Advertisement

Introduction

  • Hossein Rastgoftar
Chapter

Abstract

Formation control has received considerable attentions during the past two decades. Some applications like formation flight, transportation engineering, air traffic control, gaming, maneuvering in a hazardous environment, and environmental sampling have been listed in literature for formation control. Formation control in a multi-agent system (MAS) has many advantages [91]. For example, keeping formation increases robustness and efficiency of a system reduces the cost of a system, and results in better fault tolerance and capability of reconfiguration [6, 8, 9, 19, 140].

Keywords

Collective Motion Communication Delay Homogeneous Deformation Interagent Communication Consensus Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ajorlou, A., Momeni, A, & Aghdam, A. G. (2009). Connectivity preservation in a network of single integrator agents. In Proceedings of the 48th IEEE Conference on Decision and control, 2009 held jointly with the 2009 28th Chinese control conference. CDC/CCC 2009 (pp. 7061–7067). IEEE.Google Scholar
  2. 2.
    Ajorlou, A., Momeni, A., & Aghdam, A. G. (2010). A class of bounded distributed control strategies for connectivity preservation in multi-agent systems. IEEE Transactions on Automatic Control, 55(12), 2828–2833.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Alam, S. M. S., Natarajan, B., & Pahwa, A. (2015). Agent based optimally weighted Kalman consensus filter over a lossy network. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6). IEEE.Google Scholar
  4. 4.
    Antonelli, G., Arrichiello, F., & Chiaverini, S. (2006). Experiments of formation control with collisions avoidance using the null-space-based behavioral control. In 14th Mediterranean conference on control and automation, 2006. MED’06 (pp. 1–6). IEEE.Google Scholar
  5. 5.
    Antonelli, G., Arrichiello, F., & Chiaverini, S. (2009). Experiments of formation control with multirobot systems using the null-space-based behavioral control. IEEE Transactions on Control Systems Technology, 17(5), 1173–1182.CrossRefGoogle Scholar
  6. 6.
    Bahceci, E., Soysal, O., & Sahin, E. (2003). A review: pattern formation and adaptation in multi-robot systems. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA. Technical Report CMU-RI-TR-03-43.Google Scholar
  7. 7.
    Balch, T., & Arkin, R. C. (1998). Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 14(6), 926–939.CrossRefGoogle Scholar
  8. 8.
    Bazoula, A., Djouadi, M. S., & Maaref, H. (2008). Formation control of multi-robots via fuzzy logic technique. International Journal of Computers, Communications Control, 3(3).Google Scholar
  9. 9.
    Berman, A., & Plemmons, R. J. (1979). Nonnegative matrices. The Mathematical Sciences, Classics in Applied Mathematics, 9.Google Scholar
  10. 10.
    Binetti, G., Davoudi, A., Lewis, F. L., Naso, D., & Turchiano, B. (2014). Distributed consensus-based economic dispatch with transmission losses. IEEE Transactions on Power Systems, 29(4), 1711–1720.CrossRefGoogle Scholar
  11. 11.
    Biswas, A., Thompson, D., He, W., Deng, Q., Chen, C.-M., Shenk, H.-W., et al. (2015). An uncertainty-driven approach to vortex analysis using oracle consensus and spatial proximity. In 2015 IEEE pacific visualization symposium (PacificVis) (pp. 223–230). IEEE.Google Scholar
  12. 12.
    Bliman, P.-A., & Ferrari-Trecate, G. (2008). Average consensus problems in networks of agents with delayed communications. Automatica, 44(8), 1985–1995.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bouteraa, Y., Ghommam, J., & Derbel, N. (2011). Coordinated backstepping control of multiple robot system of the leader-follower structure. In 2011 8th international multi-conference on systems, signals and devices (SSD) (pp. 1–5). IEEE.Google Scholar
  14. 14.
    Cao, Y., & Ren, W. (2009). Containment control with multiple stationary or dynamic leaders under a directed interaction graph. In Proceedings of the 48th IEEE conference on decision and control, 2009 held jointly with the 2009 28th Chinese control conference. CDC/CCC 2009 (pp. 3014–3019). IEEE.Google Scholar
  15. 15.
    Cao, Y., Stuart, D., Ren, W., & Meng, Z. (2011). Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: Algorithms and experiments. IEEE Transactions on Control Systems Technology, 19(4), 929–938.CrossRefGoogle Scholar
  16. 16.
    Carli, R., & Zampieri, S. (2014). Network clock synchronization based on the second-order linear consensus algorithm. IEEE Transactions on Automatic Control, 59(2), 409–422.MathSciNetCrossRefGoogle Scholar
  17. 18.
    Chen, X., & Serrani, A. (2007). Smith predictors in nonlinear systems-application to ISS-based leader/follower trailing control. In American control conference, 2007. ACC’07 (pp. 4506–4511). IEEE.Google Scholar
  18. 19.
    Chen, Y., & Wang, Z. (2005). Formation control: a review and a new consideration. In 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005. (IROS 2005) (pp. 3181–3186). IEEE.Google Scholar
  19. 20.
    Chen, C. L. P., Wen, G.-X., Liu, Y.-J., & Wang, F.-Y. (2014). Adaptive consensus control for a class of nonlinear multiagent time-delay systems using neural networks. IEEE Transactions on Neural Networks and Learning Systems, 25(6), 1217–1226.CrossRefGoogle Scholar
  20. 21.
    Cheok, K. C., Smid, G.-E., Kobayashi, K., Overholt, J. L., & Lescoe, P. (1997). A fuzzy logic intelligent control system paradigm for an in-line-of-sight leader-following HMMWV. Journal of Robotic Systems, 14(6), 407–420.CrossRefGoogle Scholar
  21. 22.
    Consolini, L., Morbidi, F., Prattichizzo, D., & Tosques, M. (2008). Leader–follower formation control of nonholonomic mobile robots with input constraints. Automatica, 44(5), 1343–1349.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 23.
    Cortes, J., Martinez, S., Karatas, T., & Bullo, F. (2002). Coverage control for mobile sensing networks. In IEEE international conference on robotics and automation, 2002. Proceedings. ICRA’02 (Vol. 2, pp. 1327–1332). IEEE.Google Scholar
  23. 24.
    Cui, R., Ge, S. S., Ee How, B. V., & Choo, Y. S. (2010). Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Engineering, 37(17), 1491–1502.CrossRefGoogle Scholar
  24. 29.
    Dierks, T., Brenner, B., & Jagannathan, S. (2013). Neural network-based optimal control of mobile robot formations with reduced information exchange. IEEE Transactions on Control Systems Technology, 21(4), 1407–1415.CrossRefGoogle Scholar
  25. 30.
    Dimarogonas, D. V., & Johansson, K. H. (2010). Stability analysis for multi-agent systems using the incidence matrix: quantized communication and formation control. Automatica, 46(4), 695–700.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 31.
    Dong, X., Shi, Z., Ren, Z., & Zhong, Y. (2015). Output formation-containment control for high-order swarm systems with directed topologies. In The 27th Chinese control and decision conference (2015 CCDC) (pp. 36–43). IEEE.Google Scholar
  27. 32.
    Edwards, D. B., Bean, T. A., Odell, D. L., & Anderson, M. J. (2004). A leader-follower algorithm for multiple AUV formations.IEEE.Google Scholar
  28. 33.
    Fazelinia, H., Sipahi, R., & Olgac, N. (2007). Stability robustness analysis of multiple time-delayed systems using building block concept. IEEE Transactions on Automatic Control, 52(5), 799–810.MathSciNetCrossRefGoogle Scholar
  29. 34.
    Ferrari-Trecate, G., Egerstedt, M., Buffa, A., & Ji, M. (2006). Laplacian sheep: A hybrid, stop-go policy for leader-based containment control. In Hybrid systems: Computation and control (pp. 212–226). Berlin: Springer.CrossRefGoogle Scholar
  30. 35.
    Fridman, E. (2001). New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. Systems Control Letters, 43(4), 309–319 (2001)Google Scholar
  31. 36.
    Frihauf, P., & Krstic, M. (2010). Multi-agent deployment to a family of planar arcs. In American control conference (ACC), 2010(pp. 4109–4114). IEEE.Google Scholar
  32. 37.
    Frihauf, P., & Krstic, M. (2011). Leader-enabled deployment onto planar curves: A PDE-based approach. IEEE Transactions on Automatic Control, 56(8), 1791–1806.MathSciNetCrossRefGoogle Scholar
  33. 38.
    Gamage, G. W., Mann, G. K., & Gosine, R. G. (2010). Leader follower based formation control strategies for nonholonomic mobile robots: Design, implementation and experimental validation. In American control conference (ACC), 2010 (pp. 224–229). IEEE..Google Scholar
  34. 39.
    Gayme, D. F., & Chakrabortty, A. (2012). Shaping power system inter-area oscillations through control loops of grid integrated wind farms. In 2012 IEEE 51st annual conference on decision and control (CDC) (pp. 5004–5009). IEEE.Google Scholar
  35. 40.
    Gazi, V., & Passino, K. M. (2011). Swarm stability and optimization. New York: Springer Science Business Media.zbMATHCrossRefGoogle Scholar
  36. 41.
    Gerdes, J. C., & Rossetter, E. J. (2001). A unified approach to driver assistance systems based on artificial potential fields. Journal of Dynamic Systems, Measurement, and Control, 123(3), 431–438.CrossRefGoogle Scholar
  37. 42.
    Ghods, N., & Krstic, M. (2012). Multiagent deployment over a source. IEEE Transactions on Control Systems Technology, 20(1), 277–285.Google Scholar
  38. 43.
    Ghommam, J., Saad, M., & Mnif, F. (2010). Robust adaptive formation control of fully actuated marine vessels using local potential functions. In 2010 IEEE international conference on robotics and automation (ICRA) (pp. 3001–3007). IEEE.Google Scholar
  39. 44.
    Ghommam, J., Mehrjerdi, H., & Saad, M. (2011). Leader-follower formation control of nonholonomic robots with fuzzy logic based approach for obstacle avoidance. In 2011 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2340–2345). IEEE.Google Scholar
  40. 45.
    Haghpanahi, M., Sameni, R., & Borkholder, D. A. (2014). Scoring consensus of multiple ecg annotators by optimal sequence alignment. In 2014 36th annual international conference of the IEEE engineering in medicine and biology society (pp. 1855–1859). IEEE.Google Scholar
  41. 46.
    Han, T., Lin, Z., & Fu, M. (2015). Three-dimensional formation merging control under directed and switching topologies. Automatica, 58, 99–105.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 47.
    Hao, H., & Barooah, P. (2010). Control of large 1−d networks of double integrator agents: role of heterogeneity and asymmetry on stability margin. In 49th IEEE conference on decision and control (CDC) (pp. 7395–7400). IEEE.Google Scholar
  43. 48.
    He, X., Wang, Q., & Yu, W. (2014). Finite-time containment control for second-order multiagent systems under directed topology. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(8), 619–623.CrossRefGoogle Scholar
  44. 49.
    Hettiarachchi, S., Spears, W. M., Varghese, B., & McKee, G. (2009). A review and implementation of swarm pattern formation and transformation models. International Journal of Intelligent Computing and Cybernetics, 2(4), 786–817.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 50.
    Hu, J., & Cao, J. (2015). Hierarchical cooperative control for multiagent systems with switching directed topologies. IEEE Transactions on Neural Networks and Learning Systems, 26(10), 2453–2463.MathSciNetCrossRefGoogle Scholar
  46. 51.
    Hu, Y., Lam, J., & Liang, J. (2013). Consensus control of multi-agent systems with missing data in actuators and Markovian communication failure. International Journal of Systems Science, 44(10), 1867–1878.MathSciNetzbMATHCrossRefGoogle Scholar
  47. 52.
    Huang, T., & Chen, X. (2008). A geometric method of swarm robot formation controls. In 7th world congress on intelligent control and automation, 2008. WCICA 2008 (pp. 3202–3206). IEEE.Google Scholar
  48. 53.
    Hui, Q., Haddad, W. M., & Bhat, S. P. (2010). On robust control algorithms for nonlinear network consensus protocols. International Journal of Robust and Nonlinear Control, 20(3), 269–284.MathSciNetzbMATHCrossRefGoogle Scholar
  49. 54.
    Ji, M., Ferrari-Trecate, G., Egerstedt, M., & Buffa, A. (2008). Containment control in mobile networks. IEEE Transactions on Automatic Control, 53(8), 1972–1975.MathSciNetCrossRefGoogle Scholar
  50. 55.
    Jia, Q., & Li, G. (2007). Formation control and obstacle avoidance algorithm of multiple autonomous underwater vehicles (AUVS) based on potential function and behavior rules. In 2007 IEEE international conference on automation and logistics (pp. 569–573). IEEE.Google Scholar
  51. 56.
    Jia, B., Pham, K. D., Blasch, E., Shen, D., Wang, Z., & Chen, G. (2014). Cooperative space object tracking using consensus-based filters. In 2014 17th international conference on information fusion (FUSION) (pp. 1–8). IEEE.Google Scholar
  52. 57.
    Kar, S., & Moura, J. M. F. (2009). Distributed consensus algorithms in sensor networks with imperfect communication: Link failures and channel noise. IEEE Transactions on Signal Processing, 57(1), 355–369.MathSciNetCrossRefGoogle Scholar
  53. 58.
    Kharitonov, V. L., & Zhabko, A. P. (2003). Lyapunov–Krasovskii approach to the robust stability analysis of time-delay systems. Automatica, 39(1), 15–20.MathSciNetzbMATHCrossRefGoogle Scholar
  54. 59.
    Khoo, S., Xie, L., Yu, Z., & Man, Z. (2008). Finite-time consensus algorithm of multi-agent networks. In 10th international conference on control, automation, robotics and vision, 2008. ICARCV 2008 (pp. 916–920). IEEE.Google Scholar
  55. 60.
    Khoo, S., Yin, J., Wang, B., Zhao, S., & Man, Z. (2011). Adaptive data based neural network leader-follower control of multi-agent networks. In IECON 2011-37th annual conference on IEEE industrial electronics society (pp. 3924–3929). IEEE.Google Scholar
  56. 61.
    Kim, J., Kim, K.-D., Natarajan, V., Kelly, S. D., & Bentsman, J. (2008). PDE-based model reference adaptive control of uncertain heterogeneous multiagent networks. Nonlinear Analysis: Hybrid Systems, 2(4), 1152–1167.MathSciNetzbMATHGoogle Scholar
  57. 62.
    Kloetzer, M., & Belta, C. (2007). Temporal logic planning and control of robotic swarms by hierarchical abstractions. IEEE Transactions on Robotics, 23(2), 320–330.CrossRefGoogle Scholar
  58. 63.
    Kvinto, Y. I., & Parsegov, S. E. (2012). Equidistant arrangement of agents on line: Analysis of the algorithm and its generalization. Automation and Remote Control, 73(11), 1784–1793.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 65.
    Lestas, I., & Vinnicombe, G. (2010). Heterogeneity and scalability in group agreement protocols: Beyond small gain and passivity approaches. Automatica, 46(7), 1141–1151.MathSciNetzbMATHCrossRefGoogle Scholar
  60. 66.
    Li, Q., & Jiang, Z.-P. (2008). Formation tracking control of unicycle teams with collision avoidance. In 47th IEEE conference on decision and control, 2008. CDC 2008 (pp. 496–501). IEEE.Google Scholar
  61. 67.
    Li, X., Xiao, J., & Cai, Z. (2005). Backstepping based multiple mobile robots formation control. In 2005 IEEE/RSJ international conference on intelligent robots and systems, 2005.(IROS 2005) (pp. 887–892). IEEE.Google Scholar
  62. 68.
    Li, H., Djouadi, S., & Tomsovic, K. (2012). Flocking generators: A PdE framework for stability of smart grids with communications. In 2012 IEEE third international conference on smart grid communications (SmartGridComm) (pp. 540–545). IEEE.Google Scholar
  63. 69.
    Li, H., Liao, X., Lei, X., Huang, T., & Zhu, W. (2013). Second-order consensus seeking in multi-agent systems with nonlinear dynamics over random switching directed networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(6), 1595–1607.MathSciNetCrossRefGoogle Scholar
  64. 70.
    Li, S., Feng, G., Luo, X., & Guan, X. (2015). Output consensus of heterogeneous linear discrete-time multiagent systems with structural uncertainties. IEEE Transactions on Cybernetics, 45(12), 2868–2879.CrossRefGoogle Scholar
  65. 71.
    Lin, P., & Jia, Y. (2010). Consensus of a class of second-order multi-agent systems with time-delay and jointly-connected topologies. IEEE Transactions on Automatic Control, 55(3), 778–784.MathSciNetCrossRefGoogle Scholar
  66. 72.
    Lin, P., Jia, Y., & Li, L. (2008). Distributed robust consensus control in directed networks of agents with time-delay. Systems Control Letters, 57(8), 643–653.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 73.
    Lin, Z., Ding, W., Yan, G., Yu, C., & Giua, A. (2013). Leader–follower formation via complex Laplacian. Automatica, 49(6), 1900–1906.MathSciNetCrossRefGoogle Scholar
  68. 74.
    Liu, B., & Chen, T. (2008). Consensus in networks of multiagents with cooperation and competition via stochastically switching topologies. IEEE Transactions on Neural Networks, 19(11), 1967–1973.CrossRefGoogle Scholar
  69. 75.
    Liu, C.-L., & Liu, F. (2014). Asynchronously compensated consensus algorithm for discrete-time second-order multi-agent systems under communication delay. IET Control Theory Applications, 8(17), 2004–2012.MathSciNetCrossRefGoogle Scholar
  70. 76.
    Liu, B., Zhang, R., & Shi, C. (2006). Formation control of multiple behavior-based robots. In 2006 international conference on computational intelligence and security (Vol. 1, pp. 544–547). IEEE.Google Scholar
  71. 77.
    Liu, W., Gu, W., Sheng, W., Meng, X., Wu, Z., & Chen, W. (2014). Decentralized multi-agent system-based cooperative frequency control for autonomous microgrids with communication constraints. IEEE Transactions on Sustainable Energy, 5(2), 446–456 (2014)Google Scholar
  72. 78.
    Lopez-Martinez, M., Delvenne, J.-C., & Blondel, V. D. (2012). Optimal sampling time for consensus in time-delayed networked systems. IET Control Theory Applications, 6(15), 2467–2476.MathSciNetCrossRefGoogle Scholar
  73. 79.
    Low, C. B., & Ng, Q. S. (2011). A flexible virtual structure formation keeping control for fixed-wing UAVS. In 2011 9th IEEE international conference on control and automation (ICCA) (pp. 621–626). IEEE.Google Scholar
  74. 80.
    Magar, K. T., Balas, M. J., & Gayme, D. F. (2014). Adaptive control of inter-area oscillations in wind-integrated power systems using distributed parameter control methods. In American control conference (ACC), 2014 (pp. 903–907). IEEE.Google Scholar
  75. 81.
    Mariottini, G. L., Morbidi, F., Prattichizzo, D., Valk, N. V., Michael, N., Pappas, G., et al. (2009). Vision-based localization for leader–follower formation control. IEEE Transactions on Robotics, 25(6), 1431–1438.CrossRefGoogle Scholar
  76. 82.
    Mehrjerdi, H., Ghommam, J., & Saad, M. (2011). Nonlinear coordination control for a group of mobile robots using a virtual structure. Mechatronics, 21(7), 1147–1155.CrossRefGoogle Scholar
  77. 83.
    Meurer, T., & Krstic, M. (2010). Nonlinear PDE-based motion planning for the formation control of mobile agents. In Proceedings of the (CD–ROM) 8th IFAC symposium nonlinear control systems (NOLCOS 2010), Bologna (I) (pp. 599–604).Google Scholar
  78. 84.
    Miyasato, Y. (2010). Adaptive H formation control for Euler-Lagrange systems. In 2010 49th IEEE conference on decision and control (CDC) (pp. 2614–2619). IEEE.Google Scholar
  79. 86.
    Motee, N., Jadbabaie, A., & Pappas, G. (2010). Path planning for multiple robots: An alternative duality approach. In American control conference (ACC), 2010 (pp. 1611–1616). IEEE.Google Scholar
  80. 87.
    Moura, S., Bendtsen, J., & Ruiz, V. (2013). Observer design for boundary coupled PDES: Application to thermostatically controlled loads in smart grids. In 52nd IEEE conference on decision and control (pp. 6286–6291). IEEE.Google Scholar
  81. 88.
    Mu, X., & Zheng, B. (2015). Containment control of second-order discrete-time multi-agent systems with Markovian missing data. IET Control Theory Applications, 9(8), 1229–1237.MathSciNetCrossRefGoogle Scholar
  82. 89.
    Münz, U., Papachristodoulou, A., & Allgöwer, F. (2010). Delay robustness in consensus problems. Automatica, 46(8), 1252–1265.MathSciNetzbMATHCrossRefGoogle Scholar
  83. 90.
    Munz, U., Papachristodoulou, A., & Allgower, F. (2011). Robust consensus controller design for nonlinear relative degree two multi-agent systems with communication constraints. IEEE Transactions on Automatic Control, 56(1), 145–151.MathSciNetCrossRefGoogle Scholar
  84. 91.
    Murray, R. M. (2007). Recent research in cooperative control of multivehicle systems. Journal of Dynamic Systems, Measurement, and Control, 129(5), 571–583.CrossRefGoogle Scholar
  85. 92.
    Nathan, D. M., Buse, J. B., Davidson, M. B., Ferrannini, E., Holman, R. R., Sherwin, R., et al. (2009). Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy a consensus statement of the American diabetes association and the European association for the study of diabetes. Diabetes Care, 32(1), 193–203.CrossRefGoogle Scholar
  86. 93.
    Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.MathSciNetCrossRefGoogle Scholar
  87. 94.
    Olgac, N., & Sipahi, R. (2016). A practical method for analyzing the stability of neutral type LTI-time delayed systems. Automatica, 40(5), 847–853.MathSciNetzbMATHCrossRefGoogle Scholar
  88. 95.
    Omidi, E., & Mahmoodi, S. N. (2016). Robust optimal consensus state estimator for a piezoactive distributed parameter system. Journal of Dynamic Systems, Measurement, and Control, 138(9), 091011.CrossRefGoogle Scholar
  89. 96.
    Panigrahi, N., & Khilar, P. M. (2015). Optimal consensus-based clock synchronisation algorithm in wireless sensor network by selective averaging. IET Wireless Sensor Systems, 5(3), 166–174.CrossRefGoogle Scholar
  90. 97.
    Parsegov, S., Polyakov, A., & Shcherbakov, P. (2012). Nonlinear fixed-time control protocol for uniform allocation of agents on a segment. In 2012 IEEE 51st IEEE conference on decision and control (CDC) (pp. 7732–7737). IEEE.Google Scholar
  91. 98.
    Patterson, S., Bamieh, B., & Abbadi, A. E. (2007). Distributed average consensus with stochastic communication failures. In 2007 46th IEEE conference on decision and control (pp. 4215–4220). IEEE.Google Scholar
  92. 99.
    Pepe, P., & Jiang, Z.-P. (2006). A Lyapunov–Krasovskii methodology for ISS and IISS of time-delay systems. Systems Control Letters, 55(12), 1006–1014.MathSciNetzbMATHCrossRefGoogle Scholar
  93. 100.
    Pereira, A. R., Hsu, L., & Ortega, R. (2009). Globally stable adaptive formation control of Euler-Lagrange agents via potential functions. In American control conference, 2009. ACC’09 (pp. 2606–2611). IEEE.Google Scholar
  94. 101.
    Qin, J., Ma, Q., Zheng, W. X., & Gao, H. (2015). H group consensus for clusters of agents with model uncertainty and external disturbance. In 2015 54th IEEE conference on decision and control (CDC) (pp. 2841–2846). IEEE.Google Scholar
  95. 102.
    Qu, Z. (2009). Cooperative control of dynamical systems: Applications to autonomous vehicles. New York: Springer Science Business Media.zbMATHGoogle Scholar
  96. 103.
    Ranjbar-Sahraei, B., Shabaninia, F., Nemati, A., & Stan, S.-D. (2012). A novel robust decentralized adaptive fuzzy control for swarm formation of multiagent systems. IEEE Transactions on Industrial Electronics, 59(8), 3124–3134.CrossRefGoogle Scholar
  97. 104.
    Rastgoftar, H. (2013). Planning and control of swarm motion as continua. Ph.D. Thesis, University of Central Florida Orlando, Florida.Google Scholar
  98. 106.
    Rastgoftar, H., & Jayasuriya, S. (2013). Distributed control of swarm motions as continua using homogeneous maps and agent triangulation. In 2013 European control conference (ECC) (pp. 2824–2830). IEEE.Google Scholar
  99. 109.
    Rastgoftar, H., & Jayasuriya, S. (2014). Alignment as biological inspiration for control of multi agent systems. In ASME 2014 dynamic systems and control conference (pp. V001T05A003–V001T05A003). American Society of Mechanical Engineers.Google Scholar
  100. 111.
    Rastgoftar, H., & Jayasuriya, S. (2014). Evolution of multi-agent systems as continua. Journal of Dynamic Systems, Measurement, and Control, 136(4), 041014.CrossRefGoogle Scholar
  101. 112.
    Rastgoftar, H., & Jayasuriya, S. (2015). An alignment strategy for evolution of multi-agent systems. Journal of Dynamic Systems, Measurement, and Control, 137(2), 021009. American Society of Mechanical Engineers.Google Scholar
  102. 113.
    Rastgoftar, H., & Jayasuriya, S. (2015). Swarm motion as particles of a continuum with communication delays. Journal of Dynamic Systems, Measurement, and Control, 137(11), 111008.CrossRefGoogle Scholar
  103. 116.
    Ravazzi, C., Fosson, S. M., & Magli, E. (2015). Distributed iterative thresholding for-regularized linear inverse problems. IEEE Transactions on Information Theory, 61(4), 2081–2100.MathSciNetCrossRefGoogle Scholar
  104. 117.
    Ren, W. (2007). Consensus strategies for cooperative control of vehicle formations. Control Theory Applications, IET, 1(2), 505–512.CrossRefGoogle Scholar
  105. 118.
    Ren, W., & Beard, R. W. (2004). Formation feedback control for multiple spacecraft via virtual structures. In IEE proceedings control theory and applications (Vol. 151, pp. 357–368). IET.Google Scholar
  106. 119.
    Ren, W., & Beard, R. W. (2008). Consensus algorithms for double-integrator dynamics. Distributed consensus in multi-vehicle cooperative control: theory and applications (pp. 77–104). London: Springer.Google Scholar
  107. 120.
    Ren, J., McIsaac, K., et al. (2003). A hybrid-systems approach to potential field navigation for a multi-robot team. In IEEE international conference on robotics and automation, 2003. Proceedings. ICRA’03 (Vol. 3, pp. 3875–3880). IEEE.Google Scholar
  108. 121.
    Rezaee, H., & Abdollahi, F. (2011). Mobile robots cooperative control and obstacle avoidance using potential field. In 2011 IEEE/ASME international conference on advanced intelligent mechatronics (AIM) (pp. 61–66). IEEE.Google Scholar
  109. 122.
    Rong, L., Lu, J., Xu, S., & Chu, Y. (2014). Reference model-based containment control of multi-agent systems with higher-order dynamics. IET Control Theory Applications, 8(10), 796–802.MathSciNetCrossRefGoogle Scholar
  110. 123.
    Rossetter, E. J., Switkes, J. P., & Gerdes, J. C. (2004). Experimental validation of the potential field lanekeeping system. International journal of automotive technology, 5(2), 95–108.Google Scholar
  111. 126.
    Sahraei, B. R., & Shabaninia, F. (2010). A robust h control design for swarm formation control of multi-agent systems: a decentralized adaptive fuzzy approach. In 2010 3rd international symposium on resilient control systems (ISRCS) (pp. 79–84). IEEE.Google Scholar
  112. 127.
    Sepulchre, R., Paley, D., Leonard, N. E., et al. (2008). Stabilization of planar collective motion with limited communication. IEEE Transactions on Automatic Control, 53(3), 706–719.MathSciNetCrossRefGoogle Scholar
  113. 128.
    Shao, J., Xie, G., & Wang, L. (2007). Leader-following formation control of multiple mobile vehicles. IET Control Theory Applications, 1(2), 545–552.CrossRefGoogle Scholar
  114. 129.
    Shi-Cai, L., Da-Long, T, & Guang-Jun, L. (2007). Robust leader-follower formation control of mobile robots based on a second order kinematics model. Acta Automatica Sinica, 33(9), 947–955.MathSciNetCrossRefGoogle Scholar
  115. 131.
    Sipahi, R., & Olgac, N. (2006). Complete stability analysis of neutral-type first order two-time-delay systems with cross-talking delays. SIAM journal on control and optimization, 45(3), 957–971.MathSciNetzbMATHCrossRefGoogle Scholar
  116. 132.
    Sisto, M., & Gu, D. (2006). A fuzzy leader-follower approach to formation control of multiple mobile robots. In 2006 IEEE/RSJ international conference on intelligent robots and systems (pp. 2515–2520). IEEE.Google Scholar
  117. 133.
    Song, H., Yu, L., & Zhang, W.-A. (2014). Distributed consensus-based Kalman filtering in sensor networks with quantised communications and random sensor failures. IET Signal Processing, 8(2), 107–118.MathSciNetCrossRefGoogle Scholar
  118. 134.
    Srinivasan, S., & Ayyagari, R. (2010). Consensus algorithm for robotic agents over packet dropping links. In 2010 3rd international conference on biomedical engineering and informatics (BMEI) (Vol. 6, pp. 2636–2640). IEEE.Google Scholar
  119. 135.
    Su, H., & Chen, M. Z. Q. (2015). Multi-agent containment control with input saturation on switching topologies. IET Control Theory Applications, 9(3), 399–409.MathSciNetCrossRefGoogle Scholar
  120. 136.
    Tahbaz-Salehi, A., & Jadbabaie, A. (2010). Consensus over ergodic stationary graph processes. IEEE Transactions on Automatic Control, 55(1), 225–230.MathSciNetCrossRefGoogle Scholar
  121. 137.
    Tan, C., & Liu, G.-P. (2013). Consensus of discrete-time linear networked multi-agent systems with communication delays. IEEE Transactions on Automatic Control, 58(11), 2962–2968.MathSciNetCrossRefGoogle Scholar
  122. 138.
    Urcola, P., Riazuelo, L., Lazaro, M. T., & Montano, L. (2008). Cooperative navigation using environment compliant robot formations. In IEEE/RSJ international conference on intelligent robots and systems, 2008. IROS 2008, (pp. 2789–2794). IEEE.Google Scholar
  123. 139.
    Vanka, S., Gupta, V., & Haenggi, M. (2009). On consensus over stochastically switching directed topologies. In American control conference, 2009. ACC’09. (pp. 4531–4536). IEEE.Google Scholar
  124. 140.
    Vassilaras, S., Vogiatzis, D., & Yovanof, G. S. (2066). Security and cooperation in clustered mobile ad hoc networks with centralized supervision. IEEE Journal on Selected Areas in Communications, 24(2), 329–342CrossRefGoogle Scholar
  125. 141.
    Vidal, R., Shakernia, O., & Sastry, S. (2004). Following the flock [formation control]. IEEE Robotics Automation Magazine, 11(4), 14–20.CrossRefGoogle Scholar
  126. 142.
    Wagner, I. A., & Bruckstein, A. M. (1997). Row straightening via local interactions. Circuits, Systems and Signal Processing, 16(3), 287–305.MathSciNetzbMATHCrossRefGoogle Scholar
  127. 143.
    Wang, Z., & Gu, D. (2007). Distributed cohesion control for leader-follower flocking. In IEEE international fuzzy systems conference, 2007. FUZZ-IEEE 2007 (pp. 1–6). IEEE.Google Scholar
  128. 144.
    Wang, S., & Schaub, H. (2011). Nonlinear feedback control of a spinning two-spacecraft coulomb virtual structure. IEEE Transactions on Aerospace and Electronic Systems, 47(3), 2055–2067 (2011)Google Scholar
  129. 145.
    Wang, L., Han, Z., & Lin, Z. (2012). Formation control of directed multi-agent networks based on complex Laplacian. In 2012 IEEE 51st annual conference on decision and control (CDC) (pp. 5292–5297). IEEE.Google Scholar
  130. 146.
    Wang, X., Li, S., & Shi, P. (2014). Distributed finite-time containment control for double-integrator multiagent systems. IEEE transactions on cybernetics, 44(9), 1518–1528 (2014)Google Scholar
  131. 147.
    Wei, J., & Fang, H. (2014). Multi-agent consensus with time-varying delays and switching topologies. Journal of Systems Engineering and Electronics, 25(3), 489–495.CrossRefGoogle Scholar
  132. 148.
    Weijun, S., Rui, M., & Chongchong, Y. (2010). A study on soccer robot path planning with fuzzy artificial potential field. In 2010 international conference on computing, control and industrial engineering (CCIE) (Vol. 1, pp. 386–390). IEEE.Google Scholar
  133. 149.
    Wen, G., Duan, Z., Li, Z., & Chen, G. (2012). Stochastic consensus in directed networks of agents with non-linear dynamics and repairable actuator failures. IET Control Theory Applications, 6(11), 1583–1593.MathSciNetCrossRefGoogle Scholar
  134. 150.
    Wen, G., Duan, Z., Chen, G., Yu, W. (2014). Consensus tracking of multi-agent systems with Lipschitz-type node dynamics and switching topologies. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(2), 499–511.MathSciNetCrossRefGoogle Scholar
  135. 151.
    Wen, G., Hu, G., Yu, W., & Chen, G. (2014). Distributed consensus of higher order multiagent systems with switching topologies. IEEE Transactions on Circuits and Systems II: Express Briefs, 61(5), 359–363.CrossRefGoogle Scholar
  136. 152.
    Wen, G., Hu, G., Hu, J., Shi, X., & Chen, G. (2016). Frequency regulation of source-grid-load systems: A compound control strategy. IEEE Transactions on Industrial Informatics, 12(1), 69–78.Google Scholar
  137. 153.
    Wen, G., Zhao, Y., Duan, Z., Yu, W., & Chen, G. (2016). Containment of higher-order multi-leader multi-agent systems: a dynamic output approach. IEEE Transactions on Automatic Control, 61(4), 1135–1140.MathSciNetCrossRefGoogle Scholar
  138. 154.
    Wolf, M. T., & Burdick, J. W. (2008). Artificial potential functions for highway driving with collision avoidance. In IEEE international conference on robotics and automation, 2008. ICRA 2008 (pp. 3731–3736). IEEE.Google Scholar
  139. 155.
    Xi, J., Xu, Z., Liu, G., & Zhong, Y. (2013). Stable-protocol output consensus for high-order linear swarm systems with time-varying delays. IET Control Theory Applications, 7(7), 975–984.MathSciNetCrossRefGoogle Scholar
  140. 156.
    Xi, J., Yu, Y., Liu, G., & Zhong, Y. (2014). Guaranteed-cost consensus for singular multi-agent systems with switching topologies. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(5), 1531–1542.MathSciNetCrossRefGoogle Scholar
  141. 157.
    Xin, M., Balakrishnan, S. N., & Pernicka, H. J. (2007). Multiple spacecraft formation control with OD method. IET Control Theory Applications, 1(2), 485–493.CrossRefGoogle Scholar
  142. 158.
    Xu, Y., & Liu, W. (2011). Novel multiagent based load restoration algorithm for microgrids. IEEE Transactions on Smart Grid, 2(1), 152–161.CrossRefGoogle Scholar
  143. 159.
    Xu, X., Xie, J., & Xie, K. (2006). Path planning and obstacle-avoidance for soccer robot based on artificial potential field and genetic algorithm. In The sixth world congress on intelligent control and automation, 2006. WCICA 2006 (Vol. 1, pp. 3494–3498). IEEE.Google Scholar
  144. 160.
    Xu, Y., Liu, W., & Gong, J. (2011). Stable multi-agent-based load shedding algorithm for power systems. IEEE Transactions on Power Systems, 26(4), 2006–2014.CrossRefGoogle Scholar
  145. 161.
    Xue, D., Yao, J., Wang, J., Guo, Y., & Han, X. (2013). Formation control of multi-agent systems with stochastic switching topology and time-varying communication delays. IET Control Theory Applications, 7(13), 1689–1698.MathSciNetCrossRefGoogle Scholar
  146. 162.
    Yamashita, A., Fukuchi, M., Ota, J., Arai, T., & Asama, H. (2000). Motion planning for cooperative transportation of a large object by multiple mobile robots in a 3d environment. In IEEE international conference on robotics and automation, 2000. Proceedings. ICRA’00 (Vol. 4, pp. 3144–3151). IEEE.Google Scholar
  147. 163.
    Yang, E., & Gu, D. (2007). Nonlinear formation-keeping and mooring control of multiple autonomous underwater vehicles. IEEE/ASME Transactions on Mechatronics, 12(2), 164–178.MathSciNetCrossRefGoogle Scholar
  148. 164.
    Yang, E., Gu, D., & Hu, H. (2005). Improving the formation-keeping performance of multiple autonomous underwater robotic vehicles. In 2005 IEEE international conference mechatronics and automation (Vol. 4, pp. 1890–1895). IEEE.Google Scholar
  149. 165.
    Yang, X.-X., Tang, G.-Y., Li, Y., & Wang, P.-D. (2012). Formation control for multiple autonomous agents based on virtual leader structure. In 2012 24th Chinese control and decision conference (CCDC) (pp. 2833–2837). IEEE.Google Scholar
  150. 167.
    Yoshioka, C., & Namerikawa, T. (2008). Formation control of nonholonomic multi-vehicle systems based on virtual structure. In 17th IFAC world congress (pp. 5149–5154).Google Scholar
  151. 168.
    Yu, W., & Chen, G. (2010). Robust adaptive flocking control of nonlinear multi-agent systems. In 2010 IEEE international symposium on computer-aided control system design (CACSD) (pp. 363–367). IEEE.Google Scholar
  152. 169.
    Yu, H., Keshavamurthy, S., Sheorey, H. B. S., Nguyen, H., & Taylor, C. N. (2014). Uncertainty estimation for random sample consensus. In 2014 13th international conference on control automation robotics vision (ICARCV) (pp. 395–400). IEEE.Google Scholar
  153. 170.
    Zhang, W., Guo, Y., Liu, H., Chen, Y. J., Wang, Z., & Mitola, III, J. (2015). Distributed consensus-based weight design for cooperative spectrum sensing. IEEE Transactions on Parallel and Distributed Systems, 26(1), 54–64.CrossRefGoogle Scholar
  154. 171.
    Zhang, D., Jiang, J., Wang, L. Y., & Zhang, W. (2016). Robust and scalable management of power networks in dual-source trolleybus systems: A consensus control framework. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1029–1038.MathSciNetCrossRefGoogle Scholar
  155. 172.
    Zhao, J., Su, X., & Yan, J. (2009). A novel strategy for distributed multi-robot coordination in area exploration. In International conference on measuring technology and mechatronics automation, 2009. ICMTMA’09 (Vol. 2, pp. 24–27). IEEE.Google Scholar
  156. 173.
    Zhao, D., Zou, T., Li, S., & Zhu, Q. (2012). Adaptive backstepping sliding mode control for leader–follower multi-agent systems. IET Control Theory Applications, 6(8), 1109–1117.MathSciNetCrossRefGoogle Scholar
  157. 174.
    Zhao, W., Liu, M., Zhu, J., & Li, L. (2016). Fully decentralised multi-area dynamic economic dispatch for large-scale power systems via cutting plane consensus. IET Generation, Transmission Distribution.Google Scholar
  158. 175.
    Zheng, Y., & Wang, L. (2014). Containment control of heterogeneous multi-agent systems. International Journal of Control, 87(1), 1–8.MathSciNetzbMATHCrossRefGoogle Scholar
  159. 176.
    Zhou, F., & Wang, Z. (2015). Containment control of linear multi-agent systems with directed graphs and multiple leaders of time-varying bounded inputs. IET Control Theory Applications, 9(16), 2466–2473.MathSciNetCrossRefGoogle Scholar
  160. 177.
    Zhou, S., & Li, T. (2005). Robust stabilization for delayed discrete-time fuzzy systems via basis-dependent Lyapunov–Krasovskii function. Fuzzy Sets and Systems, 151(1), 139–153.MathSciNetzbMATHCrossRefGoogle Scholar
  161. 178.
    Zuo, Z., Zhang, J., & Wang, Y. (2014). Distributed consensus of linear multi-agent systems with fault tolerant control protocols. In 2014 33rd Chinese control conference (CCC) (pp. 1656–1661). IEEE.Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Hossein Rastgoftar
    • 1
  1. 1.Department of Aerospace EngineeringUniversity of Michigan Ann ArborAnn ArborUSA

Personalised recommendations