Skip to main content

Operator Splitting Methods with Error Estimator and Adaptive Time-Stepping. Application to the Simulation of Combustion Phenomena

  • Chapter
  • First Online:
Splitting Methods in Communication, Imaging, Science, and Engineering

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

Operator splitting techniques were originally introduced with the main objective of saving computational costs. A multi-physics problem is thus split in subproblems of different nature with a significant reduction of the algorithmic complexity and computational requirements of the numerical solvers. Nevertheless, splitting errors are introduced in the numerical approximations due to the separate evolution of the split subproblems and can compromise a reliable simulation of the coupled dynamics. In this chapter we present a numerical technique to estimate such splitting errors on the fly and dynamically adapt the splitting time steps according to a user-defined accuracy tolerance. The method applies to the numerical solution of time-dependent stiff PDEs, illustrated here by propagating laminar flames investigated in combustion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdulle, A.: Fourth order Chebyshev methods with recurrence relation. SIAM J. Sci. Comput. 23 (6), 2041–2054 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Auzinger, W., Koch, O., Thalhammer, M.: Defect-based local error estimators for splitting methods, with application to Schrödinger equations, Part I: The linear case. J. Comput. Appl. Math. 236 (10), 2643–2659 (2012)

    MATH  Google Scholar 

  3. Bell, J., Berger, M., Saltzman, J., Welcome, M.: Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput. 15, 127–138 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bell, J., Day, M., Almgren, A., Lijewski, M., Rendleman, C., Cheng, R., Shepherd, I.: Simulation of lean premixed turbulent combustion. J. Phys. Conf. Ser. 46, 1–15 (2006)

    Article  MathSciNet  Google Scholar 

  5. Bell, J., Day, M., Grcar, J.: Numerical simulation of premixed turbulent methane combustion. Proc. Combust. Inst. 29 (2), 1987–1993 (2002)

    Article  Google Scholar 

  6. Bell, J., Day, M., Grcar, J., Lijewski, M., Driscoll, J., Filatyev, S.: Numerical simulation of a laboratory-scale turbulent slot flame. Proc. Combust. Inst. 31 (1), 1299–1307 (2007)

    Article  Google Scholar 

  7. Bell, J., Day, M., Shepherd, I., Johnson, M., Cheng, R., Grcar, J., Beckner, V., Lijewski, M.: Numerical simulation of a laboratory-scale turbulent V-flame. Proc. Nat. Acad. Sci. 1021, 10,006–10,011 (2005)

    Google Scholar 

  8. Berger, M., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Blanes, S., Casas, F., Chartier, P., Murua, A.: Optimized high-order splitting methods for some classes of parabolic equations. Math. Comp. 82 (283), 1559–1576 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brown, P.N., Byrne, G., Hindmarsh, A.: VODE: A variable-coefficient ODE solver. SIAM J. Sci. Stat. Comput. 10, 1038–1051 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  11. Castella, F., Chartier, P., Descombes, S., Vilmart, G.: Splitting methods with complex times for parabolic equations. BIT Numer. Math. 49, 487–508 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cohen, A., Kaber, S., Müller, S., Postel, M.: Fully adaptive multiresolution finite volume schemes for conservation laws. Math. Comp. 72, 183–225 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cuoci, A., Frassoldati, A., Faravelli, T., Ranzi, E.: Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method. Energy & Fuels 27 (12), 7730–7753 (2013)

    Article  Google Scholar 

  14. Dahlquist, G.: A special stability problem for linear multistep methods. Nordisk Tidskr. Informations-Behandling 3, 27–43 (1963)

    MATH  MathSciNet  Google Scholar 

  15. D’Angelo, Y., Larrouturou, B.: Comparison and analysis of some numerical schemes for stiff complex chemistry problems. RAIRO Modél. Math. Anal. Numér. 29 (3), 259–301 (1995)

    MATH  MathSciNet  Google Scholar 

  16. Day, M., Bell, J.: Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theory Model. 4, 535–556 (2000)

    Article  MATH  Google Scholar 

  17. Descombes, S.: Convergence of a splitting method of high order for reaction-diffusion systems. Math. Comp. 70 (236), 1481–1501 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Descombes, S., Duarte, M., Dumont, T., Guillet, T., Louvet, V., Massot, M.: Task-based adaptive multiresolution for time-space multi-scale reaction-diffusion systems on multi-core architectures. arXiv preprint arXiv:1506.04651 p. 24 (2015)

    Google Scholar 

  19. Descombes, S., Duarte, M., Dumont, T., Laurent, F., Louvet, V., Massot, M.: Analysis of operator splitting in the nonasymptotic regime for nonlinear reaction-diffusion equations. Application to the dynamics of premixed flames. SIAM J. Numer. Anal. 52 (3), 1311–1334 (2014)

    Article  MATH  Google Scholar 

  20. Descombes, S., Duarte, M., Dumont, T., Louvet, V., Massot, M.: Adaptive time splitting method for multi-scale evolutionary partial differential equations. Confluentes Math. 3 (3), 413–443 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Descombes, S., Massot, M.: Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction. Numer. Math. 97 (4), 667–698 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Descombes, S., Schatzman, M.: Strang’s formula for holomorphic semi-groups. J. Math. Pures Appl. (9) 81 (1), 93–114 (2002)

    Google Scholar 

  23. Descombes, S., Thalhammer, M.: The Lie-Trotter splitting for nonlinear evolutionary problems with critical parameters: A compact local error representation and application to nonlinear Schrödinger equations in the semiclassical regime. IMA J. Numer. Anal. 33 (2), 722–745 (2013)

    Article  MATH  Google Scholar 

  24. Dia, B.O., Schatzman, M.: Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées. RAIRO Modél. Math. Anal. Numér. 30 (3), 343–383 (1996)

    MathSciNet  Google Scholar 

  25. Duarte, M.: Méthodes numériques adaptatives pour la simulation de la dynamique de fronts de réaction multi-échelles en temps et en espace. Ph.D. thesis, Ecole Centrale Paris, France (2011)

    Google Scholar 

  26. Duarte, M., Descombes, S., Tenaud, C., Candel, S., Massot, M.: Time-space adaptive numerical methods for the simulation of combustion fronts. Combust. Flame 160, 1083–1101 (2013)

    Article  Google Scholar 

  27. Duarte, M., Massot, M., Descombes, S., Tenaud, C., Dumont, T., Louvet, V., Laurent, F.: New resolution strategy for multi-scale reaction waves using time operator splitting and space adaptive multiresolution: Application to human ischemic stroke. ESAIM: Proc. 34, 277–290 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Duarte, M., Massot, M., Descombes, S., Tenaud, C., Dumont, T., Louvet, V., Laurent, F.: New resolution strategy for multiscale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators. SIAM J. Sci. Comput. 34 (1), A76–A104 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dumont, T., Duarte, M., Descombes, S., Dronne, M.A., Massot, M., Louvet, V.: Simulation of human ischemic stroke in realistic 3D geometry. Commun. Nonlinear Sci. Numer. Simul. 18 (6), 1539–1557 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  30. Goyal, G., Paul, P., Mukunda, H., Deshpande, S.: Time dependent operator-split and unsplit schemes for one dimensional premixed flames. Combust. Sci. Technol. 60, 167–189 (1988)

    Article  Google Scholar 

  31. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer–Verlag, Berlin (2006)

    Google Scholar 

  32. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, 2nd edn. Springer–Verlag, Berlin (1996)

    Google Scholar 

  33. Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT Numer. Math. 49, 527–542 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Harten, A.: Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math. 48, 1305–1342 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. van der Houwen, P., Sommeijer, B.: On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60 (10), 479–485 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer–Verlag, Berlin (2003)

    Book  MATH  Google Scholar 

  37. Knio, O., Najm, H., Wyckoff, P.: A semi-implicit numerical scheme for reacting flow. II. Stiff, operator-split formulation. J. Comput. Phys. 154 (2), 428–467 (1999)

    Google Scholar 

  38. Koch, O., Neuhauser, C., Thalhammer, M.: Embedded exponential operator splitting methods for the time integration of nonlinear evolution equations. Appl. Numer. Math. 63, 14–24 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kozlov, R., Kværnø, A., Owren, B.: The behaviour of the local error in splitting methods applied to stiff problems. J. Comput. Phys. 195 (2), 576–593 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  40. Lanser, D., Verwer, J.: Analysis of operator splitting for advection-diffusion-reaction problems from air pollution modelling. J. Comput. Appl. Math. 111 (1–2), 201–216 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  41. Marchuk, G.: Some application of splitting-up methods to the solution of mathematical physics problems. Appl. Math. 13 (2), 103–132 (1968)

    MATH  MathSciNet  Google Scholar 

  42. Müller, S.: Adaptive Multiscale Schemes for Conservation Laws, Lect. Notes Comput. Sci. Eng., vol. 27. Springer-Verlag (2003)

    Google Scholar 

  43. Najm, H., Knio, O.: Modeling low Mach number reacting flow with detailed chemistry and transport. J. Sci. Comput. 25 (1–2), 263–287 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  44. Oran, E., Boris, J.: Numerical Simulation of Reacting Flows, 2nd edn. Cambridge University Press (2001)

    Google Scholar 

  45. Ren, Z., Xu, C., Lu, T., Singer, M.A.: Dynamic adaptive chemistry with operator splitting schemes for reactive flow simulations. J. Comput. Phys. 263 (0), 19–36 (2014)

    Article  MATH  Google Scholar 

  46. Ropp, D., Shadid, J.: Stability of operator splitting methods for systems with indefinite operators: Reaction-diffusion systems. J. Comput. Phys. 203 (2), 449–466 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Safta, C., Ray, J., Najm, H.: A high-order low-Mach number AMR construction for chemically reacting flows. J. Comput. Phys. 229 (24), 9299–9322 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. Schwer, D., Lu, P., Green, W., Semião, V.: A consistent-splitting approach to computing stiff steady-state reacting flows with adaptive chemistry. Combust. Theory Model. 7 (2), 383–399 (2003)

    Article  Google Scholar 

  49. Sheng, Q.: Global error estimates for exponential splitting. IMA J. Numer. Anal. 14 (1), 27–56 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  50. Singer, M., Pope, S.: Exploiting ISAT to solve the reaction-diffusion equation. Combust. Theory Model. 8 (2), 361–383 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  51. Singer, M., Pope, S., Najm, H.: Modeling unsteady reacting flow with operator splitting and ISAT. Combust. Flame 147 (1–2), 150–162 (2006)

    Article  MATH  Google Scholar 

  52. Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161 (1), 140–168 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  53. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  54. Thévenin, D., Candel, S.: Ignition dynamics of a diffusion flame rolled up in a vortex. Phys. Fluids 7 (2), 434–445 (1995)

    Article  MATH  Google Scholar 

  55. Trotter, H.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  56. Valorani, M., Goussis, D.: Explicit time-scale splitting algorithm for stiff problems: Auto-ignition of gaseous mixtures behind a steady shock. J. Comput. Phys. 169 (1), 44–79 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  57. Verwer, J.: Explicit Runge-Kutta methods for parabolic partial differential equations. Appl. Numer. Math. 22 (1–3), 359–379 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  58. Verwer, J.G., Spee, E.J., Blom, J.G., Hundsdorfer, W.: A second-order Rosenbrock method applied to photochemical dispersion problems. SIAM J. Sci. Comput. 20 (4), 1456–1480 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  59. Yang, B., Pope, S.: An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry. Combust. Flame 112 (1–2), 16–32 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Descombes, S., Duarte, M., Massot, M. (2016). Operator Splitting Methods with Error Estimator and Adaptive Time-Stepping. Application to the Simulation of Combustion Phenomena. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_19

Download citation

Publish with us

Policies and ethics