The Concept of Isotopic Landscapes: Modern Ecogeochemistry versus Bioarchaeology



The term “isotopic landscape” or “isoscape” is used to indicate a map depicting isotopic variation in the environment. The spatial distribution of isotopic ratios in environmental samples is an indispensable prerequisite for generating an isotopic landscape yet represents more than simply an assessment of this distribution. An isotopic landscape also includes the fundamental parameters of prediction and modelling, thus providing estimated isotopic signatures at sites for which no values are known. When calibrated, such models are very helpful in assessing the origin of geological and biological materials. Reconstructing the place of origin of primarily non-local archaeological finds is a major topic in bioarchaeology because it gives clues to major driving forces for population development through time such as mobility, migration, and trade. These are fundamental aspects of the past human behaviour. For decades, stable isotope analysis has been the method of choice, but still has its limitations. Bioarchaeological sciences have adopted “isoscapes” mainly as a term, but not as a contextual concept.

This chapter briefly introduces the research substrate of bioarchaeology, which mainly consists of human and animal skeletal finds, provides a concise overview of selected stable isotopic ratios in these remains, and explains their research potential for migration research. State of the art in bioarchaeology, including efforts towards the generation of predictive models, is discussed within the framework of existing isotopic maps and landscapes relevant to bioarchaeology. The persisting challenges in this field of research, which gave rise to research efforts summarized in this book, are also addressed.


Stable Isotope Isotopic Ratio International Atomic Energy Agency Isotopic Signature Lead Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Åberg G, Fosse G, Stray H (1998) Man, nutrition and mobility: a comparison of teeth and bone from the medieval era and the present from Pb and Sr isotopes. Sci Total Environ 224:109–119PubMedCrossRefGoogle Scholar
  2. Aggarwal PK, Araguás-Araguás LJ, Groening M, Kulkarni KM, Kurttas T, Newman BD, Vitvar T (2010) Global hydrological isotope data and data networks. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes. Understanding movement, pattern, and process on earth through isotope mapping. Springer, Dordrecht, pp. 33–50Google Scholar
  3. Albarède F, Desaulty A-M, Blichert-Toft J (2012) A geological perspective on the use of Pb isotopes in archaeometry. Archaeometry 54:853–867CrossRefGoogle Scholar
  4. Alföldi-Rosenbaum E (1984) Das Kochbuch der Römer. Rezepte aus der “Kochkunst” des Apicius. 7. Aufl. Artemis & Winkler, ZürichGoogle Scholar
  5. Andersson PS, Wasserburg GJ, Ingri J (1992) The sources and transport of Sr and Nd isotopes in the Baltic Sea. Earth Planet Sci Lett 113:459–472CrossRefGoogle Scholar
  6. Bataille CP, Bowen GJ (2012) Mapping 87Sr/86Sr variations in bedrock and water for large scale provenance studies. Chem Geol 304/305:39–52CrossRefGoogle Scholar
  7. Bataille CP, Brennan SR, Hartmann J, Moosdorf N, Wooller MJ, Bowen GJ (2014) A geostatistical framework for predicting variability in strontium concentrations and isotope ratios in Alaskan rivers. Chem Geol 389:1–15CrossRefGoogle Scholar
  8. Beard BI, Johnson CM (2000) Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals. J Forensic Sci 45:1049–1061PubMedCrossRefGoogle Scholar
  9. Ben-David M, Flaherty EA (2012) Stable isotopes in mammalian research: a beginner’s guide. J Mammal 93:312–328CrossRefGoogle Scholar
  10. Bentley RA (2006) Strontium isotopes from the earth to the archaeological skeleton: a review. J Archaeol Method Theory 13:135–187CrossRefGoogle Scholar
  11. Berna F, Matthews A, Weiner S (2004) Solubilities of bone mineral from archaeological sites: the recrystallization window. J Archaeol Sci 31:867–882CrossRefGoogle Scholar
  12. Bollhöfer A, Rosman KJR (2001) Isotopic source signatures for atmospheric lead: the Northern Hemisphere. Geochim Cosmochim Acta 65:1727–1740CrossRefGoogle Scholar
  13. Bowen GJ (2010) Isoscapes: spatial pattern in isotopic biogeochemistry. Annu Rev Earth Planet Sci 38:161–187CrossRefGoogle Scholar
  14. Bowen GJ, Liu Z, Vander Zanden HB, Zhao L, Takahasi G (2014) Geographic assignment with stable isotopes in IsoMAP. Methods Ecol Evol 5:201–206CrossRefGoogle Scholar
  15. Bowen GJ, West JB, Vaughn BH, Dawson TE, Ehleringer JR, Fogel ML, Hobson K, Hoogewerff J, Kendall C, Lai C-T, Miller CC, Noone D, Schwarcz HP, Still CJ (2009) Isoscapes to address large-scale earth science challenges. Eos 90:109–116CrossRefGoogle Scholar
  16. Bower NW, Getty SR, Smith CP, Simpson ZR, Hoffman JM (2005) Lead isotope analysis of intra-skeletal variation in a 19th century mental asylum cemetery: diagenesis versus migration. Int J Osteoarchaeol 15:360–370CrossRefGoogle Scholar
  17. Breitenlechner E, Hilber M, Lutz J, Kathrein Y, Unterkircher A, Oeggls K (2010) The impact of mining activities on the environment reflected by pollen, charcoal and geochemical analyses. J Archaeol Sci 37:1458–1467CrossRefGoogle Scholar
  18. Brems D, Ganio M, Latruwe K, Balcaen L, Carremans M, Gimeno D, Silvestri A, Vanhaecke F, Muchez P, Degryse P (2013) Isotopes on the beach, Part 1: Strontium isotope ratios as provenance indicator for lime as raw materials used in Roman glass-making. Archaeometry 55:214–234CrossRefGoogle Scholar
  19. Bullen TD, Kendall C (1998) Tracing of weathering reactions and water flowpaths: a multi-isotope approach. In: Kendall C, Mc Donnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp. 611–646CrossRefGoogle Scholar
  20. Bumsted M (1981) The potential of stable carbon isotopes in bioarchaeological anthropology. In: Martin D, Bumsted M (eds) Biocultural adaptation—comprehensive approach to skeletal analyses. Department of Anthropology Research Reports, Amherst, MA, pp. 108–126Google Scholar
  21. Burton JH, Hahn R (2016) Assessing the “local” 87Sr/86Sr ratio for humans. In: Grupe G, McGlynn GC (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 113–121CrossRefGoogle Scholar
  22. Burton JH, Price TD (2013) Seeking the local 87Sr/86Sr ratio to determine geographic origins of humans: no easy answers. In: Armitage RA, Burton JH (eds) Archaeological chemistry VIII. American Chemical Society, Washington, DC, pp. 309–320CrossRefGoogle Scholar
  23. Capo RC, Stewart BW, Chadwick OA (1998) Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82:197–225CrossRefGoogle Scholar
  24. Carlson AK (1996) Lead isotope analysis of human bone for addressing cultural affinity: a case study from Rocky Mountain House, Alberta. J Archaeol Sci 23:557–567CrossRefGoogle Scholar
  25. Caut S, Angulo E, Courchamp F (2008) Discrimination factors (Delta N-15 and Delta C-13) in an omnivorous consumer: effect of diet isotopic ratio. Funct Ecol 2:255–263CrossRefGoogle Scholar
  26. Chiaradia M, Gallay A, Todt W (2003) Different contamination styles of prehistoric human teeth at a Swiss necropolis (Sion, Valais) inferred from lead and strontium isotopes. Appl Geochem 18:353–370CrossRefGoogle Scholar
  27. Crowley BE, Miller JH, Bataille CP (2015) Strontium isotopes (87Sr/86Sr) in terrestrial ecological and palaeoecological research: empirical efforts and recent advances in continental-scale models. Biol Rev. doi: 10.1111/brv.12217 PubMedGoogle Scholar
  28. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  29. DeNiro M (1985) Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806–809CrossRefGoogle Scholar
  30. Drasch GA (1982) Lead burden in prehistorical, historical, and modern human bones. Sci Total Environ 24:99–231CrossRefGoogle Scholar
  31. Dunlap CE, Steinnes E, Flegal AR (1999) A synthesis of lead isotopes in two millennia of European air. Earth Planet Sci Lett 167:81–88CrossRefGoogle Scholar
  32. Durali-Mueller S, Brey GP, Wigg-Wolf D, Lahaye Y (2007) Roman lead mining in Germany: its origin and development through time deduced from lead isotope provenance studies. J Archaeol Sci 34:1555–1567CrossRefGoogle Scholar
  33. Elias RW, Hirao Y, Patterson CC (1982) The circumvention of natural biopurification of Ca along nutrient pathways by atmospheric inputs of industrial lead. Geochim Cosmochim Acta 46:2561–2580CrossRefGoogle Scholar
  34. Ericson J (1985) Strontium isotope characterization in the study of prehistoric human ecology. J Hum Evol 14:503–514CrossRefGoogle Scholar
  35. Evans JA, Montgomery J, Wildman G, Boulton N (2010) Spatial variations in biosphere 87Sr/86Sr in Britain. J Geol Soc Lond 167:1–4CrossRefGoogle Scholar
  36. Fabian D, Fortunato G (2010) Tracing white: a study of lead white pigments found in seventeenth-century paintings using high precision lead isotope abundance ratios. In: Kirby J, Nash S, Cannon J (eds) Trade in artists’ materials: markets and commerce in Europe to 1700. Archetype, London, pp. 426–443Google Scholar
  37. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537CrossRefGoogle Scholar
  38. Faure G (1986) Principles of isotope geology. Wiley, New YorkGoogle Scholar
  39. Fenner JN, Wright LE (2014) Revisiting the strontium contribution of sea salt in the human diet. J Archaeol Sci 44:99–103CrossRefGoogle Scholar
  40. Fergusson JE (1990) The heavy elements: chemistry, environmental impact and health effects. Pergamon, OxfordGoogle Scholar
  41. Fitch A, Grauer A, Augustine L (2012) Lead isotope ratios: tracking the migration of European-Americans to Grafton, Illinois in the 19th century. Int J Osteoarchaeol 22:305–319CrossRefGoogle Scholar
  42. Flockhart DTT, Kyser TK, Chipley D, Miller NG, Norris DR (2015) Experimental evidence shows no fractionation of strontium isotopes (87Sr/86Sr) among soil, plants, and herbivores: implications for tracking wildlife and forensic science. Isot Environ Health Stud 51:372–381CrossRefGoogle Scholar
  43. Frei KM, Frei R (2011) The geographic distribution of strontium isotopes in Danish surface waters—a base for provenance studies in archaeology, hydrology and agriculture. Appl Geochem 26:326–240CrossRefGoogle Scholar
  44. Fricke HC, Clyde WC, O’Neil JR, Gingerich PD (1998) Evidence for rapid climate change in North America during the latest Paleocene thermal maximum oxygen isotope composition of biogenic phosphate from the Bighorn Basin (Wyoming). Earth Planet Sci Lett 160:193–208CrossRefGoogle Scholar
  45. Frotzscher M, Borg G, Pernicka E, Höppner B, Lutz J (2007) Lead isotope and trace element patterns of German and Polish Kupferschiefer—a provenance study of bronze artifacts. In: Andrews CJ (ed) Mineral exploration and research: digging deeper. Millpress, Rotterdam, pp. 531–534Google Scholar
  46. Fry B (2006) Stable isotope ecology. Springer, New YorkCrossRefGoogle Scholar
  47. Gillmaier N, Kronseder C, Grupe G, von Carnap-Bornheim C, Söllner F, Schweissing M (2009) The strontium isotope project of the International Sachsensymposion. Beitr Archäozool Prähist Anthropol VII:133–142Google Scholar
  48. Grupe G (1991) Anthropogene Schwermetallkonzentration in menschlichen Skelettfunden als Monitor früher Umweltbelastungen. USW-Z Umweltchem Ökotox 3:226–229CrossRefGoogle Scholar
  49. Grupe G, Harbeck M, McGlynn GC (2015) Prähistorische Anthropologie. Springer, BerlinCrossRefGoogle Scholar
  50. Grupe G, McGlynn GC (2010) Anthropologische Untersuchung der Skelettfunde von Unterhaching. In: Wamser L (ed) Karfunkelstein und Seide. Neue Schätze aus Bayerns Frühzeit. Pustet, München, pp. 30–39Google Scholar
  51. Grupe G, McGlynn GC (eds) (2016) Isotopic landscapes in bioarchaeology. Springer, BerlinGoogle Scholar
  52. Grupe G, Price TD, Schröter P, Söllner F, Johnson CM, Beard BL (1997) Mobility of Bell Beaker people revealed by strontium isotope ratios of tooth and bone: a study of southern Bavarian skeletal remains. Appl Geochem 12:517–525CrossRefGoogle Scholar
  53. Grupe G, von Carnap-Bornheim C, Becker C (2013) Rise and fall of a medieval trade centre: economic change from Viking Haithabu to medieval Schleswig revealed by stable isotope analysis. Eur J Archaeol 16:137–166CrossRefGoogle Scholar
  54. Hedman KM, Curry BB, Johnson TM, Fullagar PD, Emerson TE (2009) Variation in strontium isotope ratios of archaeological fauna in the midwestern United States: a preliminary study. J Archaeol Sci 36:64–73CrossRefGoogle Scholar
  55. Hillson S (1996) Dental anthropology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  56. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326PubMedCrossRefGoogle Scholar
  57. Hodell DA, Quinn RL, Brenner M, Kamenov G (2004) Spatial variation of strontium isotopes (87Sr/86Sr) in the Maya region: a tool for tracking ancient human migration. J Archaeol Sci 31:585–601CrossRefGoogle Scholar
  58. Humer G, Rank D, Stichler W (1995) Niederschlagsisotopennetzwerk Österreich. Monographien des Bundesministeriums für Umwelt, Band 52, WienGoogle Scholar
  59. Kamenov GD, Gulson BL (2014) The Pb isotopic record of historical to modern human lead exposure. Sci Total Environ 490:861–870PubMedCrossRefGoogle Scholar
  60. Keeley JE, Sandquist DR (1992) Carbon: freshwater plants. Plant Cell Environ 15:1021–1035CrossRefGoogle Scholar
  61. Keller AT, Regan LA, Lundstrom CC, Bower NW (2016) Evaluation of the efficacy of spatiotemporal Pb isoscapes for provenancing human remains. Forensic Sci Int 261:83–92PubMedCrossRefGoogle Scholar
  62. Kern Z, Kohán B, Leuenberger M (2014) Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain. Atmos Chem Phys 14:1897–1907CrossRefGoogle Scholar
  63. Klein S (2007) Dem Euro der Römer auf der Spur—Bleiisotopenanalysen zur Bestimmung der Metallherkunft römischer Münzen. In: Wagner GA (ed) Einführung in die Archäometrie. Springer, Berlin, pp. 143–152Google Scholar
  64. Kohn MJ (1996) Predicting animal δ18O. Accounting for diet and physiological adaptation. Geochim Cosmochim Acta 60:4811–4829CrossRefGoogle Scholar
  65. Kylander ME, Klaminder J, Bindler R, Weiss DJ (2010) Natural lead isotope variations in the atmosphere. Earth Planet Sci Lett 290:44–53CrossRefGoogle Scholar
  66. Ling J, Stos-Gale Z, Grandin L, Billström K, Hjärthner-Holdar E, Persson P-O (2014) Moving metals II: provenancing Scandinavian Bronze Age artefacts by lead isotope and elemental analysis. J Archaeol Sci 41:106–132CrossRefGoogle Scholar
  67. Longinelli A, Nuti S (1973) Revised phosphate-water isotopic temperature scale. Earth Planet Sci Lett 19:373–376CrossRefGoogle Scholar
  68. Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88CrossRefGoogle Scholar
  69. Luz B, Kolodny Y (1985) Oxygen isotope variation in phosphate of biogenic apatites IV. Mammal teeth and bones. Earth Planet Sci Lett 75:29–36CrossRefGoogle Scholar
  70. Luz B, Kolodny Y (1989) Oxygen isotope variation in bone phosphate. Appl Geochem 4:317–323CrossRefGoogle Scholar
  71. Mauder M, Ntoutsi E, Kröger P, Kriegel H-P (2016) Towards predicting places of origin from isotopic fingerprints—A case study on the mobility of people in the Central European Alps. In: Grupe G, McGlynn G (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 219–231Google Scholar
  72. Mauder M, Ntoutsi E, Kröger P, Kriegel H-P (2017) The isotopic fingerprint: new methods of data mining and similarity search. In: Grupe G et al (eds) Across the Alps in prehistory: isotopic mapping of the Brenner passage by bioarchaeology. Springer, Cham, pp. 105–125Google Scholar
  73. Maurer A-F, Galer SJG, Knipper C, Beierlein I, Nunn EV, Peters D, Tütken T, Alt KW, Schöne BR (2012) Bioavailable 87Sr/86Sr in different environmental samples. Effects of anthropogenic contamination and implications for isoscapes in past migration studies. Sci Total Environ 433:216–229PubMedCrossRefGoogle Scholar
  74. Meiggs DC (2007) Visualizing the seasonal round: a theoretical experiment with strontium isotope profiles in ovicaprine teeth. Anthropozoologica 42:107–127Google Scholar
  75. Molleson TI, Eldridge D, Gale N (1986) Identification of lead sources by stable isotope ratios in bones and lead from Poundbury Camp, Dorset. Oxford J Archaeol 5:249–253CrossRefGoogle Scholar
  76. Montgomery J, Evans JA, Horstwood MSA (2010) Evidence for long-term averaging of strontium in bovine enamel using TIMS and LA-MC-ICP-MS strontium intra-molar profiles. Environ Archaeol 15:32–42CrossRefGoogle Scholar
  77. Montgomery J, Evans JA, Powlesland D, Roberts CA (2005) Continuity or colonization in Anglo-Saxon England? Isotope evidence for mobility, subsistence practice, and status at West Heslerton. Am J Phys Anthrop 126:123–138PubMedCrossRefGoogle Scholar
  78. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176CrossRefGoogle Scholar
  79. Müller W, Fricke H, Halliday AN, McCulloch MT, Wartho J-A (2003) Origin and migration of the Alpine Iceman. Science 302:862–866PubMedCrossRefGoogle Scholar
  80. Nafplioti A (2011) Tracing population mobility in the Aegean using isotope geochemistry: a first map of locally bioavailable 87Sr/86Sr signatures. J Archaeol Sci 38:1560–1570CrossRefGoogle Scholar
  81. Norr L (1984) Prehistoric subsistence and health status of coastal peoples from the Panamanian Isthmus of lower Central America. In: Cohen M, Armelagos G (eds) Paleopathology at the origins of Agriculture. Academic Press, Orlando, FL, pp. 463–480Google Scholar
  82. Pardo LH, Nadelhoffer KJ (2010) Using nitrogen isotope ratios to assess terrestrial ecosystems at regional and global scales. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes. Understanding movement, pattern, and process on earth through isotope mapping. Springer, Dordrecht, pp. 221–249Google Scholar
  83. Passey BH, Robinson TF, Ayliffe LK, Cerling TE, Sponheimer M, Dearing MD, Roeder BL, Ehleringer JR (2005) Carbon isotope fractionation between diet, breath CO2, and bioapatite in mammals. J Archaeol Sci 32:1459–1470CrossRefGoogle Scholar
  84. Pate FD (1994) Bone chemistry and paleodiet. J Archaeol Method Theory 1:161–209CrossRefGoogle Scholar
  85. Peroos S, Du Z, de Leeuw NH (2006) A computer modeling study of the uptake, structure and distribution of carbonate defects in hydroxyapatite. Biomaterials 27:2150–2161PubMedCrossRefGoogle Scholar
  86. Persikov AV, Ramshaw JAM, Kirkpatrick A, Brodsky B (2000) Amino acid propensities for the collagen triple-helix. Biochemistry 39:14960–14967PubMedCrossRefGoogle Scholar
  87. Petzke KJ, Fuller BT, Metges CC (2010) Advances in natural stable isotope ratio analysis of human hair to determine nutritional and metabolic status. Curr Opin Clin Nutr Metab Care 13:532–540PubMedCrossRefGoogle Scholar
  88. Porcelli D, Baskaran M (2012) An overview of isotope geochemistry in environmental studies. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Berlin, pp. 11–32CrossRefGoogle Scholar
  89. Porder S, Paytan A, Hadly EA (2003) Mapping the origin of faunal assemblages using strontium isotopes. Palaeobiology 29:197–201CrossRefGoogle Scholar
  90. Price TD, Burton JH, Bentley RA (2002) The characterization of biologically available strontium isotope ratios for the study of prehistoric migration. Archaeometry 44:117–135CrossRefGoogle Scholar
  91. Price TD, Gestsdóttir H (2006) The first settlers of Iceland: an isotopic approach to colonization. Antiquity 80:130–144CrossRefGoogle Scholar
  92. Privat KL, O’Connell TC, Hedges REM (2007) The distinction between freshwater- and terrestrial-based diets: methodological concerns and archaeological applications of sulphur stable isotope analysis. J Archaeol Sci 34:1197–1204CrossRefGoogle Scholar
  93. Pucéat E, Joachimski MM, Bouilloux A, Monna F, Bonin A, Motreuil S, Morinière P, Hénard S, Mourin J, Dera G, Quesna D (2010) Revised phosphate-water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth Planet Sci Lett 298:135–142CrossRefGoogle Scholar
  94. Reimann C, Flem B, Fabian K, Birke M, Ladenberger A, Négrel P, Demetriades A, Hoogewerff J, The GEMAS Project Team (2012) Lead and lead isotopes in agricultural soils of Europe—the continental perspective. Appl Geochem 27:532–542CrossRefGoogle Scholar
  95. Reynard LM, Hedges REM (2008) Stable hydrogen isotopes in bone collagen in palaeodietary and palaeoenvironmental reconstruction. J Archaeol Sci 35:1934–1942CrossRefGoogle Scholar
  96. Richards MP, Fuller BT, Hedges REM (2001) Sulphur isotopic variation in ancient bone collagen from Europe: implications for human palaeodiet, residence mobility, and modern pollutant studies. Earth Planet Sci Lett 191:185–190CrossRefGoogle Scholar
  97. Schmahl WW, Kocis B, Toncala A, Wycisk D, Metzner-Nebelsick M, Grupe G (2017) The crystalline state of archaeological bone material. In: Grupe G et al (eds) Across the Alps in prehistory: isotopic mapping of the Brenner passage by bioarchaeology. Springer, Cham, pp. 75–104Google Scholar
  98. Schoeninger MJ, DeNiro M, Tauber H (1983) Stable nitrogen isotope ratios of bone collagen reflects marine and terrestrial components of prehistoric human diet. Science 220:1380–1383CrossRefGoogle Scholar
  99. Schwarcz HP, Melbye J, Katzenberg MA, Knyf M (1985) Stable isotopes in human skeletons of southern Ontario: reconstructing paleodiet. J Archaeol Sci 12:187–206CrossRefGoogle Scholar
  100. Shemesh A, Kolodny Y, Luz B (1983) Oxygen isotope variations in phosphate of biogenic apatites. II. Phosphorite rocks. Earth Planet Sci Lett 64:405–416CrossRefGoogle Scholar
  101. Shemesh A, Kolodny Y, Luz B (1988) Isotope geochemistry of oxygen and carbon in phosphate and carbonate phosphorite francolite. Geochim Cosmochim Acta 52:2565–2572CrossRefGoogle Scholar
  102. Shotyk W, Cheburkin AK, Appleby P, Fankhauser A, Kramers JD (1996) Two thousand years of atmospheric arsenic, antimony, and lead deposition recovered in ombrotrophic peat bog profile, Jura mountains, Switzerland. Earth Planet Sci Lett 145:E1–E7CrossRefGoogle Scholar
  103. Sillen A, Hall G, Richardson S, Armstrong R (1998) 87Sr/86Sr ratios in modern and fossil foodwebs of the Sterkfontein valley: implications for early hominid habitat preference. Geochim Cosmochim Acta 62:2463–2478CrossRefGoogle Scholar
  104. Slovak NM, Paytan A (2012) Applications of Sr isotopes in archaeology. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Berlin, pp. 743–768CrossRefGoogle Scholar
  105. Smith DR, Osterloh JD, Flegal AR (1996) Use of endogenous, stable lead isotopes to determine the release of lead from the skeleton. Environ Health 104:60–66Google Scholar
  106. Söllner F, Toncala A, Hölzl S, Grupe G (2016) Determination of geo-dependent bioavailable 87Sr/86Sr isotopic ratios for archaeological sites from the Inn Valley (Austria): a model calculation. In: Grupe G, McGlynn GC (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 123–140CrossRefGoogle Scholar
  107. Still CJ, Powell RL (2010) Continental-scale distributions of vegetation stable carbon isotope ratios. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes. Understanding movement, pattern, and process on earth through isotope mapping. Springer, Dordrecht, pp. 179–193Google Scholar
  108. Stos-Gale ZA (1993) Lead isotope provenance studies—do they work? Archaeolog Polona 31:149–180Google Scholar
  109. Stos-Gale ZA, Gale NH (2009) Metal provenancing using isotopes and the Oxford archaeological lead isotope database (OXALID). Archaeol Anthrop Sci 1:195–213CrossRefGoogle Scholar
  110. Thornton I, Abrahams P (1984) Historical records of metal pollution in the environment. In: Nriagu JO (ed) Changing metal cycles and human health. Springer, Berlin, pp. 7–25CrossRefGoogle Scholar
  111. Toncala A, Söllner F, Hölzl S, Mayr C, Heck K, Wycisk D, Grupe G (2017) Isotopic map of the Inn-Eisack-Etsch-Brenner passage. In: Grupe G (eds) Across the Alps in prehistory: isotopic mapping of the Brenner passage by bioarchaeology. Springer, Cham, pp. 127–227Google Scholar
  112. Trueman CN, Privat K, Field J (2008) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol 266:160–167CrossRefGoogle Scholar
  113. Turner BL, Kamenov GD, Kingston JD, Armelagos GJ (2009) Insights into immigration and social class at Macchu Picchu, Peru based on oxygen, strontium, and lead isotopic analysis. J Archaeol Sci 36:317–332CrossRefGoogle Scholar
  114. Villa IM (2016) Provenancing bronze: exclusion, inclusion, uniqueness, and Occam’s razor. In: Grupe G, McGlynn GC (eds) Isotopic landscapes in bioarchaeology. Springer, Berlin, pp. 141–154CrossRefGoogle Scholar
  115. Vitvar T, Aggarwal PK, Herczeg AL (2007) Global network is launched to monitor isotopes in rivers. Eos 88:325–326CrossRefGoogle Scholar
  116. Voerkelius S, Lorenz GD, Rummel S, Quétel CR, Heiss G, Baxter M, Brach-Papa C, Deters-Itzelberger P, Hölzl S, Hoogewerff J, Ponzevera E, VanBocxstaele M, Ueckermann H (2010) Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chem 118:993–940CrossRefGoogle Scholar
  117. Vogel J, van der Merwe N (1977) Isotopic evidence for early maize cultivation in New York State. Am Antiq 42:238–242CrossRefGoogle Scholar
  118. Waldron T (1988) The heavy metal burden in ancient societies. In: Grupe G, Herrmann B (eds) Trace elements in environmental history. Springer, Berlin, pp. 125–133CrossRefGoogle Scholar
  119. Weiner S, Wagner HD (1998) The material bone: structure-mechanical function relations. Annu Rev Mater Sci 28:271–298CrossRefGoogle Scholar
  120. West JB, Bowen GJ, Dawson TE, Tu KP (eds) (2010a) Isoscapes. Understanding movement, pattern, and process on earth through isotope mapping. Springer, DordrechtGoogle Scholar
  121. West JB, Bowen GJ, Dawson TE (2010b) Preface: Context and background for the topic and book. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes. Understanding movement, pattern, and process on earth through isotope mapping. Springer, Dordrecht, pp v–xiGoogle Scholar
  122. Willmes M, McMorrow L, Kinsley L, Armstrong R, Aubert M, Eggins S, Falguères C, Maureille B, Moffat I, Grün R (2014) The IRHUM (Isotopic Reconstruction of Human Migration) database—bioavailable strontium isotope ratios for geochemical fingerprinting in France. Earth Sys Sci Data 6:117–122CrossRefGoogle Scholar
  123. Wright LE (2005) Identifying immigrants to Tikal, Guatemala: defining local variability in strontium isotope ratios of human tooth enamel. J Archaeol Sci 32:555–566CrossRefGoogle Scholar
  124. Yoshinga J, Yoneda M, Morita M, Suzuki T (1998) Lead in prehistoric, historic, and contemporary Japanese: stable isotopic study by ICP mass spectrometry. Appl Geochem 13:403–413CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.BiozentrumLudwig-Maximilians-UniversitätMartinsriedGermany
  2. 2.RieskraterMuseum NördlingenNördlingenGermany
  3. 3.Institut für GeographieFriedrich-Alexander-UniversitätErlangenGermany
  4. 4.GeoBio-Center & Paläontologie und GeobiologieLudwig-Maximilians-UniversitätMunichGermany
  5. 5.Department für Geo- und UmweltwissenschaftenLudwig-Maximilians-UniversitätMunichGermany

Personalised recommendations