Skip to main content

Analysis of Correlated Data with Error-Prone Response Under Generalized Linear Mixed Models

  • Chapter
  • First Online:
Big and Complex Data Analysis

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

Measurements of variables are often subject to error due to various reasons. Measurement error in covariates has been discussed extensively in the literature, while error in response has received much less attention. In this paper, we consider generalized linear mixed models for clustered data where measurement error is present in response variables. We investigate asymptotic bias induced by nonlinear error in response variables if such error is ignored, and evaluate the performance of an intuitively appealing approach for correction of response error effects. We develop likelihood methods to correct for effects induced from response error. Simulation studies are conducted to evaluate the performance of the proposed methods, and a real data set is analyzed with the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buonaccorsi, J.P.: Measurement error in the response in the general linear model. J. Am. Stat. Assoc. 91, 633–642 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carroll, R.J., Spiegelman, C.H., Gordon, K.K., Bailey, K.K., Abbott, R.D.: On errors-in-variables for binary regression models. Biometrika 71, 19–25 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carroll, R.J., Ruppert, D., Stefanski, L.A., Crainiceanu, C.M.: Measurement error in nonlinear models: a modern perspective, 2nd edn. Chapman and Hall/CRC, London (2006)

    Book  MATH  Google Scholar 

  4. Chen, Z., Yi, G.Y., Wu, C.: Marginal methods for correlated binary data with misclassified responses. Biometrika 98, 647–662 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diggle, P.J., Heagerty, P., Liang, K.Y., Zeger, S.L.: Analysis of Longitudinal Data, 2nd edn. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  6. Ferrara, L.A., Guida, L., Iannuzzi, R., Celentano, A., Lionello, F.: Serum cholesterol affects blood pressure regulation. J. Hum. Hypertens. 16, 337–343 (2002)

    Article  Google Scholar 

  7. Hall, P., Ma, Y.Y.: Semiparametric estimators of functional measurement error models with unknown error. J. R. Stat. Soc. Ser. B 69, 429–446 (2007)

    Article  MathSciNet  Google Scholar 

  8. Jaquet, F., Goldstein, I.B., Shapiro, D.: Effects of age and gender on ambulatory blood pressure and heart rate. J. Hum. Hypertens. 12, 253–257 (1998)

    Article  Google Scholar 

  9. McCulloch, C.E., Searle, S.R.: Generalized, Linear, and Mixed Models. Wiley, New York (2001)

    MATH  Google Scholar 

  10. Neuhaus, J.M.: Bias and efficiency loss due to misclassified responses in binary regression. Biometrika 86, 843–855 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Primatesta, P., Falaschetti, E., Gupta, S., Marmot, M.G., Poulter, N.R.: Association between smoking and blood pressure - evidence from the health survey for England. Hypertension 37, 187–193 (2001)

    Article  Google Scholar 

  12. Vonesh, E.F.: A note on the use of Laplace’s approximation for nonlinear mixed-effects models. Biometrika 83, 447–452 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, N., Lin, X., Gutierrez, R.G., Carroll, R.J.: Bias analysis and SIMEX approach in generalized linear mixed measurement error models. J. Am. Stat. Assoc. 93, 249–261 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. White, H.: Maximum likelihood estimation of misspecified models. Econometrica 50, 1–25 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wolfinger, R.: Laplace’s approximation for nonlinear mixed models. Biometrika 80, 791–795 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yi, G.Y.: A simulation-based marginal method for longitudinal data with dropout and mismeasured covariates. Biostatistics 9, 501–512 (2008)

    Article  MATH  Google Scholar 

  17. Yi, G.Y.: Measurement error in life history data. Int. J. Stat. Sci. 9, 177–197 (2009)

    Google Scholar 

  18. Yi, G.Y., Cook, R.J. Errors in the measurement of covariates. In: The Encyclopedia of Biostatistics, 2nd edn., vol. 3, pp. 1741–1748. Wiley, New York (2005)

    Google Scholar 

  19. Yi, G.Y., Liu, W., Wu, L.: Simultaneous inference and bias analysis for longitudinal data with covariate measurement error and missing responses. Biometrics 67, 67–75 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zucker, D.M.: A pseudo-partial likelihood method for semiparametric survival regression with covariate errors. J. Am. Stat. Assoc. 100, 1264–1277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Natural Sciences and Engineering Research Council of Canada (G. Y. Yi and C. Wu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace Y. Yi .

Editor information

Editors and Affiliations

Appendix

Appendix

Let \(\varPsi _{i}(\boldsymbol{\theta },\boldsymbol{\eta }) = \left (\begin{matrix}\scriptstyle \mathbf{Q}_{i}(\boldsymbol{\eta })\\\scriptstyle \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })\end{matrix}\right )\). Because \((\hat{\boldsymbol{\theta }}_{p},\hat{\boldsymbol{\eta }})\) is a solution to \(\varPsi _{i}(\boldsymbol{\theta },\boldsymbol{\eta }) = 0\), by first-order Taylor series approximation, we have

$$\displaystyle\begin{array}{rcl}n^{1/2}\left (\begin{array}{c} \hat{\boldsymbol{\eta }} -\boldsymbol{\eta }\\\hat{\boldsymbol{\theta }}_{p} -\boldsymbol{\theta } \end{array} \right )& =& -\left (\begin{array}{cc} \hspace{7.22743pt} E\left \{\partial \mathbf{Q}_{i}(\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\right \} & \hspace{7.22743pt} 0\\E\left \{\partial \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\right \} & \hspace{7.22743pt} E\left \{\partial \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\theta }^{\mathrm{T}}\right \} \end{array} \right )^{-1}{}\\ & & \times \;n^{-1/2}\sum _{i=1}^{n}\varPsi _{i}(\boldsymbol{\theta },\boldsymbol{\eta }) + o_{p}(1). {}\\\end{array}$$

It follows that \(n^{1/2}(\hat{\boldsymbol{\theta }}_{p}-\boldsymbol{\theta })\) equals

$$\displaystyle\begin{array}{rcl}& & -n^{-1/2}\left [E\left \{\partial \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\theta }^{\mathrm{T}}\right \}\right ]^{-1}\left \{\sum _{i=1}^{n}\mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta }) - E\left \{\partial \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\right \}\right.{}\\& & \times \left.\left [E\left \{\partial \mathbf{Q}_{i}(\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\right \}\right ]^{-1}\sum _{i=1}^{n}\mathbf{Q}_{i}(\boldsymbol{\eta })\right \} + o_{p}(1) = -n^{-1/2}\varGamma ^{-1}(\boldsymbol{\theta },\boldsymbol{\eta }){}\\& & \quad \sum _{i=1}^{n}\varOmega _{i}(\boldsymbol{\theta },\boldsymbol{\eta }) + o_{p}(1), {}\\\end{array}$$

where \(\varOmega _{i}(\boldsymbol{\theta },\boldsymbol{\eta }) = \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta }) - E\{\partial \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\}[E\{\partial \mathbf{Q}_{i}(\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\}]^{-1}\mathbf{Q}_{i}(\boldsymbol{\eta })\), and \(\varGamma (\boldsymbol{\theta },\boldsymbol{\eta }) = E\{\partial \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\theta }^{\mathrm{T}}\}\).

Applying the Central Limit Theorem, we can show that \(n^{1/2}(\hat{\boldsymbol{\theta }}_{p}-\boldsymbol{\theta })\) is asymptotically normally distributed with mean 0 and asymptotic covariance matrix given by Γ −1 Σ(Γ −1)T, where \(\varSigma = E\{\varOmega _{i}(\boldsymbol{\theta },\boldsymbol{\eta })\varOmega _{i}^{\mathrm{T}}(\boldsymbol{\theta },\boldsymbol{\eta })\}\). But under suitable regularity conditions and correct model specification, \(E\{\mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })\mathbf{U}_{i}^{{\ast}\mathrm{T}}(\boldsymbol{\theta },\boldsymbol{\eta })\} = E\{ - \partial \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\theta }^{\mathrm{T}}\}\), \(E\{\mathbf{Q}_{i}(\boldsymbol{\eta })\mathbf{Q}_{i}^{\mathrm{T}}(\boldsymbol{\eta })\} = E\{ - \partial \mathbf{Q}_{i}(\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\}\), and \(E\{\mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })\mathbf{Q}_{i}^{\mathrm{T}}(\boldsymbol{\eta })\} = E\{ - \partial \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\}\). Thus,

$$\displaystyle\begin{array}{rcl} \varSigma & =& E\{ - \partial \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\theta }^{\mathrm{T}}\} + E\{\partial \mathbf{U}_{ i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\}\left [E\{\partial \mathbf{Q}_{ i}(\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\}\right ]^{-1} {}\\ & & \times \;\left [E\{\partial \mathbf{U}_{i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\}\right ]^{\mathrm{T}}. {}\\ \end{array}$$

Therefore, the asymptotic covariance matrix for \(n^{1/2}(\hat{\boldsymbol{\theta }}_{p}-\boldsymbol{\theta })\) is

$$\displaystyle\begin{array}{rcl} \varSigma ^{{\ast}}& =& \left [E\{ - \partial \mathbf{U}_{ i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\theta }^{\mathrm{T}}\}\right ]^{-1} + \left [E\{ - \partial \mathbf{U}_{ i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\theta }^{\mathrm{T}}\}\right ]^{-1}E\{\partial \mathbf{U}_{ i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\} {}\\ & & \times \;\left [E\{\partial \mathbf{Q}_{i}(\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\}\right ]^{-1}\left [E\{\partial \mathbf{U}_{ i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\eta }^{\mathrm{T}}\}\right ]^{\mathrm{T}}\left [E\{ - \partial \mathbf{U}_{ i}^{{\ast}}(\boldsymbol{\theta },\boldsymbol{\eta })/\partial \boldsymbol{\theta }^{\mathrm{T}}\}\right ]^{-1}. {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yi, G.Y., Chen, Z., Wu, C. (2017). Analysis of Correlated Data with Error-Prone Response Under Generalized Linear Mixed Models. In: Ahmed, S. (eds) Big and Complex Data Analysis. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-41573-4_5

Download citation

Publish with us

Policies and ethics