Skip to main content

Robust Split-Step Fourier Methods for Simulating the Propagation of Ultra-Short Pulses in Single- and Two-Mode Optical Communication Fibers

  • Chapter
  • First Online:
Splitting Methods in Communication, Imaging, Science, and Engineering

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

Extensions of the split-step Fourier method (SSFM) for Schrödinger-type pulse propagation equations for simulating femto-second pulses in single- and two-mode optical communication fibers are developed and tested for Gaussian pulses. The core idea of the proposed numerical methods is to adopt an operator splitting approach, in which the nonlinear sub-operator, consisting of Kerr nonlinearity, the self-steepening and stimulated Raman scattering terms, is reformulated using Madelung transformation into a quasilinear first-order system of signal intensity and phase. A second-order accurate upwind numerical method is derived rigorously for the resulting system in the single-mode case; a straightforward extension of this method is used to approximate the four-dimensional system resulting from the nonlinearities of the chosen two-mode model. Benchmark SSFM computations of prototypical ultra-fast communication pulses in idealized single- and two-mode fibers with homogeneous and alternating dispersion parameters and also high nonlinearity demonstrate the reliable convergence behavior and robustness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press (2007)

    Google Scholar 

  2. Amorim, A.A., Tognetti, M.V., Oliveira, P., Silva, J.L., Bernardo, L.M., Kärtner, F.X., Crespo, H.M.: Sub-two-cycle pulses by soliton self-compression in highly-nonlinear photonic crystal fibers. Opt. Lett. 34, 3851 (2009)

    Article  Google Scholar 

  3. Atre, R., Panigrahi, P.: Controlling pulse propagation in optical fibers through nonlinearity and dispersion management. Phys. Rev. A 76, 043,838 (2007)

    Article  Google Scholar 

  4. Blow, K.J., Wood, D.: Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electronics 25 (12), 2665–2673 (1989)

    Article  Google Scholar 

  5. Deiterding, R., Glowinski, R., Oliver, H., Poole, S.: A reliable split-step Fourier method for the propagation equation of ultra-fast pulses in single-mode optical fibers. J. Lightwave Technology 31, 2008–2017 (2013)

    Article  Google Scholar 

  6. Glowinski, R.: Finite element methods for incompressible viscous flows. In: P.G. Ciarlet, J.L. Lions (eds.) Handbook of Numerical Analysis, vol. IX, pp. 3–1176, North-Holland, Amsterdam (2003)

    Google Scholar 

  7. Gnauck, A.H., Charlet, G., Tran, P., Winzer, P.J., Doerr, C.R., Centanni, J.C., Burrows, E.C., Kawanishi, T., Sakamoto, T., Higuma, K.: 25.6 Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals. J. Lightwave Technology 26, 79 (2008)

    Google Scholar 

  8. Guo, S., Huang, Z.: Densely dispersion-managed fiber transmission system with both decreasing average dispersion and decreasing local dispersion. Optical Engineering 43, 1227 (2004)

    Article  Google Scholar 

  9. Hager, W.: Applied Numerical Linear Algebra. Prentice Hall, Englewood Cliffs, NJ (1988)

    MATH  Google Scholar 

  10. Hohage, T., Schmidt, F.: On the numerical solution of nonlinear Schrödinger type equations in fiber optics. Tech. Rep. ZIB-Report 02–04, Konrad-Zuse-Zentrum für Informationstechnik Berlin (2002)

    Google Scholar 

  11. Kalithasan, B., Nakkeeran, K., Porsezian, K., Tchofo Dinda, P., Mariyappa, N.: Ultra-short pulse propagation in birefringent fibers – the projection operator method. J. Opt. A: Pure Appl. Opt. 10, 085,102 (2008)

    Article  Google Scholar 

  12. Ketcheson, D.I., LeVeque, R.J.: WENOClaw: a higher order wave propagation method. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 609–616. Springer, Berlin (2008)

    Google Scholar 

  13. Lax, P.D.: Gibbs phenomena. J. Scientific Comput. 28 (2/3), 445–449 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. van Leer, B.: Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Google Scholar 

  15. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, New York (2002)

    Book  MATH  Google Scholar 

  16. Long, V.C., Viet, H.N., Trippenback, M., Xuan, K.D.: Propagation technique for ultrashort pulses II: Numerical methods to solve the pulse propagation equation. Comp. Meth. Science Techn. 14 (1), 13–19 (2008)

    Article  Google Scholar 

  17. Madelung, E.: Quantentheorie in hydrodynamischer Form. Zeitschrift für Physik 40 (3–4), 322–326 (1927)

    Article  MATH  Google Scholar 

  18. Malomed, B.A.: Pulse propagation in a nonlinear optical fiber with periodically modulated dispersion: variational approach. Opt. Comm. 136, 313–319 (1997)

    Article  Google Scholar 

  19. Muslu, G.M., Erbay, H.A.: A split-step Fourier method for the complex modified Korteweg-de Vries equation. Computers and Mathematics with Applications 45, 503–514 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Richardson, L.J., Forsyiak W. Blow, K.J.: Single channel 320Gbit/s short period dispersion managed transmission over 6000km. Optics Letters 36, 2029 (2000)

    Google Scholar 

  21. Sinkin, O.V., Holzlöhner, R., Zweck, J., Menyuk, C.R.: Optimization of the split-step Fourier method in modeling optical-fiber communication systems. J. Lightwave Technology 21 (1), 61–68 (2003)

    Article  Google Scholar 

  22. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, New York (1982)

    MATH  Google Scholar 

  23. Spiegel, E.A.: Fluid dynamical form of the linear and nonlinear Schrödinger equations. Physica D: Nonlinear Phenomena 1 (2), 236–240 (1980)

    Article  MATH  Google Scholar 

  24. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Num. Anal. 5, 506–517 (1968)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Defense and used resources of the Extreme Scale Systems Center at Oak Ridge National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Deiterding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Deiterding, R., Poole, S.W. (2016). Robust Split-Step Fourier Methods for Simulating the Propagation of Ultra-Short Pulses in Single- and Two-Mode Optical Communication Fibers. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_18

Download citation

Publish with us

Policies and ethics