Skip to main content

Epigenetics and Cancer

  • Chapter
  • First Online:

Part of the book series: Energy Balance and Cancer ((EBAC,volume 11))

Abstract

Epigenetic characteristics are heritable features, propagated through cell division, that contribute to cellular identity independent of DNA sequence. Such characteristics include DNA methylation, covalent histone modifications, and non-coding RNA-dependent gene regulation. Over the past few decades, epigenetic changes in cancer have become recognized and widely accepted as important contributors to malignant transformation. Such alterations result in a transcriptional program that promotes molecular diversity and provides a selective advantage to cancer cells through tumor suppressor gene silencing and aberrant oncogene activation. Causes of epigenetic aberrations remain under active investigation and include at least stochastic changes associated with aging, mutations in epigenetic modifying enzymes, and altered cellular metabolism through changing the metabolite repertoire. A number of therapies targeting epigenetic modifiers have been approved by the FDA for cancer treatment, and many others are in clinical trials. Ongoing research is focused on better understanding mechanisms contributing to the altered epigenome, how the altered epigenome contributes to malignant transformation, and how epigenetic therapies can be best applied clinically to patients most likely to benefit from them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783. doi:10.1101/gad.1787609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Waddington C (1956) Genetic assimilation of the bithorax phenotype. Evolution 10(1):1–13

    Article  Google Scholar 

  3. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196(2):261–282

    Article  CAS  PubMed  Google Scholar 

  4. Laird PW, Jaenisch R (1996) The role of DNA methylation in cancer genetic and epigenetics. Annu Rev Genet 30:441–464. doi:10.1146/annurev.genet.30.1.441

    Article  CAS  PubMed  Google Scholar 

  5. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103(5):1412–1417. doi:10.1073/pnas.0510310103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Smet C, Lurquin C, Lethé B, Martelange V, Boon T (1999) DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol 19(11):7327–7335

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321(6067):209–213. doi:10.1038/321209a0

    Article  CAS  PubMed  Google Scholar 

  8. Vinson C, Chatterjee R (2012) CG methylation. Epigenomics 4(6):655–663. doi:10.2217/epi.12.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cooper DN, Taggart MH, Bird AP (1983) Unmethylated domains in vertebrate DNA. Nucleic Acids Res 11(3):647–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang X, Han H, De Carvalho DD, Lay FD, Jones PA, Liang G (2014) Gene body methylation can alter gene expression and is a therapeutic target in cancer. Cancer Cell 26(4):577–590. doi:10.1016/j.ccr.2014.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. doi:10.1038/nature08514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279(46):48350–48359. doi:10.1074/jbc.M403427200

    Article  CAS  PubMed  Google Scholar 

  13. Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203(4):971–983

    Article  CAS  PubMed  Google Scholar 

  14. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  15. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935. doi:10.1126/science.1170116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303. doi:10.1126/science.1210597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307. doi:10.1126/science.1210944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286(41):35334–35338. doi:10.1074/jbc.C111.284620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19(2):187–191. doi:10.1038/561

    Article  CAS  PubMed  Google Scholar 

  20. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. doi:10.1016/j.cell.2007.05.009

    Article  CAS  PubMed  Google Scholar 

  21. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318. doi:10.1038/ng1966

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903. doi:10.1038/ng.154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Casadio F, Lu X, Pollock SB, LeRoy G, Garcia BA, Muir TW, Roeder RG, Allis CD (2013) H3R42me2a is a histone modification with positive transcriptional effects. Proc Natl Acad Sci U S A 110(37):14894–14899. doi:10.1073/pnas.1312925110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031. doi:10.1016/j.febslet.2010.11.010

    Article  PubMed  CAS  Google Scholar 

  25. Migliori V, Müller J, Phalke S, Low D, Bezzi M, Mok WC, Sahu SK, Gunaratne J, Capasso P, Bassi C, Cecatiello V, De Marco A, Blackstock W, Kuznetsov V, Amati B, Mapelli M, Guccione E (2012) Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 19(2):136–144. doi:10.1038/nsmb.2209

    Article  CAS  PubMed  Google Scholar 

  26. Yuan CC, Matthews AG, Jin Y, Chen CF, Chapman BA, Ohsumi TK, Glass KC, Kutateladze TG, Borowsky ML, Struhl K, Oettinger MA (2012) Histone H3R2 symmetric dimethylation and histone H3K4 trimethylation are tightly correlated in eukaryotic genomes. Cell Rep 1(2):83–90. doi:10.1016/j.celrep.2011.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Selvi BR, Batta K, Kishore AH, Mantelingu K, Varier RA, Balasubramanyam K, Pradhan SK, Dasgupta D, Sriram S, Agrawal S, Kundu TK (2010) Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17. J Biol Chem 285(10):7143–7152. doi:10.1074/jbc.M109.063933

    Article  CAS  PubMed  Google Scholar 

  28. Qian C, Zhou MM (2006) SET domain protein lysine methyltransferases: structure, specificity and catalysis. Cell Mol Life Sci 63(23):2755–2763. doi:10.1007/s00018-006-6274-5

    Article  CAS  PubMed  Google Scholar 

  29. Herz HM, Garruss A, Shilatifard A (2013) SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci 38(12):621–639. doi:10.1016/j.tibs.2013.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Takahashi YH, Westfield GH, Oleskie AN, Trievel RC, Shilatifard A, Skiniotis G (2011) Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human. Proc Natl Acad Sci U S A 108(51):20526–20531. doi:10.1073/pnas.1109360108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298(5595):1039–1043. doi:10.1126/science.1076997

    Article  CAS  PubMed  Google Scholar 

  32. Kim SM, Kee HJ, Eom GH, Choe NW, Kim JY, Kim YS, Kim SK, Kook H, Seo SB (2006) Characterization of a novel WHSC1-associated SET domain protein with H3K4 and H3K27 methyltransferase activity. Biochem Biophys Res Commun 345(1):318–323. doi:10.1016/j.bbrc.2006.04.095

    Article  CAS  PubMed  Google Scholar 

  33. Fingerman IM, Li HC, Briggs SD (2007) A charge-based interaction between histone H4 and Dot1 is required for H3K79 methylation and telomere silencing: identification of a new trans-histone pathway. Genes Dev 21(16):2018–2029. doi:10.1101/gad.1560607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones B, Su H, Bhat A, Lei H, Bajko J, Hevi S, Baltus GA, Kadam S, Zhai H, Valdez R, Gonzalo S, Zhang Y, Li E, Chen T (2008) The histone H3K79 methyltransferase Dot1L is essential for mammalian development and heterochromatin structure. PLoS Genet 4(9):e1000190. doi:10.1371/journal.pgen.1000190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. doi:10.1016/j.cell.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  36. Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26(37):5310–5318. doi:10.1038/sj.onc.1210599

    Article  CAS  PubMed  Google Scholar 

  37. Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32(3):959–976. doi:10.1093/nar/gkh252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y (1998) Histone-like TAFs within the PCAF histone acetylase complex. Cell 94(1):35–44

    Article  CAS  PubMed  Google Scholar 

  39. Hamamori Y, Sartorelli V, Ogryzko V, Puri PL, Wu HY, Wang JY, Nakatani Y, Kedes L (1999) Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96(3):405–413

    Article  CAS  PubMed  Google Scholar 

  40. Martinez E, Palhan VB, Tjernberg A, Lymar ES, Gamper AM, Kundu TK, Chait BT, Roeder RG (2001) Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol 21(20):6782–6795. doi:10.1128/MCB.21.20.6782-6795.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vaute O, Nicolas E, Vandel L, Trouche D (2002) Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res 30(2):475–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xue Y, Wong J, Moreno GT, Young MK, Côté J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2(6):851–861

    Article  CAS  PubMed  Google Scholar 

  43. Li H, Ilin S, Wang W, Duncan EM, Wysocka J, Allis CD, Patel DJ (2006) Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature 442(7098):91–95. doi:10.1038/nature04802

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Anand R, Marmorstein R (2007) Structure and mechanism of lysine-specific demethylase enzymes. J Biol Chem 282(49):35425–35429. doi:10.1074/jbc.R700027200

    Article  CAS  PubMed  Google Scholar 

  45. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119(7):941–953. doi:10.1016/j.cell.2004.12.012

    Article  CAS  PubMed  Google Scholar 

  46. Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125(3):483–495. doi:10.1016/j.cell.2006.03.027

    Article  CAS  PubMed  Google Scholar 

  47. Tsai CL, Shi Y, Tainer JA (2014) How substrate specificity is imposed on a histone demethylase—lessons from KDM2A. Genes Dev 28(16):1735–1738. doi:10.1101/gad.249755.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng Z, Cheung P, Kuo AJ, Yukl ET, Wilmot CM, Gozani O, Patel DJ (2014) A molecular threading mechanism underlies Jumonji lysine demethylase KDM2A regulation of methylated H3K36. Genes Dev 28(16):1758–1771. doi:10.1101/gad.246561.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fiskus W, Sharma S, Shah B, Portier BP, Devaraj SG, Liu K, Iyer SP, Bearss D, Bhalla KN (2014) Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia 28(11):2155–2164. doi:10.1038/leu.2014.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mohammad HP, Smitheman KN, Kamat CD, Soong D, Federowicz KE, Van Aller GS, Schneck JL, Carson JD, Liu Y, Butticello M, Bonnette WG, Gorman SA, Degenhardt Y, Bai Y, McCabe MT, Pappalardi MB, Kasparec J, Tian X, McNulty KC, Rouse M, McDevitt P, Ho T, Crouthamel M, Hart TK, Concha NO, McHugh CF, Miller WH, Dhanak D, Tummino PJ, Carpenter CL, Johnson NW, Hann CL, Kruger RG (2015) A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 28(1):57–69. doi:10.1016/j.ccell.2015.06.002

    Article  CAS  PubMed  Google Scholar 

  51. Hoshino I, Akutsu Y, Murakami K, Akanuma N, Isozaki Y, Maruyama T, Toyozumi T, Matsumoto Y, Suito H, Takahashi M, Sekino N, Komatsu A, Suzuki T, Matsubara H (2015) Histone demethylase LSD1 inhibitors prevent cell growth by regulating gene expression in esophageal squamous cell carcinoma cells. Ann Surg Oncol. doi:10.1245/s10434-015-4488-1

    PubMed  Google Scholar 

  52. Etani T, Suzuki T, Naiki T, Naiki-Ito A, Ando R, Iida K, Kawai N, Tozawa K, Miyata N, Kohri K, Takahashi S (2015) NCL1, a highly selective lysine-specific demethylase 1 inhibitor, suppresses prostate cancer without adverse effect. Oncotarget 6(5):2865–2878

    Article  PubMed  Google Scholar 

  53. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Müller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S (2012) Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149(1):214–231. doi:10.1016/j.cell.2012.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Odore E, Lokiec F, Cvitkovic E, Bekradda M, Herait P, Bourdel F, Kahatt C, Raffoux E, Stathis A, Thieblemont C, Quesnel B, Cunningham D, Riveiro ME, Rezaï K (2015) Phase I population pharmacokinetic assessment of the oral bromodomain inhibitor OTX015 in patients with haematologic malignancies. Clin Pharmacokinet 55(3):397–405. doi:10.1007/s40262-015-0327-6

    Article  CAS  Google Scholar 

  55. Chen L, Yap JL, Yoshioka M, Lanning ME, Fountain RN, Raje M, Scheenstra JA, Strovel JW, Fletcher S (2015) BRD4 structure-activity relationships of dual PLK1 kinase/BRD4 bromodomain inhibitor BI-2536. ACS Med Chem Lett 6(7):764–769. doi:10.1021/acsmedchemlett.5b00084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Musselman CA, Avvakumov N, Watanabe R, Abraham CG, Lalonde ME, Hong Z, Allen C, Roy S, Nuñez JK, Nickoloff J, Kulesza CA, Yasui A, Côté J, Kutateladze TG (2012) Molecular basis for H3K36me3 recognition by the Tudor domain of PHF1. Nat Struct Mol Biol 19(12):1266–1272. doi:10.1038/nsmb.2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li Y, Kao GD, Garcia BA, Shabanowitz J, Hunt DF, Qin J, Phelan C, Lazar MA (2006) A novel histone deacetylase pathway regulates mitosis by modulating Aurora B kinase activity. Genes Dev 20(18):2566–2579. doi:10.1101/gad.1455006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Musselman CA, Lalonde ME, Côté J, Kutateladze TG (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19(12):1218–1227. doi:10.1038/nsmb.2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Huang Y, Fang J, Bedford MT, Zhang Y, Xu RM (2006) Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312(5774):748–751. doi:10.1126/science.1125162

    Article  CAS  PubMed  Google Scholar 

  60. Jacobs SA, Khorasanizadeh S (2002) Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295(5562):2080–2083. doi:10.1126/science.1069473

    Article  CAS  PubMed  Google Scholar 

  61. Min J, Zhang Y, Xu RM (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev 17(15):1823–1828. doi:10.1101/gad.269603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, Kouzarides T, Murzin AG, Murzina NV, Laue ED (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416(6876):103–107. doi:10.1038/nature722

    Article  CAS  PubMed  Google Scholar 

  63. Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124. doi:10.1038/35065138

    Article  CAS  PubMed  Google Scholar 

  64. Min J, Allali-Hassani A, Nady N, Qi C, Ouyang H, Liu Y, MacKenzie F, Vedadi M, Arrowsmith CH (2007) L3MBTL1 recognition of mono- and dimethylated histones. Nat Struct Mol Biol 14(12):1229–1230. doi:10.1038/nsmb1340

    Article  CAS  PubMed  Google Scholar 

  65. Guo Y, Nady N, Qi C, Allali-Hassani A, Zhu H, Pan P, Adams-Cioaba MA, Amaya MF, Dong A, Vedadi M, Schapira M, Read RJ, Arrowsmith CH, Min J (2009) Methylation-state-specific recognition of histones by the MBT repeat protein L3MBTL2. Nucleic Acids Res 37(7):2204–2210. doi:10.1093/nar/gkp086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Peña P, Lan F, Kaadige MR, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns BR, Ayer DE, Kutateladze TG, Shi Y, Côté J, Chua KF, Gozani O (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442(7098):96–99. doi:10.1038/nature04835

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127(7):1361–1373. doi:10.1016/j.cell.2006.10.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD (2006) A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature 442(7098):86–90. doi:10.1038/nature04815

    CAS  PubMed  Google Scholar 

  69. Biterge B, Schneider R (2014) Histone variants: key players of chromatin. Cell Tissue Res 356(3):457–466. doi:10.1007/s00441-014-1862-4

    Article  CAS  PubMed  Google Scholar 

  70. van Kruijsbergen I, Hontelez S, Veenstra GJ (2015) Recruiting polycomb to chromatin. Int J Biochem Cell Biol 67:177–187. doi:10.1016/j.biocel.2015.05.006

    Article  PubMed  CAS  Google Scholar 

  71. Wei T, Chen W, Wang X, Zhang M, Chen J, Zhu S, Chen L, Yang D, Wang G, Jia W, Yu Y, Duan T, Wu M, Liu H, Gao S, Kang J (2015) An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells. Nucleic Acids Res 43(11):5409–5422. doi:10.1093/nar/gkv430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482(7385):347–355. doi:10.1038/nature10888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mathonnet G, Fabian MR, Svitkin YV, Parsyan A, Huck L, Murata T, Biffo S, Merrick WC, Darzynkiewicz E, Pillai RS, Filipowicz W, Duchaine TF, Sonenberg N (2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317(5845):1764–1767. doi:10.1126/science.1146067

    Article  CAS  PubMed  Google Scholar 

  74. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858. doi:10.1126/science.1064921

    Article  CAS  PubMed  Google Scholar 

  75. Jing Q, Huang S, Guth S, Zarubin T, Motoyama A, Chen J, Di Padova F, Lin SC, Gram H, Han J (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120(5):623–634. doi:10.1016/j.cell.2004.12.038

    Article  CAS  PubMed  Google Scholar 

  76. Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284(27):17897–17901. doi:10.1074/jbc.R900012200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297(5588):1833–1837. doi:10.1126/science.1074973

    Article  CAS  PubMed  Google Scholar 

  78. Wilusz JE (2015) Long noncoding RNAs: re-writing dogmas of RNA processing and stability. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2015.06.003

    PubMed  Google Scholar 

  79. Garzon R, Volinia S, Papaioannou D, Nicolet D, Kohlschmidt J, Yan PS, Mrózek K, Bucci D, Carroll AJ, Baer MR, Wetzler M, Carter TH, Powell BL, Kolitz JE, Moore JO, Eisfeld AK, Blachly JS, Blum W, Caligiuri MA, Stone RM, Marcucci G, Croce CM, Byrd JC, Bloomfield CD (2014) Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci U S A 111(52):18679–18684. doi:10.1073/pnas.1422050112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369. doi:10.1016/j.cell.2011.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693. doi:10.1126/science.1192002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Beltran M, Puig I, Peña C, García JM, Alvarez AB, Peña R, Bonilla F, de Herreros AG (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22(6):756–769. doi:10.1101/gad.455708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756. doi:10.1126/science.1163045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445(7128):666–670. doi:10.1038/nature05519

    Article  CAS  PubMed  Google Scholar 

  85. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388. doi:10.1038/nature11993

    Article  CAS  PubMed  Google Scholar 

  86. Surani MA (2001) Reprogramming of genome function through epigenetic inheritance. Nature 414(6859):122–128. doi:10.1038/35102186

    Article  CAS  PubMed  Google Scholar 

  87. Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, Jacobsen SE, Reik W (2010) Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463(7284):1101–1105. doi:10.1038/nature08829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Molaro A, Hodges E, Fang F, Song Q, McCombie WR, Hannon GJ, Smith AD (2011) Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell 146(6):1029–1041. doi:10.1016/j.cell.2011.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Feldman N, Gerson A, Fang J, Li E, Zhang Y, Shinkai Y, Cedar H, Bergman Y (2006) G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol 8(2):188–194. doi:10.1038/ncb1353

    Article  CAS  PubMed  Google Scholar 

  90. Angulo MA, Butler MG, Cataletto ME (2015) Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. doi:10.1007/s40618-015-0312-9

    PubMed  PubMed Central  Google Scholar 

  91. Mussa A, Russo S, Larizza L, Riccio A, Ferrero GB (2015) (Epi)genotype-phenotype correlations in Beckwith-Wiedemann syndrome: a paradigm for genomic medicine. Clin Genet (in press). doi:10.1111/cge.12635

    Google Scholar 

  92. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301(5895):89–92

    Article  CAS  PubMed  Google Scholar 

  93. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11(19):6883–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lapeyre JN, Becker FF (1979) 5-Methylcytosine content of nuclear DNA during chemical hepatocarcinogenesis and in carcinomas which result. Biochem Biophys Res Commun 87(3):698–705

    Article  CAS  PubMed  Google Scholar 

  95. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55(20):4525–4530

    CAS  PubMed  Google Scholar 

  96. Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91(21):9700–9704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Herman JG, Jen J, Merlo A, Baylin SB (1996) Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. Cancer Res 56(4):722–727

    CAS  PubMed  Google Scholar 

  98. Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD, Sakai T (1993) CpG methylation inactivates the promoter activity of the human retinoblastoma tumor-suppressor gene. Oncogene 8(4):1063–1067

    CAS  PubMed  Google Scholar 

  99. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96(15):8681–8686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K, Cancer Genome Atlas Research Network (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17(5):510–522. doi:10.1016/j.ccr.2010.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH, Kohlschmidt J, Mrózek K, Wu YZ, Bucci D, Curfman JP, Whitman SP, Eisfeld AK, Mendler JH, Schwind S, Becker H, Bär C, Carroll AJ, Baer MR, Wetzler M, Carter TH, Powell BL, Kolitz JE, Byrd JC, Plass C, Garzon R, Caligiuri MA, Stone RM, Volinia S, Bundschuh R, Bloomfield CD (2014) Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol 32(6):548–556. doi:10.1200/JCO.2013.50.6337

    Article  PubMed  Google Scholar 

  102. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, Thompson CB, Kaufman A, Guryanova O, Levine R, Heguy A, Viale A, Morris LG, Huse JT, Mellinghoff IK, Chan TA (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483(7390):479–483. doi:10.1038/nature10866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tian Y, Arai E, Gotoh M, Komiyama M, Fujimoto H, Kanai Y (2014) Prognostication of patients with clear cell renal cell carcinomas based on quantification of DNA methylation levels of CpG island methylator phenotype marker genes. BMC Cancer 14:772. doi:10.1186/1471-2407-14-772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Maegawa S, Gough SM, Watanabe-Okochi N, Lu Y, Zhang N, Castoro RJ, Estecio MR, Jelinek J, Liang S, Kitamura T, Aplan PD, Issa JP (2014) Age-related epigenetic drift in the pathogenesis of MDS and AML. Genome Res 24(4):580–591. doi:10.1101/gr.157529.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lin Q, Wagner W (2015) Epigenetic aging signatures are coherently modified in cancer. PLoS Genet 11(6):e1005334. doi:10.1371/journal.pgen.1005334

    Article  PubMed  PubMed Central  Google Scholar 

  106. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M, Purcell SM, Svantesson O, Landén M, Höglund M, Lehmann S, Gabriel SB, Moran JL, Lander ES, Sullivan PF, Sklar P, Grönberg H, Hultman CM, McCarroll SA (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371(26):2477–2487. doi:10.1056/NEJMoa1409405

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, Cross JR, Fantin VR, Hedvat CV, Perl AE, Rabinowitz JD, Carroll M, Su SM, Sharp KA, Levine RL, Thompson CB (2010) The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17(3):225–234. doi:10.1016/j.ccr.2010.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Duncan CG, Barwick BG, Jin G, Rago C, Kapoor-Vazirani P, Powell DR, Chi JT, Bigner DD, Vertino PM, Yan H (2012) A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation. Genome Res 22(12):2339–2355. doi:10.1101/gr.132738.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Scourzic L, Mouly E, Bernard OA (2015) TET proteins and the control of cytosine demethylation in cancer. Genome Med 7(1):9. doi:10.1186/s13073-015-0134-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Yamazaki J, Jelinek J, Lu Y, Cesaroni M, Madzo J, Neumann F, He R, Taby R, Vasanthakumar A, Macrae T, Ostler KR, Kantarjian HM, Liang S, Estecio MR, Godley LA, Issa JP (2015) TET2 mutations affect non-CpG island DNA methylation at enhancers and transcription factor-binding sites in chronic myelomonocytic leukemia. Cancer Res 75(14):2833–2843. doi:10.1158/0008-5472.CAN-14-0739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yamazaki J, Taby R, Vasanthakumar A, Macrae T, Ostler KR, Shen L, Kantarjian HM, Estecio MR, Jelinek J, Godley LA, Issa JP (2012) Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia. Epigenetics 7(2):201–207. doi:10.4161/epi.7.2.19015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Rampal R, Alkalin A, Madzo J, Vasanthakumar A, Pronier E, Patel J, Li Y, Ahn J, Abdel-Wahab O, Shih A, Lu C, Ward PS, Tsai JJ, Hricik T, Tosello V, Tallman JE, Zhao X, Daniels D, Dai Q, Ciminio L, Aifantis I, He C, Fuks F, Tallman MS, Ferrando A, Nimer S, Paietta E, Thompson CB, Licht JD, Mason CE, Godley LA, Melnick A, Figueroa ME, Levine RL (2014) DNA hydroxymethylation profiling reveals that WT1 mutations result in loss of TET2 function in acute myeloid leukemia. Cell Rep 9(5):1841–1855. doi:10.1016/j.celrep.2014.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang Y, Xiao M, Chen X, Chen L, Xu Y, Lv L, Wang P, Yang H, Ma S, Lin H, Jiao B, Ren R, Ye D, Guan KL, Xiong Y (2015) WT1 recruits TET2 to regulate its target gene expression and suppress leukemia cell proliferation. Mol Cell 57(4):662–673. doi:10.1016/j.molcel.2014.12.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA, Fulton R, Meyer MR, Erdmann-Gilmore P, Townsend RR, Wilson RK, Ley TJ (2014) The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 25(4):442–454. doi:10.1016/j.ccr.2014.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marcucci G, Metzeler KH, Schwind S, Becker H, Maharry K, Mrózek K, Radmacher MD, Kohlschmidt J, Nicolet D, Whitman SP, Wu YZ, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Moore JO, Caligiuri MA, Larson RA, Bloomfield CD (2012) Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J Clin Oncol 30(7):742–750. doi:10.1200/JCO.2011.39.2092

    Article  PubMed  PubMed Central  Google Scholar 

  116. Iyer NG, Ozdag H, Caldas C (2004) p300/CBP and cancer. Oncogene 23(24):4225–4231. doi:10.1038/sj.onc.1207118

    Article  CAS  PubMed  Google Scholar 

  117. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper LH, Lerach S, Tang H, Ma J, Rossi D, Chadburn A, Murty VV, Mullighan CG, Gaidano G, Rabadan R, Brindle PK, Dalla-Favera R (2011) Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471(7337):189–195. doi:10.1038/nature09730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang J, Iwasaki H, Krivtsov A, Febbo PG, Thorner AR, Ernst P, Anastasiadou E, Kutok JL, Kogan SC, Zinkel SS, Fisher JK, Hess JL, Golub TR, Armstrong SA, Akashi K, Korsmeyer SJ (2005) Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J 24(2):368–381. doi:10.1038/sj.emboj.7600521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR, Cross NC, Glass CK, Cleary ML, Gilliland DG (2003) MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3(3):259–271

    Article  CAS  PubMed  Google Scholar 

  120. Perez-Campo FM, Borrow J, Kouskoff V, Lacaud G (2009) The histone acetyl transferase activity of monocytic leukemia zinc finger is critical for the proliferation of hematopoietic precursors. Blood 113(20):4866–4874. doi:10.1182/blood-2008-04-152017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sheikh BN, Lee SC, El-Saafin F, Vanyai HK, Hu Y, Pang SH, Grabow S, Strasser A, Nutt SL, Alexander WS, Smyth GK, Voss AK, Thomas T (2015) MOZ regulates B-cell progenitors, and consequently, Moz haploinsufficiency dramatically retards MYC-induced lymphoma development. Blood 125(12):1910–1921. doi:10.1182/blood-2014-08-594655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13(9):673–691. doi:10.1038/nrd4360

    Article  CAS  PubMed  Google Scholar 

  123. Licht JD (2001) AML1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene 20(40):5660–5679. doi:10.1038/sj.onc.1204593

    Article  CAS  PubMed  Google Scholar 

  124. Duque-Afonso J, Yalcin A, Berg T, Abdelkarim M, Heidenreich O, Lübbert M (2011) The HDAC class I-specific inhibitor entinostat (MS-275) effectively relieves epigenetic silencing of the LAT2 gene mediated by AML1/ETO. Oncogene 30(27):3062–3072. doi:10.1038/onc.2011.32

    Article  CAS  PubMed  Google Scholar 

  125. Tickenbrock L, Klein HU, Trento C, Hascher A, Göllner S, Bäumer N, Kuss R, Agrawal S, Bug G, Serve H, Thiede C, Ehninger G, Stadt UZ, McClelland M, Wang Y, Becker A, Koschmieder S, Berdel WE, Dugas M, Müller-Tidow C, Group SAL (2011) Increased HDAC1 deposition at hematopoietic promoters in AML and its association with patient survival. Leuk Res 35(5):620–625. doi:10.1016/j.leukres.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  126. Dhordain P, Lin RJ, Quief S, Lantoine D, Kerckaert JP, Evans RM, Albagli O (1998) The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res 26(20):4645–4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. O’Connor OA, Heaney ML, Schwartz L, Richardson S, Willim R, MacGregor-Cortelli B, Curly T, Moskowitz C, Portlock C, Horwitz S, Zelenetz AD, Frankel S, Richon V, Marks P, Kelly WK (2006) Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 24(1):166–173. doi:10.1200/JCO.2005.01.9679

    Article  PubMed  CAS  Google Scholar 

  128. Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA (1992) A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat Genet 2(2):113–118. doi:10.1038/ng1092-113

    Article  CAS  PubMed  Google Scholar 

  129. Li BE, Ernst P (2014) Two decades of leukemia oncoprotein epistasis: the MLL1 paradigm for epigenetic deregulation in leukemia. Exp Hematol 42(12):995–1012. doi:10.1016/j.exphem.2014.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22(20):5323–5335. doi:10.1093/emboj/cdg542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sinha S, Thomas D, Yu L, Gentles AJ, Jung N, Corces-Zimmerman MR, Chan SM, Reinisch A, Feinberg AP, Dill DL, Majeti R (2015) Mutant WT1 is associated with DNA hypermethylation of PRC2 targets in AML and responds to EZH2 inhibition. Blood 125(2):316–326. doi:10.1182/blood-2014-03-566018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bachmann N, Hoegel J, Haeusler J, Kuefer R, Herkommer K, Paiss T, Vogel W, Maier C (2005) Mutation screen and association study of EZH2 as a susceptibility gene for aggressive prostate cancer. Prostate 65(3):252–259. doi:10.1002/pros.20296

    Article  CAS  PubMed  Google Scholar 

  133. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, Yap D, Humphries RK, Griffith OL, Shah S, Zhu H, Kimbara M, Shashkin P, Charlot JF, Tcherpakov M, Corbett R, Tam A, Varhol R, Smailus D, Moksa M, Zhao Y, Delaney A, Qian H, Birol I, Schein J, Moore R, Holt R, Horsman DE, Connors JM, Jones S, Aparicio S, Hirst M, Gascoyne RD, Marra MA (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42(2):181–185. doi:10.1038/ng.518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A, Morin RD, Mungall AJ, Meissner B, Boyle M, Marquez VE, Marra MA, Gascoyne RD, Humphries RK, Arrowsmith CH, Morin GB, Aparicio SA (2011) Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117(8):2451–2459. doi:10.1182/blood-2010-11-321208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen L, Deshpande AJ, Banka D, Bernt KM, Dias S, Buske C, Olhava EJ, Daigle SR, Richon VM, Pollock RM, Armstrong SA (2013) Abrogation of MLL-AF10 and CALM-AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l. Leukemia 27(4):813–822. doi:10.1038/leu.2012.327

    Article  CAS  PubMed  Google Scholar 

  136. Deshpande AJ, Chen L, Fazio M, Sinha AU, Bernt KM, Banka D, Dias S, Chang J, Olhava EJ, Daigle SR, Richon VM, Pollock RM, Armstrong SA (2013) Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l. Blood 121(13):2533–2541. doi:10.1182/blood-2012-11-465120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Daigle SR, Olhava EJ, Therkelsen CA, Basavapathruni A, Jin L, Boriack-Sjodin PA, Allain CJ, Klaus CR, Raimondi A, Scott MP, Waters NJ, Chesworth R, Moyer MP, Copeland RA, Richon VM, Pollock RM (2013) Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122(6):1017–1025. doi:10.1182/blood-2013-04-497644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wada T, Koyama D, Kikuchi J, Honda H, Furukawa Y (2015) Overexpression of the shortest isoform of histone demethylase LSD1 primes hematopoietic stem cells for malignant transformation. Blood 125(24):3731–3746. doi:10.1182/blood-2014-11-610907

    Article  CAS  PubMed  Google Scholar 

  139. French CA, Miyoshi I, Aster JC, Kubonishi I, Kroll TG, Dal Cin P, Vargas SO, Perez-Atayde AR, Fletcher JA (2001) BRD4 bromodomain gene rearrangement in aggressive carcinoma with translocation t(15;19). Am J Pathol 159(6):1987–1992. doi:10.1016/S0002-9440(10)63049-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. French CA, Ramirez CL, Kolmakova J, Hickman TT, Cameron MJ, Thyne ME, Kutok JL, Toretsky JA, Tadavarthy AK, Kees UR, Fletcher JA, Aster JC (2008) BRD-NUT oncoproteins: a family of closely related nuclear proteins that block epithelial differentiation and maintain the growth of carcinoma cells. Oncogene 27(15):2237–2242. doi:10.1038/sj.onc.1210852

    Article  CAS  PubMed  Google Scholar 

  141. Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T, Rodig SJ, Kung AL, Bradner JE, Weinstock DM (2012) BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 120(14):2843–2852. doi:10.1182/blood-2012-02-413021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917. doi:10.1016/j.cell.2011.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi:10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  144. Liz J, Esteller M (2015) lncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta 1859(1):169–176. doi:10.1016/j.bbagrm.2015.06.015

    Article  PubMed  CAS  Google Scholar 

  145. Kogo R, Shimamura T, Mimori K, Kawahara K, Imoto S, Sudo T, Tanaka F, Shibata K, Suzuki A, Komune S, Miyano S, Mori M (2011) Long noncoding RNA HOTAIR regulates polycomb-dependent chromatin modification and is associated with poor prognosis in colorectal cancers. Cancer Res 71(20):6320–6326. doi:10.1158/0008-5472.CAN-11-1021

    Article  CAS  PubMed  Google Scholar 

  146. Nie FQ, Sun M, Yang JS, Xie M, Xu TP, Xia R, Liu YW, Liu XH, Zhang EB, Lu KH, Shu YQ (2015) Long noncoding RNA ANRIL promotes non-small cell lung cancer cell proliferation and inhibits apoptosis by silencing KLF2 and P21 expression. Mol Cancer Ther 14(1):268–277. doi:10.1158/1535-7163.MCT-14-0492

    Article  CAS  PubMed  Google Scholar 

  147. Belinsky SA, Klinge DM, Stidley CA, Issa JP, Herman JG, March TH, Baylin SB (2003) Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer. Cancer Res 63(21):7089–7093

    CAS  PubMed  Google Scholar 

  148. Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21(35):5483–5495. doi:10.1038/sj.onc.1205699

    Article  CAS  PubMed  Google Scholar 

  149. Issa JP, Roboz G, Rizzieri D, Jabbour E, Stock W, O’Connell C, Yee K, Tibes R, Griffiths EA, Walsh K, Daver N, Chung W, Naim S, Taverna P, Oganesian A, Hao Y, Lowder JN, Azab M, Kantarjian H (2015) Safety and tolerability of guadecitabine (SGI-110) in patients with myelodysplastic syndrome and acute myeloid leukaemia: a multicentre, randomised, dose-escalation phase 1 study. Lancet Oncol 16(9):1099–1110. doi:10.1016/S1470-2045(15)00038-8

    Article  CAS  PubMed  Google Scholar 

  150. Everson RG, Antonios JP, Lisiero DN, Soto H, Scharnweber R, Garrett MC, Yong WH, Li N, Li G, Kruse CA, Liau LM, Prins RM (2015) Efficacy of systemic adoptive transfer immunotherapy targeting NY-ESO-1 for glioblastoma. Neuro Oncol. doi:10.1093/neuonc/nov153

    PubMed  Google Scholar 

  151. Jiang X, Wang Z, Ding B, Yin C, Zhong Q, Carter BZ, Yu G, Jiang L, Ye J, Dai M, Zhang Y, Liang S, Zhao Q, Liu Q, Meng F (2015) The hypomethylating agent decitabine prior to chemotherapy improves the therapy efficacy in refractory/relapsed acute myeloid leukemia patients. Oncotarget 6(32):33612–33622

    PubMed  PubMed Central  Google Scholar 

  152. O’Connor OA, Bhagat G, Ganapathi K, Pedersen MB, D’Amore F, Radeski D, Bates SE (2014) Changing the paradigms of treatment in peripheral T-cell lymphoma: from biology to clinical practice. Clin Cancer Res 20(20):5240–5254. doi:10.1158/1078-0432.CCR-14-2020

    Article  PubMed  CAS  Google Scholar 

  153. Schenk T, Chen WC, Göllner S, Howell L, Jin L, Hebestreit K, Klein HU, Popescu AC, Burnett A, Mills K, Casero RA, Marton L, Woster P, Minden MD, Dugas M, Wang JC, Dick JE, Müller-Tidow C, Petrie K, Zelent A (2012) Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med 18(4):605–611. doi:10.1038/nm.2661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Brand M, Measures AM, Wilson BG, Cortopassi WA, Alexander R, Höss M, Hewings DS, Rooney TP, Paton RS, Conway SJ (2015) Small molecule inhibitors of bromodomain-acetyl-lysine interactions. ACS Chem Biol 10(1):22–39. doi:10.1021/cb500996u

    Article  CAS  PubMed  Google Scholar 

  155. Lamoureux F, Baud’huin M, Rodriguez Calleja L, Jacques C, Berreur M, Rédini F, Lecanda F, Bradner JE, Heymann D, Ory B (2014) Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle. Nat Commun 5:3511. doi:10.1038/ncomms4511

    Article  PubMed  CAS  Google Scholar 

  156. Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S, Liu S, Havelange V, Becker H, Schaaf L, Mickle J, Devine H, Kefauver C, Devine SM, Chan KK, Heerema NA, Bloomfield CD, Grever MR, Byrd JC, Villalona-Calero M, Croce CM, Marcucci G (2010) Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci U S A 107(16):7473–7478. doi:10.1073/pnas.1002650107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hegi ME, Diserens AC, Godard S, Dietrich PY, Regli L, Ostermann S, Otten P, Van Melle G, de Tribolet N, Stupp R (2004) Clinical trial substantiates the predictive value of O-6-methylguanine-DNA methyltransferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res 10(6):1871–1874

    Article  CAS  PubMed  Google Scholar 

  158. Yamazaki J, Taby R, Jelinek J, Raynal NJ, Cesaroni M, Pierce SA, Kornblau SM, Bueso-Ramos CE, Ravandi F, Kantarjian HM, Issa JP (2015) Hypomethylation of TET2 target genes identifies a curable subset of acute myeloid leukemia. J Natl Cancer Inst 108(2). doi:10.1093/jnci/djv323

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre J. Issa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kelly, A.D., Issa, JP.J. (2016). Epigenetics and Cancer. In: Berger, N. (eds) Epigenetics, Energy Balance, and Cancer. Energy Balance and Cancer, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-41610-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41610-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41608-3

  • Online ISBN: 978-3-319-41610-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics