Skip to main content

Application of Operator Splitting Methods in Finance

  • Chapter
  • First Online:

Part of the book series: Scientific Computation ((SCIENTCOMP))

Abstract

Financial derivatives pricing aims to find the fair value of a financial contract on an underlying asset. Here we consider option pricing in the partial differential equations framework. The contemporary models lead to one-dimensional or multidimensional parabolic problems of the convection-diffusion type and generalizations thereof. An overview of various operator splitting methods is presented for the efficient numerical solution of these problems.

Splitting schemes of the Alternating Direction Implicit (ADI) type are discussed for multidimensional problems, e.g., given by stochastic volatility (SV) models. For jump models Implicit-Explicit (IMEX) methods are considered which efficiently treat the nonlocal jump operator. For American options an easy-to-implement operator splitting method is described for the resulting linear complementarity problems.

Numerical experiments are presented to illustrate the actual stability and convergence of the splitting schemes. Here European and American put options are considered under four asset price models: the classical Black–Scholes model, the Merton jump-diffusion model, the Heston SV model, and the Bates SV model with jumps.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    That is, the order for fixed nonstiff ODE systems.

References

  1. Achdou, Y., Pironneau, O.: Computational methods for option pricing, Frontiers in Applied Mathematics, vol. 30. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2005)

    Google Scholar 

  2. Almendral, A., Oosterlee, C.W.: Numerical valuation of options with jumps in the underlying. Appl. Numer. Math. 53 (1), 1–18 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andersen, L., Andreasen, J.: Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. Rev. Deriv. Res. 4 (3), 231–262 (2000)

    Article  MATH  Google Scholar 

  4. Andersen, L.B.G., Piterbarg, V.V.: Interest rate modeling, volume I: foundations and vanilla models. Atlantic Financial Press (2010)

    Google Scholar 

  5. Bank for International Settlements: Triennial Central Bank Survey, Foreign exchange turnover in April 2013: preliminary global results (2013)

    Google Scholar 

  6. Bates, D.S.: Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options. Review Financial Stud. 9 (1), 69–107 (1996)

    Article  Google Scholar 

  7. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Political Economy 81, 637–654 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brandt, A., Cryer, C.W.: Multigrid algorithms for the solution of linear complementarity problems arising from free boundary problems. SIAM J. Sci. Statist. Comput. 4 (4), 655–684 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  9. Brennan, M.J., Schwartz, E.S.: The valuation of American put options. J. Finance 32, 449–462 (1977)

    Article  Google Scholar 

  10. Briani, M., Natalini, R., Russo, G.: Implicit-explicit numerical schemes for jump-diffusion processes. Calcolo 44 (1), 33–57 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carr, P., Geman, H., Madan, D.B., Yor, M.: The fine structure of asset returns: an empirical investigation. J. Business 75, 305–332 (2002)

    Article  Google Scholar 

  12. Carr, P., Mayo, A.: On the numerical evaluation of option prices in jump diffusion processes. Eur. J. Finance 13, 353–372 (2007)

    Article  Google Scholar 

  13. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  14. Clark, I.J.: Foreign exchange option pricing. Wiley, Chichester (2011)

    Google Scholar 

  15. Clarke, N., Parrott, K.: Multigrid for American option pricing with stochastic volatility. Appl. Math. Finance 6, 177–195 (1999)

    Article  MATH  Google Scholar 

  16. Cont, R., Tankov, P.: Financial modelling with jump processes. Chapman & Hall/CRC, Boca Raton, FL (2004)

    MATH  Google Scholar 

  17. Cont, R., Voltchkova, E.: A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43 (4), 1596–1626 (2005)

    Article  MATH  Google Scholar 

  18. Craig, I.J.D., Sneyd, A.D.: An alternating-direction implicit scheme for parabolic equations with mixed derivatives. Comput. Math. Appl. 16, 341–350 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cryer, C.W.: The solution of a quadratic programming problem using systematic overrelaxation. SIAM J. Control 9, 385–392 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  20. Dang, D.M., Christara, C.C., Jackson, K.R., Lakhany, A.: A PDE pricing framework for cross-currency interest rate derivatives. Proc. Comp. Sc. 1, 2371–2380 (2010)

    Article  Google Scholar 

  21. Davis, T.A.: Direct methods for sparse linear systems, Fundamentals of Algorithms, vol. 2. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2006)

    Google Scholar 

  22. d’Halluin, Y., Forsyth, P.A., Vetzal, K.R.: Robust numerical methods for contingent claims under jump diffusion processes. IMA J. Numer. Anal. 25 (1), 87–112 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82, 421–439 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  24. Egloff, D.: GPUs in financial computing part III: ADI solvers on GPUs with application to stochastic volatility. Wilmott Magazine (March), 51–53 (2011)

    Google Scholar 

  25. Ekström, E., Tysk, J.: The Black–Scholes equation in stochastic volatility models. J. Math. Anal. Appl. 368, 498 –507 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Feng, L., Linetsky, V.: Pricing options in jump-diffusion models: an extrapolation approach. Oper. Res. 56 (2), 304–325 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23 (6), 2095–2122 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Frank, J., Hundsdorfer, W., Verwer, J.G.: On the stability of implicit-explicit linear multistep methods. Appl. Numer. Math. 25 (2–3), 193–205 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  29. George, A.: Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10, 345–363 (1973). Collection of articles dedicated to the memory of George E. Forsythe

    Google Scholar 

  30. Glowinski, R.: Numerical methods for nonlinear variational problems. Scientific Computation. Springer-Verlag, New York (1984)

    Book  MATH  Google Scholar 

  31. Glowinski, R.: Splitting methods for the numerical solution of the incompressible Navier-Stokes equations. In: Vistas in applied mathematics, Transl. Ser. Math. Engrg., pp. 57–95. Optimization Software, New York (1986)

    Google Scholar 

  32. Grzelak, L.A., Oosterlee, C.W.: On the Heston model with stochastic interest rates. SIAM J. Financial Math. 2 (1), 255–286 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Grzelak, L.A., Oosterlee, C.W., Van Weeren, S.: Extension of stochastic volatility equity models with the Hull-White interest rate process. Quant. Finance 12 (1), 89–105 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Haentjens, T.: ADI schemes for the efficient and stable numerical pricing of financial options via multidimensional partial differential equations. PhD thesis. University of Antwerp (2013)

    Google Scholar 

  35. Haentjens, T.: Efficient and stable numerical solution of the Heston–Cox–Ingersoll–Ross partial differential equation by alternating direction implicit finite difference schemes. Int. J. Comput. Math. 90 (11), 2409–2430 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Haentjens, T., in ’t Hout, K.J.: Alternating direction implicit finite difference schemes for the Heston–Hull–White partial differential equation. J. Comput. Finance 16 (1), 83–110 (2012)

    Google Scholar 

  37. Haentjens, T., in ’t Hout, K.J.: ADI schemes for pricing American options under the Heston model Appl. Math. Finan. 22, 207–237 (2015)

    Google Scholar 

  38. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review Financial Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  39. in ’t Hout, K.J., Foulon, S.: ADI finite difference schemes for option pricing in the Heston model with correlation. Int. J. Numer. Anal. Model. 7 (2), 303–320 (2010)

    Google Scholar 

  40. in ’t Hout, K.J., Mishra, C.: Stability of the modified Craig–Sneyd scheme for two-dimensional convection-diffusion equations with mixed derivative term. Math. Comput. Simulation 81 (11), 2540–2548 (2011)

    Google Scholar 

  41. in ’t Hout, K.J., Mishra, C.: Stability of ADI schemes for multidimensional diffusion equations with mixed derivative terms. Appl. Numer. Math. 74, 83–94 (2013)

    Google Scholar 

  42. in ’t Hout, K.J., Welfert, B.D.: Stability of ADI schemes applied to convection-diffusion equations with mixed derivative terms. Appl. Numer. Math. 57 (1), 19–35 (2007)

    Google Scholar 

  43. in ’t Hout, K.J., Welfert, B.D.: Unconditional stability of second-order ADI schemes applied to multi-dimensional diffusion equations with mixed derivative terms. Appl. Numer. Math. 59 (3–4), 677–692 (2009)

    Google Scholar 

  44. Huang, J., Pang, J.S.: Option pricing and linear complementarity. J. Comput. Finance 2, 31–60 (1998)

    Article  Google Scholar 

  45. Hull, J.C.: Options, futures and other derivatives. Pearson Education, Harlow (2011)

    MATH  Google Scholar 

  46. Hull, J.C., White, A.: Pricing interest-rate-derivative securities. Review Financial Stud. 3, 573–592 (1990)

    Article  Google Scholar 

  47. Hundsdorfer, W.: Accuracy and stability of splitting with Stabilizing Corrections. Appl. Numer. Math. 42, 213–233 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  48. Hundsdorfer, W., Verwer, J.G.: Numerical solution of time-dependent advection-diffusion-reaction equations, Computational Mathematics, vol. 33. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  49. Ikonen, S., Toivanen, J.: Operator splitting methods for American option pricing. Appl. Math. Lett. 17 (7), 809–814 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  50. Ikonen, S., Toivanen, J.: Componentwise splitting methods for pricing American options under stochastic volatility. Int. J. Theor. Appl. Finance 10 (2), 331–361 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  51. Ikonen, S., Toivanen, J.: Pricing American options using LU decomposition. Appl. Math. Sci. 1 (49–52), 2529–2551 (2007)

    MATH  MathSciNet  Google Scholar 

  52. Ikonen, S., Toivanen, J.: Efficient numerical methods for pricing American options under stochastic volatility. Numer. Methods Partial Differential Equations 24 (1), 104–126 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  53. Ikonen, S., Toivanen, J.: Operator splitting methods for pricing American options under stochastic volatility. Numer. Math. 113 (2), 299–324 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  54. Itkin, A., Carr, P.: Jumps without tears: a new splitting technology for barrier options. Int. J. Numer. Anal. Model. 8 (4), 667–704 (2011)

    MATH  MathSciNet  Google Scholar 

  55. Jaillet, P., Lamberton, D., Lapeyre, B.: Variational inequalities and the pricing of American options. Acta Appl. Math. 21 (3), 263–289 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  56. Kou, S.G.: A jump-diffusion model for option pricing. Management Sci. 48 (8), 1086–1101 (2002)

    Article  MATH  Google Scholar 

  57. Kwon, Y., Lee, Y.: A second-order finite difference method for option pricing under jump-diffusion models. SIAM J. Numer. Anal. 49 (6), 2598–2617 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  58. Kwon, Y., Lee, Y.: A second-order tridiagonal method for American options under jump-diffusion models. SIAM J. Sci. Comput. 33 (4), 1860–1872 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  59. Lipton, A.: Mathematical methods for foreign exchange. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  60. Marchuk, G.: Splitting and alternating direction methods. In: P. Ciarlet, P. Lions (eds.) Handbook of Numerical Analysis, vol. 1, pp. 197–462. North-Holland, Amsterdam (1990)

    Google Scholar 

  61. McKee, S., Mitchell, A.R.: Alternating direction methods for parabolic equations in two space dimensions with a mixed derivative. Computer J. 13, 81–86 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  62. McKee, S., Wall, D.P., Wilson, S.K.: An alternating direction implicit scheme for parabolic equations with mixed derivative and convective terms. J. Comput. Phys. 126, 64–76 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  63. Merton, R.C.: Theory of rational option pricing. Bell J. Econom. Management Sci. 4, 141–183 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  64. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financial Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  65. Oosterlee, C.W.: On multigrid for linear complementarity problems with application to American-style options. Electron. Trans. Numer. Anal. 15, 165–185 (2003)

    MATH  MathSciNet  Google Scholar 

  66. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  67. Rannacher, R.: Finite element solution of diffusion problems with irregular data. Numer. Math. 43 (2), 309–327 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  68. Reisinger, C., Wittum, G.: On multigrid for anisotropic equations and variational inequalities: pricing multi-dimensional European and American options. Comput. Vis. Sci. 7 (3–4), 189–197 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  69. Ruge, J.W., Stüben, K.: Algebraic multigrid. In: Multigrid methods, Frontiers Appl. Math., vol. 3, pp. 73–130. SIAM, Philadelphia, PA (1987)

    Google Scholar 

  70. Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (3), 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  71. Salmi, S., Toivanen, J.: An iterative method for pricing American options under jump-diffusion models. Appl. Numer. Math. 61 (7), 821–831 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  72. Salmi, S., Toivanen, J.: Comparison and survey of finite difference methods for pricing American options under finite activity jump-diffusion models. Int. J. Comput. Math. 89 (9), 1112–1134 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  73. Salmi, S., Toivanen, J.: IMEX schemes for option pricing under jump-diffusion models. Appl. Numer. Math. 84, 33–45 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  74. Seydel, R.U.: Tools for computational finance. Springer, London (2012)

    Book  MATH  Google Scholar 

  75. Shreve, S.E.: Stochastic calculus for finance II. Springer, New York (2008)

    Google Scholar 

  76. Stüben, K.: Algebraic multigrid: An introduction with applications. In: Multigrid. Academic Press Inc., San Diego, CA (2001)

    MATH  Google Scholar 

  77. Tavella, D., Randall, C.: Pricing financial instruments: The finite difference method. John Wiley & Sons (2000)

    Google Scholar 

  78. Toivanen, J.: Numerical valuation of European and American options under Kou’s jump-diffusion model. SIAM J. Sci. Comput. 30 (4), 1949–1970 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  79. Toivanen, J.: A componentwise splitting method for pricing American options under the Bates model. In: Applied and numerical partial differential equations, Comput. Methods Appl. Sci., vol. 15, pp. 213–227. Springer, New York (2010)

    Google Scholar 

  80. Toivanen, J.: Finite difference methods for early exercise options. In: R. Cont (ed.) Encyclopedia of Quantitative Finance. John Wiley & Sons (2010)

    Google Scholar 

  81. Toivanen, J., Oosterlee, C.W.: A projected algebraic multigrid method for linear complementarity problems. Numer. Math. Theory Methods Appl. 5 (1), 85–98 (2012)

    MATH  MathSciNet  Google Scholar 

  82. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press Inc., San Diego, CA (2001). With contributions by A. Brandt, P. Oswald and K. Stüben

    Google Scholar 

  83. Verwer, J.G., Spee, E.J., Blom, J.G., Hundsdorfer, W.: A second-order Rosenbrock method applied to photochemical dispersion problems. SIAM J. Sci. Comput. 20, 1456–1480 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  84. van der Vorst, H.A.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 13, 631–644 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  85. Wilmott, P.: Derivatives. John Wiley & Sons Ltd., Chichester (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel in’t Hout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hout, K., Toivanen, J. (2016). Application of Operator Splitting Methods in Finance. In: Glowinski, R., Osher, S., Yin, W. (eds) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-41589-5_16

Download citation

Publish with us

Policies and ethics