Skip to main content

Operator Splitting Algorithms for Free Surface Flows: Application to Extrusion Processes

  • Chapter
  • First Online:
Book cover Splitting Methods in Communication, Imaging, Science, and Engineering

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 3918 Accesses

Abstract

We investigate the benefits of operator splitting methods in the context of computational fluid dynamics. In particular, we exploit their capacity at handling free surface flows and a large variety of physical phenomena in a flexible way. A mathematical and computational framework is presented for the numerical simulation of free surface flows, where the operator splitting strategy allows to separate inertial effects from the other effects. The method of characteristics on a fine structured grid is put forward to accurately approximate the inertial effects while continuous piecewise polynomial finite element associated with a coarser subdivision made of simplices is advocated for the other effects. In addition, the splitting strategy also allows modularity, and in a straightforward manner rheological model change for the fluid. We will emphasize this flexibility by treating Newtonian flows, visco-elastic flows, multi-phase, and multi-density immiscible incompressible Newtonian flows. The numerical framework is thoroughly presented; the test case of the filling of a cylindrical tube with potential die swell in an extrusion process is taken as the main illustration of the advantages of operator splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The case of non-vanishing Dirichlet boundary conditions reads similarly upon defining a lifting of the boundary conditions.

References

  1. Antonietti, P.F., Fadel, N.A., Verani, M.: Modelling and numerical simulation of the polymeric extrusion process in textile products. Commun. Appl. Ind. Math. 1 (2), 1–13 (2010)

    MathSciNet  Google Scholar 

  2. Bänsch, E.: Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math. 88 (2), 203–235 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baroud, C.N., Gallaire, F., Dangla, R.: Dynamics of microfluidic droplets. Lab on a Chip 10 (16), 2032 (2010)

    Article  Google Scholar 

  4. Bird, R., Curtiss, C., Armstrong, R., Hassager, O.: Dynamics of Polymeric Liquids, vol. 1 and 2. John Wiley & Sons, New-York (1987)

    Google Scholar 

  5. Bonito, A., Clément, P., Picasso, M.: Mathematical analysis of a simplified Hookean dumbbells model arising from viscoelastic flows. J. Evol. Equ. 6 (3), 381–398 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonito, A., Picasso, M., Laso, M.: Numerical simulation of 3D viscoelastic flows with free surfaces. J. Comput. Phys. 215 (2), 691–716 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brun, P.T., Nagel, M., Gallaire, F.: Generic path for droplet relaxation in microfluidic channels. Physical Review E 88 (4) (2013)

    Google Scholar 

  8. Caboussat, A.: A numerical method for the simulation of free surface flows with surface tension. Computers and Fluids 35 (10), 1205–1216 (2006)

    Article  MATH  Google Scholar 

  9. Caboussat, A., Clausen, P., Rappaz, J.: Numerical simulation of two-phase flow with interface tracking by adaptive Eulerian grid subdivision. Math. Comput. Modelling 55, 490–504 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caboussat, A., James, N., Boyaval, S., Picasso, M.: Numerical simulation of free surface flows, with multiple liquid phases. In: E. Onate, J. Oliver, A. Huerta (eds.) Proceedings of the 11th World Congress on Computational Mechanics (WCCM XI), pp. 5381–5391 (2014)

    Google Scholar 

  11. Caboussat, A., Maronnier, V., Picasso, M., Rappaz, J.: Numerical simulation of three dimensional free surface flows with bubbles. In: Challenges in Scientific Computing—CISC 2002, Lect. Notes Comput. Sci. Eng., vol. 35, pp. 69–86. Springer, Berlin (2003)

    Google Scholar 

  12. Caboussat, A., Picasso, M., Rappaz, J.: Numerical simulation of free surface incompressible liquid flows surrounded by compressible gas. J. Comput. Phys. 203 (2), 626–649 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Choi, B.Y., Bussmann, M.: A piecewise linear approach to volume tracking a triple point. Int. J. Numer. Methods Fluids 53 (6), 1005–1018 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82, 421–439 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  15. Glowinski, R.: Finite element methods for incompressible viscous flow. In: P.G. Ciarlet, J.L. Lions (eds.) Handbook of Numerical Analysis, vol. IX, pp. 3–1176. North-Holland, Amsterdam (2003)

    Google Scholar 

  16. Glowinski, R., Dean, E.J., Guidoboni, G., Juárez, L.H., Pan, T.W.: Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation. Japan J. Indust. Appl. Math. 25 (1), 1–63 (2008)

    Article  MATH  Google Scholar 

  17. Gunes, D.Z., Bercy, M., Watske, B., Breton, O., Burbidge, A.S.: A study of extensional flow induced coalescence in microfluidic geometries with lateral channels. Soft Matter 9, 7526–7537 (2013)

    Article  Google Scholar 

  18. Hughes, E., Maan, A.A., Acquistapace, S., Burbidge, A., Johns, M.L., Gunes, D.Z., Clausen, P., Syrbe, A., Hugo, J., Schroen, K., Miralles, V., Atkins, T., Gray, R., Homewood, P., Zick, K.: Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions. J. Colloid and Interface Science 389, 147–156 (2013)

    Article  Google Scholar 

  19. James, N., Boyaval, S., Caboussat, A., Picasso, M.: Numerical simulation of 3D free surface flows, with multiple incompressible immiscible phases. Applications to impulse waves. Int. J. Numer. Meth. Fluids. 76 (12), 1004–1024 (2014)

    Article  Google Scholar 

  20. Jouvet, G., Huss, M., Blatter, H., Picasso, M., Rappaz, J.: Numerical simulation of Rhonegletscher from 1874 to 2100. J. Comput. Phys. 228 (17), 6426–6439 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jouvet, G., Picasso, M., Rappaz, J., Huss, M., Funk, M.: Modelling and numerical simulation of the dynamics of glaciers including local damage effects. Math. Model. Nat. Phenom. 6 (5), 263–280 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kratzer, A., Handschin, S., Lehmann, V., Gross, D., Escher, F., Conde-Petit, B.: Hydration dynamics of durum wheat endosperm as studied by magnetic resonance imaging and soaking experiments. Cereal Chemistry 85 (5), 660–666 (2008)

    Article  Google Scholar 

  23. Marchuk, G.I.: Methods of Numerical Mathematics. Springer-Verlag, New York (1975)

    Book  MATH  Google Scholar 

  24. Marchuk, G.I.: Splitting and alternating direction methods. In: P.G. Ciarlet, J.L. Lions (eds.) Handbook of Numerical Analysis, vol. I, pp. 197–462. North-Holland, Amsterdam (1990)

    Google Scholar 

  25. Maronnier, V., Picasso, M., Rappaz, J.: Numerical simulation of free surface flows. J. Comput. Phys. 155 (2), 439–455 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Maronnier, V., Picasso, M., Rappaz, J.: Numerical simulation of three-dimensional free surface flows. Int. J. Numer. Meth. Fluids 42 (7), 697–716 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nagel, M., Brun, P.T., Gallaire, F.: A numerical study of droplet trapping in microfluidic devices. Physics of Fluids 26 (3), 032,002 (2014)

    Article  Google Scholar 

  28. Noh, W.F., Woodward, P.: SLIC (Simple Line Interface Calculation). Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics 59, 330–340 (1976)

    MATH  Google Scholar 

  29. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  30. Öttinger, H.C.: Stochastic Processes in Polymeric Fluids. Springer-Verlag, Berlin (1996)

    Book  MATH  Google Scholar 

  31. Parolini, N., Burman, E.: A finite element level set method for viscous free-surface flows. In: Applied and industrial mathematics in Italy, Ser. Adv. Math. Appl. Sci., vol. 69, pp. 416–427. World Sci. Publ., Hackensack, NJ (2005)

    Google Scholar 

  32. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Indust. Appl. Math. 3, 28–41 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  33. Picasso, M., Rappaz, J., Reist, A.: Numerical simulation of the motion of a three-dimensional glacier. Ann. Math. Blaise Pascal 15 (1), 1–28 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38 (3), 309–332 (1981/82)

    Google Scholar 

  35. Shashkov, M., Wendroff, B.: The repair paradigm and application to conservation laws. J. Comput. Phys. 198 (1), 265–277 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tome, M., McKee, S.: Numerical simulation of viscous flow: Buckling of planar jets. Int. J. Numer. Meth. Fluids 29 (6), 705–718 (1999)

    Article  MATH  Google Scholar 

  37. Tryggvason, G., Scardovelli, R., Zaleski, S.: Direct Numerical Simulations of Gas-Liquid Multiphase Flows. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  38. Turek, S.: Efficient Solvers for Incompressible Flow Problems, Lecture Notes in Computational Science and Engineering, vol. 6. Springer-Verlag, Berlin (1999)

    Book  Google Scholar 

  39. Yanenko, N.N.: The Method of Fractional Steps. The Solution of Problems of Mathematical Physics in Several Variables. Springer-Verlag, New York (1971)

    Book  MATH  Google Scholar 

  40. Ycoor Systems S.A.: cfsflow. http://www.ycoorsystems.com/. Online; accessed September 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bonito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bonito, A., Caboussat, A., Picasso, M. (2016). Operator Splitting Algorithms for Free Surface Flows: Application to Extrusion Processes. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_21

Download citation

Publish with us

Policies and ethics