Skip to main content

The Concept of Isotopic Landscapes: Modern Ecogeochemistry versus Bioarchaeology

  • Chapter
  • First Online:
Book cover Across the Alps in Prehistory

Abstract

The term “isotopic landscape” or “isoscape” is used to indicate a map depicting isotopic variation in the environment. The spatial distribution of isotopic ratios in environmental samples is an indispensable prerequisite for generating an isotopic landscape yet represents more than simply an assessment of this distribution. An isotopic landscape also includes the fundamental parameters of prediction and modelling, thus providing estimated isotopic signatures at sites for which no values are known. When calibrated, such models are very helpful in assessing the origin of geological and biological materials. Reconstructing the place of origin of primarily non-local archaeological finds is a major topic in bioarchaeology because it gives clues to major driving forces for population development through time such as mobility, migration, and trade. These are fundamental aspects of the past human behaviour. For decades, stable isotope analysis has been the method of choice, but still has its limitations. Bioarchaeological sciences have adopted “isoscapes” mainly as a term, but not as a contextual concept.

This chapter briefly introduces the research substrate of bioarchaeology, which mainly consists of human and animal skeletal finds, provides a concise overview of selected stable isotopic ratios in these remains, and explains their research potential for migration research. State of the art in bioarchaeology, including efforts towards the generation of predictive models, is discussed within the framework of existing isotopic maps and landscapes relevant to bioarchaeology. The persisting challenges in this field of research, which gave rise to research efforts summarized in this book, are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Åberg G, Fosse G, Stray H (1998) Man, nutrition and mobility: a comparison of teeth and bone from the medieval era and the present from Pb and Sr isotopes. Sci Total Environ 224:109–119

    Article  PubMed  Google Scholar 

  • Aggarwal PK, Araguás-Araguás LJ, Groening M, Kulkarni KM, Kurttas T, Newman BD, Vitvar T (2010) Global hydrological isotope data and data networks. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes. Understanding movement, pattern, and process on earth through isotope mapping. Springer, Dordrecht, pp. 33–50

    Google Scholar 

  • Albarède F, Desaulty A-M, Blichert-Toft J (2012) A geological perspective on the use of Pb isotopes in archaeometry. Archaeometry 54:853–867

    Article  CAS  Google Scholar 

  • Alföldi-Rosenbaum E (1984) Das Kochbuch der Römer. Rezepte aus der “Kochkunst” des Apicius. 7. Aufl. Artemis & Winkler, Zürich

    Google Scholar 

  • Andersson PS, Wasserburg GJ, Ingri J (1992) The sources and transport of Sr and Nd isotopes in the Baltic Sea. Earth Planet Sci Lett 113:459–472

    Article  CAS  Google Scholar 

  • Bataille CP, Bowen GJ (2012) Mapping 87Sr/86Sr variations in bedrock and water for large scale provenance studies. Chem Geol 304/305:39–52

    Article  CAS  Google Scholar 

  • Bataille CP, Brennan SR, Hartmann J, Moosdorf N, Wooller MJ, Bowen GJ (2014) A geostatistical framework for predicting variability in strontium concentrations and isotope ratios in Alaskan rivers. Chem Geol 389:1–15

    Article  CAS  Google Scholar 

  • Beard BI, Johnson CM (2000) Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals. J Forensic Sci 45:1049–1061

    Article  CAS  PubMed  Google Scholar 

  • Ben-David M, Flaherty EA (2012) Stable isotopes in mammalian research: a beginner’s guide. J Mammal 93:312–328

    Article  Google Scholar 

  • Bentley RA (2006) Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method Theory 13:135–187

    Article  Google Scholar 

  • Berna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Archaeol Sci 31:867–882

    Article  Google Scholar 

  • Bollhöfer A, Rosman KJR (2001) Isotopic source signatures for atmospheric lead: the Northern Hemisphere. Geochim Cosmochim Acta 65:1727–1740

    Article  Google Scholar 

  • Bowen GJ (2010) Isoscapes: spatial pattern in isotopic biogeochemistry. Annu Rev Earth Planet Sci 38:161–187

    Article  CAS  Google Scholar 

  • Bowen GJ, Liu Z, Vander Zanden HB, Zhao L, Takahasi G (2014) Geographic assignment with stable isotopes in IsoMAP. Methods Ecol Evol 5:201–206

    Article  Google Scholar 

  • Bowen GJ, West JB, Vaughn BH, Dawson TE, Ehleringer JR, Fogel ML, Hobson K, Hoogewerff J, Kendall C, Lai C-T, Miller CC, Noone D, Schwarcz HP, Still CJ (2009) Isoscapes to address large-scale earth science challenges. Eos 90:109–116

    Article  Google Scholar 

  • Bower NW, Getty SR, Smith CP, Simpson ZR, Hoffman JM (2005) Lead isotope analysis of intra-skeletal variation in a 19th century mental asylum cemetery: diagenesis versus migration. Int J Osteoarchaeol 15:360–370

    Article  Google Scholar 

  • Breitenlechner E, Hilber M, Lutz J, Kathrein Y, Unterkircher A, Oeggls K (2010) The impact of mining activities on the environment reflected by pollen, charcoal and geochemical analyses. J Archaeol Sci 37:1458–1467

    Article  Google Scholar 

  • Brems D, Ganio M, Latruwe K, Balcaen L, Carremans M, Gimeno D, Silvestri A, Vanhaecke F, Muchez P, Degryse P (2013) Isotopes on the beach, Part 1: Strontium isotope ratios as provenance indicator for lime as raw materials used in Roman glass-making. Archaeometry 55:214–234

    Article  CAS  Google Scholar 

  • Bullen TD, Kendall C (1998) Tracing of weathering reactions and water flowpaths: a multi-isotope approach. In: Kendall C, Mc Donnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp. 611–646

    Chapter  Google Scholar 

  • Bumsted M (1981) The potential of stable carbon isotopes in bioarchaeological anthropology. In: Martin D, Bumsted M (eds) Biocultural adaptation—comprehensive approach to skeletal analyses. Department of Anthropology Research Reports, Amherst, MA, pp. 108–126

    Google Scholar 

  • Burton JH, Hahn R (2016) Assessing the “local” 87Sr/86Sr ratio for humans. In: Grupe G, McGlynn GC (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 113–121

    Chapter  Google Scholar 

  • Burton JH, Price TD (2013) Seeking the local 87Sr/86Sr ratio to determine geographic origins of humans: no easy answers. In: Armitage RA, Burton JH (eds) Archaeological chemistry VIII. American Chemical Society, Washington, DC, pp. 309–320

    Chapter  Google Scholar 

  • Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82:197–225

    Article  CAS  Google Scholar 

  • Carlson AK (1996) Lead isotope analysis of human bone for addressing cultural affinity: a case study from Rocky Mountain House, Alberta. J Archaeol Sci 23:557–567

    Article  Google Scholar 

  • Caut S, Angulo E, Courchamp F (2008) Discrimination factors (Delta N-15 and Delta C-13) in an omnivorous consumer: effect of diet isotopic ratio. Funct Ecol 2:255–263

    Article  Google Scholar 

  • Chiaradia M, Gallay A, Todt W (2003) Different contamination styles of prehistoric human teeth at a Swiss necropolis (Sion, Valais) inferred from lead and strontium isotopes. Appl Geochem 18:353–370

    Article  CAS  Google Scholar 

  • Crowley BE, Miller JH, Bataille CP (2015) Strontium isotopes (87Sr/86Sr) in terrestrial ecological and palaeoecological research: empirical efforts and recent advances in continental-scale models. Biol Rev. doi:10.1111/brv.12217

    PubMed  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • DeNiro M (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806–809

    Article  CAS  Google Scholar 

  • Drasch GA (1982) Lead burden in prehistorical, historical, and modern human bones. Sci Total Environ 24:99–231

    Article  Google Scholar 

  • Dunlap CE, Steinnes E, Flegal AR (1999) A synthesis of lead isotopes in two millennia of European air. Earth Planet Sci Lett 167:81–88

    Article  CAS  Google Scholar 

  • Durali-Mueller S, Brey GP, Wigg-Wolf D, Lahaye Y (2007) Roman lead mining in Germany: its origin and development through time deduced from lead isotope provenance studies. J Archaeol Sci 34:1555–1567

    Article  Google Scholar 

  • Elias RW, Hirao Y, Patterson CC (1982) The circumvention of natural biopurification of Ca along nutrient pathways by atmospheric inputs of industrial lead. Geochim Cosmochim Acta 46:2561–2580

    Article  CAS  Google Scholar 

  • Ericson J (1985) Strontium isotope characterization in the study of prehistoric human ecology. J Hum Evol 14:503–514

    Article  Google Scholar 

  • Evans JA, Montgomery J, Wildman G, Boulton N (2010) Spatial variations in biosphere 87Sr/86Sr in Britain. J Geol Soc Lond 167:1–4

    Article  CAS  Google Scholar 

  • Fabian D, Fortunato G (2010) Tracing white: a study of lead white pigments found in seventeenth-century paintings using high precision lead isotope abundance ratios. In: Kirby J, Nash S, Cannon J (eds) Trade in artists’ materials: markets and commerce in Europe to 1700. Archetype, London, pp. 426–443

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Faure G (1986) Principles of isotope geology. Wiley, New York

    Google Scholar 

  • Fenner JN, Wright LE (2014) Revisiting the strontium contribution of sea salt in the human diet. J Archaeol Sci 44:99–103

    Article  CAS  Google Scholar 

  • Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon, Oxford

    Google Scholar 

  • Fitch A, Grauer A, Augustine L (2012) Lead isotope ratios: tracking the migration of European-Americans to Grafton, Illinois in the 19th century. Int J Osteoarchaeol 22:305–319

    Article  Google Scholar 

  • Flockhart DTT, Kyser TK, Chipley D, Miller NG, Norris DR (2015) Experimental evidence shows no fractionation of strontium isotopes (87Sr/86Sr) among soil, plants, and herbivores: implications for tracking wildlife and forensic science. Isot Environ Health Stud 51:372–381

    Article  CAS  Google Scholar 

  • Frei KM, Frei R (2011) The geographic distribution of strontium isotopes in Danish surface waters—a base for provenance studies in archaeology, hydrology and agriculture. Appl Geochem 26:326–240

    Article  CAS  Google Scholar 

  • Fricke HC, Clyde WC, O’Neil JR, Gingerich PD (1998) Evidence for rapid climate change in North America during the latest Paleocene thermal maximum oxygen isotope composition of biogenic phosphate from the Bighorn Basin (Wyoming). Earth Planet Sci Lett 160:193–208

    Article  CAS  Google Scholar 

  • Frotzscher M, Borg G, Pernicka E, Höppner B, Lutz J (2007) Lead isotope and trace element patterns of German and Polish Kupferschiefer—a provenance study of bronze artifacts. In: Andrews CJ (ed) Mineral exploration and research: digging deeper. Millpress, Rotterdam, pp. 531–534

    Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer, New York

    Book  Google Scholar 

  • Gillmaier N, Kronseder C, Grupe G, von Carnap-Bornheim C, Söllner F, Schweissing M (2009) The strontium isotope project of the International Sachsensymposion. Beitr Archäozool Prähist Anthropol VII:133–142

    Google Scholar 

  • Grupe G (1991) Anthropogene Schwermetallkonzentration in menschlichen Skelettfunden als Monitor früher Umweltbelastungen. USW-Z Umweltchem Ökotox 3:226–229

    Article  Google Scholar 

  • Grupe G, Harbeck M, McGlynn GC (2015) Prähistorische Anthropologie. Springer, Berlin

    Book  Google Scholar 

  • Grupe G, McGlynn GC (2010) Anthropologische Untersuchung der Skelettfunde von Unterhaching. In: Wamser L (ed) Karfunkelstein und Seide. Neue Schätze aus Bayerns Frühzeit. Pustet, München, pp. 30–39

    Google Scholar 

  • Grupe G, McGlynn GC (eds) (2016) Isotopic landscapes in bioarchaeology. Springer, Berlin

    Google Scholar 

  • Grupe G, Price TD, Schröter P, Söllner F, Johnson CM, Beard BL (1997) Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: a study of southern Bavarian skeletal remains. Appl Geochem 12:517–525

    Article  CAS  Google Scholar 

  • Grupe G, von Carnap-Bornheim C, Becker C (2013) Rise and fall of a medieval trade centre: economic change from Viking Haithabu to medieval Schleswig revealed by stable isotope analysis. Eur J Archaeol 16:137–166

    Article  Google Scholar 

  • Hedman KM, Curry BB, Johnson TM, Fullagar PD, Emerson TE (2009) Variation in strontium isotope ratios of archaeological fauna in the midwestern United States: a preliminary study. J Archaeol Sci 36:64–73

    Article  Google Scholar 

  • Hillson S (1996) Dental anthropology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  PubMed  Google Scholar 

  • Hodell DA, Quinn RL, Brenner M, Kamenov G (2004) Spatial variation of strontium isotopes (87Sr/86Sr) in the Maya region: a tool for tracking ancient human migration. J Archaeol Sci 31:585–601

    Article  Google Scholar 

  • Humer G, Rank D, Stichler W (1995) Niederschlagsisotopennetzwerk Österreich. Monographien des Bundesministeriums für Umwelt, Band 52, Wien

    Google Scholar 

  • Kamenov GD, Gulson BL (2014) The Pb isotopic record of historical to modern human lead exposure. Sci Total Environ 490:861–870

    Article  CAS  PubMed  Google Scholar 

  • Keeley JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15:1021–1035

    Article  CAS  Google Scholar 

  • Keller AT, Regan LA, Lundstrom CC, Bower NW (2016) Evaluation of the efficacy of spatiotemporal Pb isoscapes for provenancing human remains. Forensic Sci Int 261:83–92

    Article  CAS  PubMed  Google Scholar 

  • Kern Z, Kohán B, Leuenberger M (2014) Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain. Atmos Chem Phys 14:1897–1907

    Article  CAS  Google Scholar 

  • Klein S (2007) Dem Euro der Römer auf der Spur—Bleiisotopenanalysen zur Bestimmung der Metallherkunft römischer Münzen. In: Wagner GA (ed) Einführung in die Archäometrie. Springer, Berlin, pp. 143–152

    Google Scholar 

  • Kohn MJ (1996) Predicting animal δ18O. Accounting for diet and physiological adaptation. Geochim Cosmochim Acta 60:4811–4829

    Article  CAS  Google Scholar 

  • Kylander ME, Klaminder J, Bindler R, Weiss DJ (2010) Natural lead isotope variations in the atmosphere. Earth Planet Sci Lett 290:44–53

    Article  CAS  Google Scholar 

  • Ling J, Stos-Gale Z, Grandin L, Billström K, Hjärthner-Holdar E, Persson P-O (2014) Moving metals II: provenancing Scandinavian Bronze Age artefacts by lead isotope and elemental analysis. J Archaeol Sci 41:106–132

    Article  CAS  Google Scholar 

  • Longinelli A, Nuti S (1973) Revised phosphate-water isotopic temperature scale. Earth Planet Sci Lett 19:373–376

    Article  CAS  Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88

    Article  CAS  Google Scholar 

  • Luz B, Kolodny Y (1985) Oxygen isotope variation in phosphate of biogenic apatites IV. Mammal teeth and bones. Earth Planet Sci Lett 75:29–36

    Article  CAS  Google Scholar 

  • Luz B, Kolodny Y (1989) Oxygen isotope variation in bone phosphate. Appl Geochem 4:317–323

    Article  CAS  Google Scholar 

  • Mauder M, Ntoutsi E, Kröger P, Kriegel H-P (2016) Towards predicting places of origin from isotopic fingerprints—A case study on the mobility of people in the Central European Alps. In: Grupe G, McGlynn G (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 219–231

    Google Scholar 

  • Mauder M, Ntoutsi E, Kröger P, Kriegel H-P (2017) The isotopic fingerprint: new methods of data mining and similarity search. In: Grupe G et al (eds) Across the Alps in prehistory: isotopic mapping of the Brenner passage by bioarchaeology. Springer, Cham, pp. 105–125

    Google Scholar 

  • Maurer A-F, Galer SJG, Knipper C, Beierlein I, Nunn EV, Peters D, Tütken T, Alt KW, Schöne BR (2012) Bioavailable 87Sr/86Sr in different environmental samples. Effects of anthropogenic contamination and implications for isoscapes in past migration studies. Sci Total Environ 433:216–229

    Article  CAS  PubMed  Google Scholar 

  • Meiggs DC (2007) Visualizing the seasonal round: a theoretical experiment with strontium isotope profiles in ovicaprine teeth. Anthropozoologica 42:107–127

    Google Scholar 

  • Molleson TI, Eldridge D, Gale N (1986) Identification of lead sources by stable isotope ratios in bones and lead from Poundbury Camp, Dorset. Oxford J Archaeol 5:249–253

    Article  Google Scholar 

  • Montgomery J, Evans JA, Horstwood MSA (2010) Evidence for long-term averaging of strontium in bovine enamel using TIMS and LA-MC-ICP-MS strontium intra-molar profiles. Environ Archaeol 15:32–42

    Article  Google Scholar 

  • Montgomery J, Evans JA, Powlesland D, Roberts CA (2005) Continuity or colonization in Anglo-Saxon England? Isotope evidence for mobility, subsistence practice, and status at West Heslerton. Am J Phys Anthrop 126:123–138

    Article  PubMed  Google Scholar 

  • Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    Article  CAS  Google Scholar 

  • Müller W, Fricke H, Halliday AN, McCulloch MT, Wartho J-A (2003) Origin and migration of the Alpine Iceman. Science 302:862–866

    Article  PubMed  CAS  Google Scholar 

  • Nafplioti A (2011) Tracing population mobility in the Aegean using isotope geochemistry: a first map of locally bioavailable 87Sr/86Sr signatures. J Archaeol Sci 38:1560–1570

    Article  Google Scholar 

  • Norr L (1984) Prehistoric subsistence and health status of coastal peoples from the Panamanian Isthmus of lower Central America. In: Cohen M, Armelagos G (eds) Paleopathology at the origins of Agriculture. Academic Press, Orlando, FL, pp. 463–480

    Google Scholar 

  • Pardo LH, Nadelhoffer KJ (2010) Using nitrogen isotope ratios to assess terrestrial ecosystems at regional and global scales. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes. Understanding movement, pattern, and process on earth through isotope mapping. Springer, Dordrecht, pp. 221–249

    Google Scholar 

  • Passey BH, Robinson TF, Ayliffe LK, Cerling TE, Sponheimer M, Dearing MD, Roeder BL, Ehleringer JR (2005) Carbon isotope fractionation between diet, breath CO2, and bioapatite in mammals. J Archaeol Sci 32:1459–1470

    Article  Google Scholar 

  • Pate FD (1994) Bone chemistry and paleodiet. J Archaeol Method Theory 1:161–209

    Article  Google Scholar 

  • Peroos S, Du Z, de Leeuw NH (2006) A computer modeling study of the uptake, structure and distribution of carbonate defects in hydroxyapatite. Biomaterials 27:2150–2161

    Article  CAS  PubMed  Google Scholar 

  • Persikov AV, Ramshaw JAM, Kirkpatrick A, Brodsky B (2000) Amino acid propensities for the collagen triple-helix. Biochemistry 39:14960–14967

    Article  CAS  PubMed  Google Scholar 

  • Petzke KJ, Fuller BT, Metges CC (2010) Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status. Curr Opin Clin Nutr Metab Care 13:532–540

    Article  CAS  PubMed  Google Scholar 

  • Porcelli D, Baskaran M (2012) An overview of isotope geochemistry in environmental studies. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Berlin, pp. 11–32

    Chapter  Google Scholar 

  • Porder S, Paytan A, Hadly EA (2003) Mapping the origin of faunal assemblages using strontium isotopes. Palaeobiology 29:197–201

    Article  Google Scholar 

  • Price TD, Burton JH, Bentley RA (2002) The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44:117–135

    Article  CAS  Google Scholar 

  • Price TD, Gestsdóttir H (2006) The first settlers of Iceland: an isotopic approach to colonization. Antiquity 80:130–144

    Article  Google Scholar 

  • Privat KL, O’Connell TC, Hedges REM (2007) The distinction between freshwater- and terrestrial-based diets: methodological concerns and archaeological applications of sulphur stable isotope analysis. J Archaeol Sci 34:1197–1204

    Article  Google Scholar 

  • Pucéat E, Joachimski MM, Bouilloux A, Monna F, Bonin A, Motreuil S, Morinière P, Hénard S, Mourin J, Dera G, Quesna D (2010) Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth Planet Sci Lett 298:135–142

    Article  CAS  Google Scholar 

  • Reimann C, Flem B, Fabian K, Birke M, Ladenberger A, Négrel P, Demetriades A, Hoogewerff J, The GEMAS Project Team (2012) Lead and lead isotopes in agricultural soils of Europe—the continental perspective. Appl Geochem 27:532–542

    Article  CAS  Google Scholar 

  • Reynard LM, Hedges REM (2008) Stable hydrogen isotopes in bone collagen in palaeodietary and palaeoenvironmental reconstruction. J Archaeol Sci 35:1934–1942

    Article  Google Scholar 

  • Richards MP, Fuller BT, Hedges REM (2001) Sulphur isotopic variation in ancient bone collagen from Europe: implications for human palaeodiet, residence mobility, and modern pollutant studies. Earth Planet Sci Lett 191:185–190

    Article  CAS  Google Scholar 

  • Schmahl WW, Kocis B, Toncala A, Wycisk D, Metzner-Nebelsick M, Grupe G (2017) The crystalline state of archaeological bone material. In: Grupe G et al (eds) Across the Alps in prehistory: isotopic mapping of the Brenner passage by bioarchaeology. Springer, Cham, pp. 75–104

    Google Scholar 

  • Schoeninger MJ, DeNiro M, Tauber H (1983) Stable nitrogen isotope ratios of bone collagen reflects marine and terrestrial components of prehistoric human diet. Science 220:1380–1383

    Article  Google Scholar 

  • Schwarcz HP, Melbye J, Katzenberg MA, Knyf M (1985) Stable isotopes in human skeletons of southern Ontario: reconstructing paleodiet. J Archaeol Sci 12:187–206

    Article  Google Scholar 

  • Shemesh A, Kolodny Y, Luz B (1983) Oxygen isotope variations in phosphate of biogenic apatites. II. Phosphorite rocks. Earth Planet Sci Lett 64:405–416

    Article  CAS  Google Scholar 

  • Shemesh A, Kolodny Y, Luz B (1988) Isotope geochemistry of oxygen and carbon in phosphate and carbonate phosphorite francolite. Geochim Cosmochim Acta 52:2565–2572

    Article  CAS  Google Scholar 

  • Shotyk W, Cheburkin AK, Appleby P, Fankhauser A, Kramers JD (1996) Two thousand years of atmospheric arsenic, antimony, and lead deposition recovered in ombrotrophic peat bog profile, Jura mountains, Switzerland. Earth Planet Sci Lett 145:E1–E7

    Article  Google Scholar 

  • Sillen A, Hall G, Richardson S, Armstrong R (1998) 87Sr/86Sr ratios in modern and fossil foodwebs of the Sterkfontein valley: implications for early hominid habitat preference. Geochim Cosmochim Acta 62:2463–2478

    Article  CAS  Google Scholar 

  • Slovak NM, Paytan A (2012) Applications of Sr isotopes in archaeology. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Berlin, pp. 743–768

    Chapter  Google Scholar 

  • Smith DR, Osterloh JD, Flegal AR (1996) Use of endogenous, stable lead isotopes to determine the release of lead from the skeleton. Environ Health 104:60–66

    CAS  Google Scholar 

  • Söllner F, Toncala A, Hölzl S, Grupe G (2016) Determination of geo-dependent bioavailable 87Sr/86Sr isotopic ratios for archaeological sites from the Inn Valley (Austria): a model calculation. In: Grupe G, McGlynn GC (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 123–140

    Chapter  Google Scholar 

  • Still CJ, Powell RL (2010) Continental-scale distributions of vegetation stable carbon isotope ratios. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes. Understanding movement, pattern, and process on earth through isotope mapping. Springer, Dordrecht, pp. 179–193

    Google Scholar 

  • Stos-Gale ZA (1993) Lead isotope provenance studies—do they work? Archaeolog Polona 31:149–180

    Google Scholar 

  • Stos-Gale ZA, Gale NH (2009) Metal provenancing using isotopes and the Oxford archaeological lead isotope database (OXALID). Archaeol Anthrop Sci 1:195–213

    Article  Google Scholar 

  • Thornton I, Abrahams P (1984) Historical records of metal pollution in the environment. In: Nriagu JO (ed) Changing metal cycles and human health. Springer, Berlin, pp. 7–25

    Chapter  Google Scholar 

  • Toncala A, Söllner F, Hölzl S, Mayr C, Heck K, Wycisk D, Grupe G (2017) Isotopic map of the Inn-Eisack-Etsch-Brenner passage. In: Grupe G (eds) Across the Alps in prehistory: isotopic mapping of the Brenner passage by bioarchaeology. Springer, Cham, pp. 127–227

    Google Scholar 

  • Trueman CN, Privat K, Field J (2008) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol 266:160–167

    Article  Google Scholar 

  • Turner BL, Kamenov GD, Kingston JD, Armelagos GJ (2009) Insights into immigration and social class at Macchu Picchu, Peru based on oxygen, strontium, and lead isotopic analysis. J Archaeol Sci 36:317–332

    Article  Google Scholar 

  • Villa IM (2016) Provenancing bronze: exclusion, inclusion, uniqueness, and Occam’s razor. In: Grupe G, McGlynn GC (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 141–154

    Chapter  Google Scholar 

  • Vitvar T, Aggarwal PK, Herczeg AL (2007) Global network is launched to monitor isotopes in rivers. Eos 88:325–326

    Article  Google Scholar 

  • Voerkelius S, Lorenz GD, Rummel S, Quétel CR, Heiss G, Baxter M, Brach-Papa C, Deters-Itzelberger P, Hölzl S, Hoogewerff J, Ponzevera E, VanBocxstaele M, Ueckermann H (2010) Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chem 118:993–940

    Article  CAS  Google Scholar 

  • Vogel J, van der Merwe N (1977) Isotopic evidence for early maize cultivation in New York State. Am Antiq 42:238–242

    Article  CAS  Google Scholar 

  • Waldron T (1988) The heavy metal burden in ancient societies. In: Grupe G, Herrmann B (eds) Trace elements in environmental history. Springer, Berlin, pp. 125–133

    Chapter  Google Scholar 

  • Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298

    Article  CAS  Google Scholar 

  • West JB, Bowen GJ, Dawson TE, Tu KP (eds) (2010a) Isoscapes. Understanding movement, pattern, and process on earth through isotope mapping. Springer, Dordrecht

    Google Scholar 

  • West JB, Bowen GJ, Dawson TE (2010b) Preface: Context and background for the topic and book. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes. Understanding movement, pattern, and process on earth through isotope mapping. Springer, Dordrecht, pp v–xi

    Google Scholar 

  • Willmes M, McMorrow L, Kinsley L, Armstrong R, Aubert M, Eggins S, Falguères C, Maureille B, Moffat I, Grün R (2014) The IRHUM (Isotopic Reconstruction of Human Migration) database—bioavailable strontium isotope ratios for geochemical fingerprinting in France. Earth Sys Sci Data 6:117–122

    Article  Google Scholar 

  • Wright LE (2005) Identifying immigrants to Tikal, Guatemala: defining local variability in strontium isotope ratios of human tooth enamel. J Archaeol Sci 32:555–566

    Article  Google Scholar 

  • Yoshinga J, Yoneda M, Morita M, Suzuki T (1998) Lead in prehistoric, historic, and contemporary Japanese: stable isotopic study by ICP mass spectrometry. Appl Geochem 13:403–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisela Grupe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Grupe, G., Hölzl, S., Mayr, C., Söllner, F. (2017). The Concept of Isotopic Landscapes: Modern Ecogeochemistry versus Bioarchaeology. In: Grupe, G., Grigat, A., McGlynn, G. (eds) Across the Alps in Prehistory. Springer, Cham. https://doi.org/10.1007/978-3-319-41550-5_2

Download citation

Publish with us

Policies and ethics