therapeutics. Annu Rev Pharmacol Toxicol 48:257–276. doi:10.1146/annurev.pharmtox.48.113006.094731

    Article  CAS  PubMed  Google Scholar 

  66. Rajendran R, Garva R, Krstic-Demonacos M, Demonacos C (2011) Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol 2011:368276. doi:10.1155/2011/368276

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rodriguez C, Freedland SJ, Deka A, Jacobs EJ, McCullough ML, Patel AV, Thun MJ, Calle EE (2007) Body mass index, weight change, and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol Biomarkers Prev 16(1):63–69. doi:10.1158/1055-9965.EPI-06-0754

    Article  PubMed  Google Scholar 

  68. Saini S, Majid S, Dahiya R (2010) Diet, microRNAs and prostate cancer. Pharm Res 27(6):1014–1026. doi:10.1007/s11095-010-0086-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sakr WA, Haas GP, Cassin BF, Pontes JE, Crissman JD (1993) The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 150(2 Pt 1):379–385

    CAS  PubMed  Google Scholar 

  70. Siedlecki P, Zielenkiewicz P (2006) Mammalian DNA methyltransferases. Acta Biochim Pol 53(2):245–256

    CAS  PubMed  Google Scholar 

  71. Simmons R (2011) Epigenetics and maternal nutrition: nature v. nurture. Proc Nutr Soc 70(1):73–81. doi:10.1017/S0029665110003988

    Article  CAS  PubMed  Google Scholar 

  72. Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W, Cook J, Harris CC, Gius D, Mitchell JB (2009) Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One 4(7), e6377. doi:10.1371/journal.pone.0006377

    Article  PubMed  PubMed Central  Google Scholar 

  73. Smith JC, Bennett S, Evans LM, Kynaston HG, Parmar M, Mason MD, Cockcroft JR, Scanlon MF, Davies JS (2001) The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer. J Clin Endocrinol Metab 86(9):4261–4267. doi:10.1210/jcem.86.9.7851

    Article  CAS  PubMed  Google Scholar 

  74. Smith MR (2004) Changes in fat and lean body mass during androgen-deprivation therapy for prostate cancer. Urology 63(4):742–745. doi:10.1016/j.urology.2003.10.063

    Article  PubMed  Google Scholar 

  75. Smith MR, Finkelstein JS, McGovern FJ, Zietman AL, Fallon MA, Schoenfeld DA, Kantoff PW (2002) Changes in body composition during androgen deprivation therapy for prostate cancer. J Clin Endocrinol Metab 87(2):599–603. doi:10.1210/jcem.87.2.8299

    Article  CAS  PubMed  Google Scholar 

  76. Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A (2012) Epigenetic mechanisms in anti-cancer actions of bioactive food components--the implications in cancer prevention. Br J Pharmacol 167(2):279–297. doi:10.1111/j.1476-5381.2012.02002.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476. doi:10.1038/nrg2341

    Article  CAS  PubMed  Google Scholar 

  78. Szarc vel Szic K, Ndlovu MN, Haegeman G, Vanden Berghe W (2010) Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol 80(12):1816–1832. doi:10.1016/j.bcp.2010.07.029

    Google Scholar 

  79. Tayek JA, Heber D, Byerley LO, Steiner B, Rajfer J, Swerdloff RS (1990) Nutritional and metabolic effects of gonadotropin-releasing hormone agonist treatment for prostate cancer. Metabolism 39(12):1314–1319

    Article  CAS  PubMed  Google Scholar 

  80. Tokumaru Y, Harden SV, Sun DI, Yamashita K, Epstein JI, Sidransky D (2004) Optimal use of a panel of methylation markers with GSTP1 hypermethylation in the diagnosis of prostate adenocarcinoma. Clin Cancer Res 10(16):5518–5522. doi:10.1158/1078-0432.CCR-04-0108

    Article  CAS  PubMed  Google Scholar 

  81. Tsang WP, Kwok TT (2010) Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells. J Nutr Biochem 21(2):140–146. doi:10.1016/j.jnutbio.2008.12.003

    Article  CAS  PubMed  Google Scholar 

  82. Tunc O, Tremellen K (2009) Oxidative DNA damage impairs global sperm DNA methylation in infertile men. J Assist Reprod Genet 26(9-10):537–544. doi:10.1007/s10815-009-9346-2

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vermeulen A, Goemaere S, Kaufman JM (1999) Testosterone, body composition and aging. J Endocrinol Invest 22(5 Suppl):110–116

    CAS  PubMed  Google Scholar 

  84. Vincent HK, Taylor AG (2006) Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes (Lond) 30(3):400–418. doi:10.1038/sj.ijo.0803177

    Article  CAS  Google Scholar 

  85. Wachsman JT (1997) DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat Res 375(1):1–8

    Article  CAS  PubMed  Google Scholar 

  86. Wang J, Eltoum IE, Lamartiniere CA (2002) Dietary genistein suppresses chemically induced prostate cancer in Lobund-Wistar rats. Cancer Lett 186(1):11–18

    Article  CAS  PubMed  Google Scholar 

  87. Wang P, Heber D, Henning SM (2012) Quercetin increased bioavailability and decreased methylation of green tea polyphenols in vitro and in vivo. Food Funct 3(6):635–642. doi:10.1039/c2fo10254d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang Y, Leung FC (2004) An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 20(7):1170–1177. doi:10.1093/bioinformatics/bth059

    Article  CAS  PubMed  Google Scholar 

  89. Watanabe Y, Maekawa M (2010) Methylation of DNA in cancer. Adv Clin Chem 52:145–167

    Article  CAS  PubMed  Google Scholar 

  90. Wierda RJ, Geutskens SB, Jukema JW, Quax PH, van den Elsen PJ (2010) Epigenetics in atherosclerosis and inflammation. J Cell Mol Med 14(6A):1225–1240. doi:10.1111/j.1582-4934.2010.01022.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12(11):949–957

    CAS  PubMed  Google Scholar 

  92. Wong CP, Nguyen LP, Noh SK, Bray TM, Bruno RS, Ho E (2011) Induction of regulatory T cells by green tea polyphenol EGCG. Immunol Lett 139(1-2):7–13. doi:10.1016/j.imlet.2011.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yang B, Sun H, Lin W, Hou W, Li H, Zhang L, Li F, Gu Y, Song Y, Li Q, Zhang F (2013) Evaluation of global DNA hypomethylation in human prostate cancer and prostatic intraepithelial neoplasm tissues by immunohistochemistry. Urol Oncol 31(5):628–634. doi:10.1016/j.urolonc.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  94. Yang GY, Liao J, Li C, Chung J, Yurkow EJ, Ho CT, Yang CS (2000) Effect of black and green tea polyphenols on c-jun phosphorylation and H(2)O(2) production in transformed and non-transformed human bronchial cell lines: possible mechanisms of cell growth inhibition and apoptosis induction. Carcinogenesis 21(11):2035–2039

    Article  CAS  PubMed  Google Scholar 

  95. Zou C, Shao J (2008) Role of adipocytokines in obesity-associated insulin resistance. J Nutr Biochem 19(5):277–286. doi:10.1016/j.jnutbio.2007.06.006

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Heber M.D., Ph.D., F.A.C.P., F.A.S.N. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heber, D., Henning, S.M., Li, Z. (2016). Energy Balance, Epigenetics, and Prostate Cancer. In: Berger, N. (eds) Epigenetics, Energy Balance, and Cancer. Energy Balance and Cancer, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-41610-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41610-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41608-3

  • Online ISBN: 978-3-319-41610-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics