Isotopic Map of the Inn-Eisack-Adige-Brenner Passage and its Application to Prehistoric Human Cremations



This chapter summarizes the results achieved in an attempt to contribute to bioarchaeological research aiming at the reconstruction of migration and culture transfer in a region of eminent archaeological importance in Europe, namely, the Inn-Eisack-Adige passage via the Brenner Pass in the European Alps. 219 archaeological animal bone samples of three residential species (Bos taurus, Sus scrofa, Cervus elaphus) from 30 archaeological sites covering the transalpine passage have been analysed in terms of δ18Ophosphate, 87Sr/86Sr, 208Pb/204Pb, 207Pb/204Pb, 206Pb/204Pb, 208Pb/207Pb and 206Pb/207Pb, thus generating a multi-isotope fingerprint. All measurement data and the laboratory processing methods are reported in detail. The isotopic map based on the spatial distribution of isotopic signatures in the bone finds is augmented by modern reference samples (water, soil, vegetation) to verify whether the choice of animal skeletal samples was appropriate and to perform a pilot study leading to a predictive model for 87Sr/86Sr isotopic ratios in local bioarchaeological specimens. Univariate statistics for each single isotopic signature and the related maps with the respective spatial distribution are presented.

This isotopic map is a prerequisite for the quantification of human population movement in the reference region and for defining direction of migration. Information based on single isotopic ratios that is necessary for understanding whether migration took place in a north-to-south direction or vice versa is limited. In addition, cremating the dead was the major if not exclusive burial rite during several periods in European history. Since stable isotopic ratios of light elements such as oxygen are thermally less stable than the isotopic ratios of the heavy elements strontium and lead, migration research based on isotope analysis of fully cremated finds is restricted to the latter. In a pilot study, 184 human cremations from the Urnfield period and the Fritzens-Sanzeno culture recovered in the reference area were analysed for strontium and lead isotopic ratios, and the spatial distribution for each ratio was also mapped. Subsequent GMM clustering (see chapter “The Isotopic Fingerprint: New Methods of Data Mining and Similarity Search”) resulted in a clear definition of micro-regions to the north and south of the Alps.


  1. Aggarwal PK, Araguás-Araguás LJ, Groening M, Kulkarni KM, Kurttas T, Newman BD, Vitvar T (2010) Global hydrological isotope data and data networks. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes. Understanding movement, pattern, and process on Earth through isotope mapping. Springer, Dordrecht, pp. 33–50Google Scholar
  2. Blake RE, O’Neil JR, Garcia GA (1997) Oxygen isotope systematics of biologically mediated reactions of phosphate. I. Microbial degradation of organophosphorus compounds. Geochim Cosmochim Acta 61:4411–4422CrossRefGoogle Scholar
  3. Blake RE, O’Neil JR, Garcia GA (1998) Effects of microbial activity on the δ18O of dissolved inorganic phosphate and textural features of synthetic apatites. Am Mineral 83:1516–1531CrossRefGoogle Scholar
  4. Boni M, Di Maio G, Frei R, Villa IM (2000) Lead isotopic evidence for a mixed provenance of Roman water pipes from Pompeii. Archaeometry 42:201–208CrossRefGoogle Scholar
  5. Bösl C, Grupe G, Peters J (2006) A Late Neolithic vertebrate food web based on stable isotope analyses. Int J Osteoarchaeol 16:296–315CrossRefGoogle Scholar
  6. Bray PJ, Pollard AM (2012) A new interpretative approach to the chemistry of copper-alloy objects: source, recycling and technology. Antiquity 86:853–867CrossRefGoogle Scholar
  7. Bryant JD, Koch PL, Froelich PN, Showers WJ, Genna BJ (1996) Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite. Geochim Cosmochim Acta 60:5143–5148Google Scholar
  8. Chenery CA, Pashley V, Lamb AL, Sloane HJ, Evans JA (2012) The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite. Rapid Commun Mass Spectrom 26:309–319CrossRefPubMedGoogle Scholar
  9. Crowley BE, Miller JH, Bataille CP (2015) Strontium isotopes (87Sr/86Sr) in terrestrial ecological and palaeoecological research: empirical efforts and recent advances in continental-scale models. Biol Rev. doi: 10.1111/brv.12217 PubMedGoogle Scholar
  10. D’Angela D, Longinelli A (1990) Oxygen isotopes in living mammal’s bone phosphate: further results. Chem Geol: Isotope Geosci Sec 86:75–82Google Scholar
  11. Drouet T, Herbauts J, Gruber W, Demaiffe D (2005) Strontium isotope composition as a tracer of calcium sources in two forest ecosystems in Belgium. Geoderma 126:203–223CrossRefGoogle Scholar
  12. Fischer J, Schneider JW, Voigt S, Joachimski MM, Tichomirowa M, Tütken T, Götze J, Berner U (2013) Oxygen and strontium isotopes from fossil shark teeth: environmental and ecological implication for Late Palaeozoic European basins. Chem Geol 342:44–62CrossRefGoogle Scholar
  13. Frei KM, Frei R (2011) The geographic distribution of strontium isotopes in Danish surface waters—a base for provenance studies in archaeology, hydrology and agriculture. Appl Geochem 26:326–240CrossRefGoogle Scholar
  14. Fricke HC, Clyde WC, O’Neil JR (1998) Intra-tooth variations in δ18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochim Cosmochim Acta 62:1839–1850CrossRefGoogle Scholar
  15. Gaudinski JB, Dawson TE, Quideau S, Schuur E, Roden JS, Trumbore SE, Sandquist DR, Oh S-W, Wasylishen RE (2005) Comparative analysis of cellulose preparation techniques for use with 13C, 14C, and 18O isotopic measurements. Anal Chem 77:7212–7224CrossRefPubMedGoogle Scholar
  16. Göhring AB (2014) Sauerstoff-Isotopiekartierung einer Alpenpassage anhand rezenter botanischer Proben. MSc Thesis, LMU MünchenGoogle Scholar
  17. Göhring AB, Toncala A, Mayr C, Söllner F, Grupe G (2015) Stable oxygen isotope mapping of the transalpine Inn-Eisack-Etsch passage based on modern α-cellulose and water. Documenta Archaeobiologiae 12:53–80Google Scholar
  18. Grosskopf B (2004) Leichenbrand. Biologisches und kulturhistorisches Quellenmaterial zur Rekonstruktion vor- und frühgeschichtlicher Populationen und ihrer Funeralpraktiken. PhD Thesis, Universität LeipzigGoogle Scholar
  19. Grupe G (1991) Anthropogene Schwermetallkonzentration in menschlichen Skelettfunden als Monitor früher Umweltbelastungen. USW-Z Umweltchem Ökotox 3:226–229CrossRefGoogle Scholar
  20. Grupe G, Herrmann B (1983) Über das Schrumpfungsverhalten experimentell verbrannter spongiöser Knochen am Beispiel des Caput femoris. Z Morph Anthrop 74:121–127Google Scholar
  21. Grupe G, Price TD, Schröter P, Söllner F, Johnson CM, Beard BL (1997) Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: a study of southern Bavarian skeletal remains. Appl Geochem 12:517–525CrossRefGoogle Scholar
  22. Grupe G, Harbeck M, McGlynn GC (2015) Prähistorische Anthropologie. Springer, BerlinCrossRefGoogle Scholar
  23. Hansen E, Skårup S, Christensen K, Schmidt A, Hjelmar O, Hauschild M (2004) Life cycle assessment of landfilled waste. Environmental projects 971. Danish Environmental Protection Agency, Copenhagen, DenmarkGoogle Scholar
  24. Harbeck M, Schleuder R, Schneider J, Wiechmann I, Schmahl WW, Grupe G (2011) Research potential and limitations of trace analyses of cremated remains. Forensic Sci Inter 204:191–200CrossRefGoogle Scholar
  25. Henningsen D, Katzung G (1998) Einführung in die Geologie Deutschlands, 5th edn. Enke, StuttgartGoogle Scholar
  26. Herrmann B, Grupe G, Hummel S, Piepenbrink H, Schutkowski H (1990) Prähistorische Anthropologie. Leitfaden der Feld- und Labormethoden. Springer, BerlinCrossRefGoogle Scholar
  27. Hillson S (1996) Dental Anthropology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Höppner B, Bartelheim M, Huisjmas M, Krauss R, Martinek KP, Pernicka E, Schwarz R (2005) Prehistoric copper production in the Inn Valley (Austria), and the earlierst copper in Central Europe. Archaeometry 47:293–315CrossRefGoogle Scholar
  29. Hüls CM, Erlenkeuser H, Nadeau MJ, Grootes PM, Andersen N (2010) Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52:587–599CrossRefGoogle Scholar
  30. Humer G, Rank D, Stichler W (1995) Niederschlagsisotopennetzwerk Österreich. Monographien des Bundesministeriums für Umwelt, Band 52. WienGoogle Scholar
  31. Iacumin P, Bocherens H, Mariotti A, Longinelli A (1996) Oxygen analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate? Earth Planet Sci Lett 142:1–6CrossRefGoogle Scholar
  32. Jayme G (1942) Preparation of cellulose with sodium chlorite. Cellulosechemie: Zeitschrift für die gesamte Chemie und Physik der Cellulose sowie der ihr verwandten Stoffe 20:43–49Google Scholar
  33. Kamenov GD, Gulson BL (2014) The Pb isotopic record of historical to modern human lead exposure. Sci Total Environ 490:861–870CrossRefPubMedGoogle Scholar
  34. Kern Z, Kohán B, Leuenberger M (2014) Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain. Atmos Chem Phys 14:1897–1907CrossRefGoogle Scholar
  35. Köppel V, Schroll E (1985) Herkunft des Pb der triassischen Pb-Zn-Vererzungen in den Ost- und Südalpen, Resultate bleiisotopengeochemischer Untersuchungen. Arch Lagerstättenforsch. Geol Bundesanstalt 6:215–222Google Scholar
  36. Köppel V, Schroll E (1988) Pb-isotope evidence for the origin of lead in strata-bound Pb-Zn deposits in Triassic carbonates of the Eastern and Southern Alps. Mineral Deposita 23:96–103Google Scholar
  37. Kovach A (1968) Blei-Isotopen-Verhältnisse im Raum der alpin-mediterranen Metallogenese. Geolog Rundschau 57:371–385CrossRefGoogle Scholar
  38. Kunter M (1989) Leichenbranduntersuchungen in Wederath. In: Haffner A (ed) Gräber-Spiegel des Lebens: zum Totenbrauchtum der Kelten und Römer am Beispiel des Treverer-Gräberfel des Wederath-Belginum. von Zabern, Mainz, pp. 415–432Google Scholar
  39. Lee-Thorp J (2002) Two decades of progress towards understanding fossilization processes and isotopic signals in calcified tissue material. Archaeometry 44:435–446CrossRefGoogle Scholar
  40. Lihl CM (2014) Relation zwischen stabilen Sauerstoffisotopen im Phosphat und im strukturellen Karbonat von Tierknochen verschiedener Taxa. MSc Thesis, LMU MünchenGoogle Scholar
  41. Longinelli A (1984) Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochim Cosmochim Acta 48:385–390CrossRefGoogle Scholar
  42. Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88CrossRefGoogle Scholar
  43. Luz B, Kolodny Y (1989) Oxygen isotope variation in bone phosphate. Appl Geochem 4:317–323CrossRefGoogle Scholar
  44. Marshall JD, Brooks JR, Lajtha K (2007) Sources of variation in the stable isotopic composition of plants In: Michener R, Lajtha K (eds) Stable isotopes in ecology and environmental science. Blackwell, Malden, pp 22–60Google Scholar
  45. Mayr C (2002) Möglichkeiten der Klimarekonstruktion im Holozän mit δ13C- und δ2H-Werten von Baumjahresringen auf der Basis von Klimakammerversuchen und Rezentstudien. GSF-Bericht 14/02, NeuherbergGoogle Scholar
  46. Mayr C, Lücke A, Stichler W, Trimborn P, Ercolano B, Oliva G, Schleser GH, Soto J, Ohlendorf C, Haberzettl T, Schäbitz F, Zolitschka B, Fey M, Janssen S, Wille M (2007) Precipitation orgin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes (δ18O, δ2H). J Hydrol 335:53–63CrossRefGoogle Scholar
  47. Mayr C, Grupe G, Lihl C, Toncala A (2016) Linking oxygen isotopes of animal-bone phosphate with altimetry—results from archaeological finds from a transect in the Alps. In: Grupe G, McGlynn GC (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 157–172Google Scholar
  48. McKinley J (2016) Complexities of the ancient mortuary rite of cremation: an osteoarchaeological conundrum. In: Grupe G, McGlynn GC (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 17–41Google Scholar
  49. Moebus G (1997) Geologie der Alpen. von Loga, KölnGoogle Scholar
  50. Nordberg GF, Mahaffey KR, Fowler BA (1991) Introduction and summary. International workshop on bone: implications for dosimetry and toxicology. Environ Health Perspect 91:3–7CrossRefPubMedPubMedCentralGoogle Scholar
  51. Olsen J, Heinemeier J, Bennike P, Krause C, Hornstrup KM, Thrane H (2008) Characterization and blind testing of radiocarbon dating of cremated bone. J Archaeol Sci 35:791–800CrossRefGoogle Scholar
  52. Otto L (2015) Anthropologische Bearbeitung des urnenfelderzeitlichen Gräberfeldes Kleinaitingen. MSc-Thesis, LMU MünchenGoogle Scholar
  53. Park G (2014) Die Geologie Europas. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  54. Pellegrini M, Lee-Thorp JA, Donahue RE (2011) Exploring the variation of the δ18Op and δ18Oc relationship in enamel increments. Palaeogeogr Palaeoclimatol Palaeoecol 310:71–83CrossRefGoogle Scholar
  55. Pemmer B, Roschger A, Wastl A, Hofstaetter JG, Wobrauschek P, Simon R, Thaler HW, Roschger P, Klaushofer K, Streli C (2013) Spatial distribution of the trace elements zinc, strontium and lead in human bone tissue. Bone 57:184–193CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pin C, Joannon S, Bosq C, Fevre BL, Gauthier PJ (2003) Precise determination of Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following selective separation of the analytes. J Anal Spectrom 18:135–141CrossRefGoogle Scholar
  57. Podlesak DW, Torregrossa AM, Ehleringer JR, Dearing MD, Passey BH, Cerling TE (2008) Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair and enamel of a small mammals. Geochim Cosmochim Acta 72:19–35CrossRefGoogle Scholar
  58. Price TD, Burton JH, Bentley RA (2002) The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44:117–135CrossRefGoogle Scholar
  59. Quatrehomme G, Bolla M, Muller M, Rocca JP, Grevin G, Bailet P, Ollier A (1998) Technical note - Experimental single controlled study of burned bones: contribution of scanning electron microscopy. J Forensic Sci 43:417–422CrossRefPubMedGoogle Scholar
  60. Reimann C, Flem B, Fabian K, Birke M, Ladenberger A, Négrel P, Demetriades A, Hoogewerff J, The GEMAS Project Team (2012) Lead and lead isotopes in agricultural soils of Europe—the continental perspective. Appl Geochem 27:532–542CrossRefGoogle Scholar
  61. Schroll E (1990) Die Metallprovinz der Ostalpen im Lichte der Geochemie. Geol Rundsch 79:479–493CrossRefGoogle Scholar
  62. Schroll E, Köppel V, Cerny I (2006) Pb and Sr isotope and geochemical data from the Pb-Zn deposit Bleiberg (Austria): constraints on the age of mineralization. Mineral Petrol 86:129–156CrossRefGoogle Scholar
  63. Schurr MR, Hayes RG, Cook DC (2008) Thermally induced changes in the stable carbon and nitrogen isotope ratios of charred bones. In: Schmidt CW, Symes SA (eds) The analysis of burned human remains. Academic Press, London, pp. 95–108Google Scholar
  64. Shipman P, Forster G, Schoeninger M (1984) Burnt bones and teeth: an experimental study of colour, morphology, crystal structure and shrinkage. J Archaeol Sci 11:307–325CrossRefGoogle Scholar
  65. Sievers S (2003) Manching—Die Keltenstadt. Theiss, StuttgartGoogle Scholar
  66. Sivan SS, Wachtel E, Tsitron E, Sakkee N, van der Ham F, DeGroot J, Roberts S, Maroudas A (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by racemization of aspartic acid. J Biol Chem 283:8796–8801CrossRefPubMedGoogle Scholar
  67. Snoeck C, Lee-Thorp JA, Schulting R, Debouge W, de Jong J, Mattielli N (2015) Calcined bone provides a reliable substrate for strontium isotope ratios as shown by an enrichment experiment. Rapid Commun Mass Spectrom 29:107–114CrossRefPubMedGoogle Scholar
  68. Söllner F, Toncala A, Hölzl S, Grupe G (2016) Determination of geo-dependent bio-available 87Sr/86Sr isotopic ratios for archaeological sites from the Inn Valley (Austria)—a model calculation. In: Grupe G, McGlynn GC, (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 123–140Google Scholar
  69. Song XIN, Clark KS, Helliker BR (2014) Interpreting species-specific variation in tree-ring oxygen isotope ratios among three temperate forest trees. Plant Cell Environ 37:2169–2182CrossRefPubMedGoogle Scholar
  70. Sørensen ML, Rebay KC (2007) Changing social practices of death in later European history. Studien zur Kulturgeschichte von Oberösterreich 19:1–5Google Scholar
  71. Stabler TV, Byers SS, Zura RD, Kraus VB (2009) Amino acid racemization reveals differential protein turnover in osteoarthritic articular and meniscal cartilage. Arthritis Res Therapy 11:R34CrossRefGoogle Scholar
  72. Thompson M (2006) Representing data distributions with kernel density estimates. Royal Society of Chemistry, Analytical Methods Committee, AMCTB No. 4Google Scholar
  73. Tütken T, Vennemann TW, Pfretzschner H-U (2004) Analyse stabiler und radiogener Isotope in archäologischem Skelettmaterial: Herkunftsbestimmung des karolingischen Maultiers von Frankenthal und Vergleich mit spätpleistozänen Großsäugerknochen aus den Rheinablagerungen. Prähist Z 79:89–110CrossRefGoogle Scholar
  74. United Nations (2010) Final review of scientific information on lead. United Nations Environment Progamme, Chemicals Branch, DTIEGoogle Scholar
  75. Veizer J (1989) Strontium isotopes in seawater through time. Annu Rev Plant Physiol Plant Mol Biol 17:141–167Google Scholar
  76. Vennemann TW, Fricke HC, Blake RE, O’Neil JR, Colman A (2002) Oxygen isotope analysis of phosphates: a comparison of techniques for analysis of Ag3PO4. Chem Geol 185:321–336CrossRefGoogle Scholar
  77. Villa I (2016) Provenancing bronze: Exclusion, inclusion, uniqueness, and Occam ‘s Razor. In: Grupe G, McGlynn GC, (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 141–154Google Scholar
  78. Voerkelius S, Lorenz GD, Rummel S, Quétel CR, Heiss G, Baxter M, Brach-Papa C, Deters-Itzelberger P, Hölzl S, Hoogewerff J, Ponzevera E, VanBocxstaele M, Ueckermann H (2010) Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentification of food. Food Chem 118:993–940CrossRefGoogle Scholar
  79. Vohberger M (2011) Lokal oder eingewandert? Interpretationsmöglichkeiten und Grenzen lokaler Strontium- und Sauerstoffisotopensignaturen am Beispiel einer Altgrabung in Wenigumstadt. PhD Thesis, Universität MünchenGoogle Scholar
  80. Wahl J (1981) Beobachtungen zur Verbrennung menschlicher Leichname. Archäologisches Korrespondenzblatt 11:271–279Google Scholar
  81. Walker PJ, Miller KP, Richman R (2008) Time, temperature, and oxygen availability: an experimental study of the effects of environmental conditions on the color and organic content of cremated bone. In: Schmidt CW, Symes SA, (eds) The analysis of burned human remains. Academic Press, London, pp. 129–136Google Scholar
  82. Walters C, Eyre DR (1983) Collagen crosslinks in human dentin: Increasing content of hydroxypyridinium residues with age. Calcif Tissue Int 35:401–405CrossRefPubMedGoogle Scholar
  83. Wittmers LE, Aufderheide AC, Pounds JG, Jones KW, Angel JL (2008) Problems in determination of skeletal lead burden in archaeological samples: an example from the first African Baptist Church population. Am J Phys Anthrop 136:379–386CrossRefPubMedGoogle Scholar
  84. Xin G, Hanson N (1994) Strontium isotope study of the Peconic river watershed, Long Island, New York. MSc thesis, State University of New York at Stony BrookGoogle Scholar
  85. Zazzo A, Lécuyer C, Mariotti A (2004) Experimentally-controlled carbon and oxygen isotope exchange between biapatites and water under inorganic and microbially-mediated conditions. Geochim Cosmochim Acta 68:1–12CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.BiozentrumLudwig-Maximilians-UniversitätMartinsriedGermany
  2. 2.Department für Geo- und UmweltwissenschaftenLudwig-Maximilians-UniversitätMunichGermany
  3. 3.Institut für GeographieFriedrich-Alexander-UniversitätErlangenGermany
  4. 4.GeoBio-Center & Paläontologie und GeobiologieLudwig-Maximilians-UniversitätMunichGermany
  5. 5.RieskraterMuseum NördlingenNördlingenGermany

Personalised recommendations