Skip to main content

Nonparametric Estimation of Heavy-Tailed Density by the Discrepancy Method

  • Conference paper
  • First Online:
Nonparametric Statistics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 175))

Abstract

The nonparametric estimation of the probability density function (pdf) requires smoothing parameters like bandwidths of kernel estimates. We consider the so-called discrepancy method proposed in [13, 14, 21] as a data-driven smoothing tool and alternative to cross-validation. It is based on the von Mises-Smirnov’s (M-S) and the Kolmogorov–Smirnov’s (K-S) nonparametric statistics as measures in the space of distribution functions (cdfs). The unknown smoothing parameter is found as a solution of the discrepancy equation. On its left-hand side stands the measure between the empirical distribution function and the nonparametric estimate of the cdf. The latter is obtained as a corresponding integral of the pdf estimator. The right-hand side is equal to a quantile of the asymptotic distribution of the M-S or K-S statistic. The discrepancy method considered earlier for light-tailed pdfs is investigated now for heavy-tailed pdfs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, the Hill’s estimator of the tail index is based on the k largest statistics.

  2. 2.

    [x] denotes the integer part of x.

  3. 3.

    The rule-of-thumb selected \(h_2\) is recommended in ([20], p. 45) as an optimal value for the Gaussian kernel. This method is however very sensitive to outliers due to possibly large \(\sigma \).

  4. 4.

    This is ksdensity-procedure in Matlab.

  5. 5.

    It was calculated by Dynara Team Matlab code \(mh-optimal-bandwidth\).

References

  1. Abramson, I.S.: On bandwidth estimation in kernel estimators—a square root law. Ann. Stat. 10, 1217–1223 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bolshev, L.N., Smirnov, N.V.: Tables of Mathematical Statistics. Nauka, Moscow (1965) (in Russian)

    Google Scholar 

  3. Bowman, A.W.: An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71(2), 353–360 (1984)

    Article  MathSciNet  Google Scholar 

  4. Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis. Oxford University Press (1997)

    Google Scholar 

  5. Cao, R., Cuevas, A., Fraiman, R.: Minimum distance density-based estimation. Comput. Stat. Data Anal. 20, 611–631 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S.X.: Probability density function estimation using gamma kernels. Ann. Inst. Stat. Math. 52(3), 471–480 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Devroye, L., Györfi, L.: Nonparametric Density Estimation. The \(L_1\) View. Wiley, New York (1985)

    Google Scholar 

  8. Dobrovidov A.V., Markovich L.A.: Data-driven bandwidth choice for gamma kernel estimates of density derivatives on the positive semi-axis. In: Proceedings of IFAC International Workshop on Adaptation and Learning in Control and Signal Processing, pp. 500–505. Caen, France, 3–5 July (2013). doi:10.3182/20130703-3-FR-4038.00086, arXiv:1401.6801

    Google Scholar 

  9. Hall, P., Sheather, S.J., Jones, M.C., Marron, J.S.: On optimal data-based bandwidth selection in kernel density estimation. Biometrika 78, 263–269 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Loader, C.R.: Bandwidth selection: classical or plug-in? Ann. Stat. 27(2), 415–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Markovich, L.A.: Nonparametric gamma kernel estimators of density derivatives on positive semiaxis by dependent data. RevStat Stat. J. (2016). arXiv:1401.6783 (in appear)

  12. Markovich, L.A.: Nonparametric estimation of multivariate density and its derivative by dependent data using gamma kernels. Submitted J. Nonparametric Stat. (2016). arXiv:1410.2507

  13. Markovich, N.M.: Experimental analysis of nonparametric probability density estimates and of methods for smoothing them. Autom. Remote Control 50, 941–948 (1989)

    Google Scholar 

  14. Markovich, N.M.: Nonparametric Analysis of Univariate Heavy-Tailed Data. Wiley, Chichester (2007)

    Book  MATH  Google Scholar 

  15. Markovich, N.M.: Nonparametric estimation of extremal index using discrepancy method. In: Proceedings of the X International Conference System Identification and Control Problems SICPRO-2015, pp. 160–168. V.A. Trapeznikov Institute of Control Sciences, Moscow, 26–29 Jan 2015. ISBN: 978-5-91450-162-1

    Google Scholar 

  16. Martynov, G.V.: Omega-Square Criteria. Nauka, Moscow (1978) (in Russian)

    Google Scholar 

  17. Rudemo, M.: Empirical choice of histogram and kernel density estimators. Scand. J. Stat. 9, 65–78 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Sheather, S.J., Jones, M.C.: A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Stat. Soc. Ser. B 53(3), 683–690 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Scott, D.W.: Multivariate Density Estimation. Theory, Practice, and Visualization. Wiley, New York, Chichester (1992)

    Google Scholar 

  20. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London, New York (1986)

    Book  MATH  Google Scholar 

  21. Vapnik, V.N., Markovich, N.M., Stefanyuk, A.R.: Rate of convergence in \(L_2\) of the projection estimator of the distribution density. Autom. Remote Control 53, 677–686 (1992)

    MathSciNet  MATH  Google Scholar 

  22. Zambom, A.Z., Dias, R.: A Review of Kernel Density Estimation with Applications to Econometrics (2012). arXiv:1212.2812

Download references

Acknowledgments

This work was supported in part by the Russian Foundation for Basic Research, grant 13-08-00744.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Markovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Markovich, N. (2016). Nonparametric Estimation of Heavy-Tailed Density by the Discrepancy Method. In: Cao, R., González Manteiga, W., Romo, J. (eds) Nonparametric Statistics. Springer Proceedings in Mathematics & Statistics, vol 175. Springer, Cham. https://doi.org/10.1007/978-3-319-41582-6_8

Download citation

Publish with us

Policies and ethics