Skip to main content

Multifunctional Wings with Flexible Batteries and Solar Cells for Robotic Birds

  • Conference paper
  • First Online:
Challenges in Mechanics of Time Dependent Materials, Volume 2

Abstract

Inspired by nature, Flapping Wing Aerial Vehicles (FWAVs), also known as “robotic birds” use flexible compliant wings that deform while flapping for aerodynamic force generation to achieve flight, just like real birds. However, unlike real birds, these vehicles require an artificial power source, like a battery, which limits flight time depending on how much the FWAV can carry (i.e., the payload) and the energy density of the power source. Previously, we have integrated flexible solar cells into a novel FWAV we developed called “Robo Raven” that has programmable wings capable of flapping independently. With the solar cells, energy is harvested during flight to extend the flight time of the FWAV. Recently, we have begun investigating the use of flexible batteries in the wings. By replacing wing mass with material capable of storing energy, it is possible to further increase the flight time and energy storage potential of the platform. However, we are assessing the effects of replacing the regular wing materials with battery materials on the generation of lift and thrust forces. In this paper, different wing designs were designed, built, and tested and flown with the Robo Raven platform. The aerodynamic forces generated by each wing design were measured using a test stand with a six degree of freedom load cell inside of a wind tunnel to simulate flight conditions. A mass-based multifunctional performance analysis is developed to assess the tradeoffs and benefits of using battery materials in the wings for the platform’s time-of-flight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerdes, J.W., Gupta, S.K., Wilkerson, S.: A review of bird-inspired flapping wing miniature air vehicle designs. ASME J. Mech. Robot. 4(2), 021003 (2012)

    Article  Google Scholar 

  2. Kumar, V., Michael, N.: Opportunities and challenges with autonomous micro aerial vehicles. Int. J. Robot. Res. 31(11), 1279–1291 (2012)

    Article  Google Scholar 

  3. Pines, D.J., Bohorquez, F.: Challenges facing future micro-air-vehicle development. J. Aircraft 43(2), 290–305 (2006)

    Article  Google Scholar 

  4. Sane, S.P., Dickinson, M.H.: The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol. 205, 1087–1096 (2002)

    Google Scholar 

  5. de Croon, G.C.H.E., de Clerq, K.M.E., Ruijsink, R., Remes, B., de Wagter, C.: Design, aerodynamics, and vision-based control of the DelFly. Int. J. Micro Air Veh. 1(2), 71–97 (2009)

    Article  Google Scholar 

  6. Muijres, F.T., Johansson, L.C., Barfield, R., Wolf, M., Spedding, G.R., Hedenstrom, A.: Leading-edge vortex improves lift in slow-flying bats. Science 319, 1250–1253 (2008)

    Article  Google Scholar 

  7. Zhao, L., Huang, Q., Deng, X., Sane, S.: Aerodynamic effects of flexibility in flapping wings. J. R. Soc. Interface 7(44), 485–497 (2010)

    Article  Google Scholar 

  8. Arabagi, V., Hines, L., Sitti, M.: Design and manufacturing of a controllable miniature flapping wing robotic platform. Int. J. Robot. Res. 31(6), 785–800 (2012)

    Article  Google Scholar 

  9. Mahjoubi, H., Byl, K.: Trajectory tracking in the sagittal plane: decoupled lift/thrust control via tunable impedance approach in flapping-wing MAVs. In: IEEE American Control Conference (ACC), 4951–4956 (2013)

    Google Scholar 

  10. Keennon, M., et al.: Development of the nano hummingbird: a tailless flapping wing micro air vehicle. Presented at 50th AIAA Aerospace Sciences Meeting, Nashville, TN, 2012

    Google Scholar 

  11. Pornsin-Sirirak, T., Tai, Y., Ho, C., Keennon, M.: Microbat: a palm-sized electrically powered ornithopter. In: Proceedings of the NASA/JPL Workshop on Biomorphic Robotics, Pasadena, CA, 2001

    Google Scholar 

  12. Mueller, T.J.: Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications. American Institute of Aeronautics and Astronautics, Reston (2001)

    Book  Google Scholar 

  13. Yang, L.J., Hsu, C.K., Ho, J.Y., Feng, C.K.: Flapping wings with PVDF sensors to modify the aerodynamic forces of a micro aerial vehicle. Sensors Actuators A Phys 139(1), 95–103 (2007)

    Article  Google Scholar 

  14. Hsu, C.K., Ho, J.Y., Feng, G.H., Shih, H.M., Yang, L.J.: A flapping MAV with PVDF-parylene composite skin. In: Proceedings of the Asia-Pacific Conference of Transducers and Micro-Nano Technology, 2006

    Google Scholar 

  15. Tsai, B.J., Fu, Y.C.: Design and aerodynamic analysis of a flapping-wing micro aerial vehicle. Aerospace Sci. Technol. 13(7), 383–392 (2009)

    Article  Google Scholar 

  16. Hsu, C.K., Evans, J., Vytla, S., Huang, P.: Development of flapping wing micro air vehicles—design, CFD, experiment and actual flight. In: 48th AIAA Aerospace Sciences Meeting, Orlando, FL, 2010

    Google Scholar 

  17. Cox, A., Monopoli, D., Cveticanin, D., Goldfarb, M., Garcia, E.: The development of elastodynamic components for piezoelectrically actuated flapping micro-air vehicles. J. Intell. Mater. Syst. Struct. 13(9), 611–615 (2002)

    Article  Google Scholar 

  18. Yan, J., Wood, R.J., Avadhanula, S., Sitti, M., Fearing, R.S.: Towards flapping wing control for a micromechanical flying insect. In: Proceedings ICRA. IEEE International Conference on Robotics and Automation, 2001

    Google Scholar 

  19. Fenelon, M.A.A., Furukawa, T.: Design of an active flapping wing mechanism and a micro aerial vehicle using a rotary actuator. Mech. Mach. Theory 45(2), 137–146 (2009)

    Article  MATH  Google Scholar 

  20. Jones, K.D., Bradshaw, C.J., Papadopoulos, J., Platzer, M.F.: Improved performance and control of flapping-wing propelled micro air vehicles. In: Proceedings of the AIAA 42nd Aerospace Sciences Meeting and Exhibit, Reno, NV, 2004

    Google Scholar 

  21. Zdunich, P., Bilyk, D., MacMaster, M., Loewen, D., DeLaurier, J., Kornbluh, R., Low, T., Stanford, S., Holeman, D.: Development and testing of the mentor flapping-wing micro air vehicle. J. Aircraft 44(5), 1701–1711 (2007)

    Article  Google Scholar 

  22. Madangopal, R., Khan, Z., Agrawal, S.: Biologically inspired design of small flapping wing bird vehicles using four-bar mechanisms and quasi-steady aerodynamics. J. Mech. Des. 127(4), 809–816 (2005)

    Article  Google Scholar 

  23. Bejgerowski, W., Ananthanarayanan, A., Mueller, D., Gupta, S.K.: Integrated product and process design for a flapping wing drive-mechanism. J. Mech. Des. 131(6), 061006 (2009)

    Article  Google Scholar 

  24. Mueller, D., Gerdes, J.W., Gupta, S.K. Incorporation of passive wing folding in flapping wing miniature air vehicles. In: ASME Mechanism and Robotics Conference, San Diego, CA, 2009

    Google Scholar 

  25. Bejgerowski, W., Gupta, S.K., Bruck, H.A.: A systematic approach for designing multifunctional thermally conducting polymer structures with embedded actuators. J. Mech. Des. 31(11), 111009 (2009)

    Article  Google Scholar 

  26. Gerdes, J., Holness, A., Perez-Rosado, A., Roberts, L., Greisinger, A.J.G., Barnett, E., Kempny, J., Lingam, D., Yeh, C.H., Bruck, H.A., Gupta, S.K.: Design, manufacturing, and testing of Robo Raven. Advanced Manufacturing Lab Technical Report, University of Maryland, College Park, MD (2014)

    Google Scholar 

  27. Perez-Rosado, A., Griesinger, A.J.G., Bruck, H.A., Gupta, S.K.: Performance characterization of multifunctional wings with integrated solar cells for miniature air vehicles. In: ASME 2014 International Design Engineering Technical and Computers and Information in Engineering Conference, Buffalo, NY, 2014

    Google Scholar 

  28. Gerdes, J.W., Holness, A., Perez-Rosado, A., Roberts, L., Greisinger, A., Barnett, E., Kempny, J., Lingam, D., Yeh, C.H., Bruck, H.A., Gupta, S.K.: Robo Raven: a flapping-wing air vehicle with highly compliant and independently controlled wings. Soft Robot. 1(4), 275–288 (2014)

    Article  Google Scholar 

  29. Nemat-Nasser, S., Plaistead, T., Starr, A., Amirkhizi, A.: Multifunctional materials. In: Bar-Cohen, Y. (ed.) Biomimetics: Biologically Inspired Technologies. CRC Press, Boca Raton (2005)

    Google Scholar 

  30. Thomas, J.P., Qidwai, M.A.: The design and application of multifunctional structure-battery materials systems. JOM 57(3), 18–24 (2005)

    Article  Google Scholar 

  31. Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled flight of a biologically inspired, insect-scale robot. Science 340(6132), 603–607 (2013)

    Article  Google Scholar 

  32. Thomas, J.P., et al. Multifunctional structure-plus-power concepts. In: AIAA, 2005

    Google Scholar 

  33. Wissman, J., Perez-Rosado, A., Edgerton, A., Levi, B.M., Karakas, Z.N., Kujawski, M., Phillips, A., Papavizas, N., Fallon, D., Bruck, H.A., Smela, E.: New compliant strain gauges for self-sensing dynamic deformation of flapping wings on miniature air vehicles. Smart Mater. Struct. 22(8), 085031 (2013)

    Article  Google Scholar 

  34. Gerdes, J.W., Roberts, L., Barnett, E., Kempny, J., Perez-Rosado, A., Bruck, H.A., Gupta, S.K.: Wing performance characterization for flapping wing air vehicles. In: ASME Mechanism and Robotics Conference, Portland, OR, 2013

    Google Scholar 

  35. Peckerar, M., Dilli, Z., Dornajafi, M., Goldsman, N., Ngu, Y., Proctor, R.B., Krupsaw, B.J., Lowy, D.A.: Novel high energy density flexible galvanic cell. Energy Environ. Sci. 4, 1807–1812 (2011)

    Article  Google Scholar 

  36. Mueller, D., Bruck, H.A., Gupta, S.K.: Measurement of thrust and lift forces associated with drag of compliant flapping wing air micro air vehicles using a new test stand design. Exp. Mech. 50(6), 725–735 (2010)

    Article  Google Scholar 

  37. Gerdes, J.W., Cellon, K.C., Bruck, H.A., Gupta, S.K.: Characterization of the mechanics of compliant wing designs for flapping-wing miniature air vehicles. Exp. Mech. 53(9), 1561–1571 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by Dr. Byung-Lip “Les” Lee at AFOSR through grant FA95501510350. Opinions expressed in this paper are those of the authors and do not necessarily reflect opinions of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh A. Bruck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Holness, A.E., Perez-Rosado, A., Bruck, H.A., Peckerar, M., Gupta, S.K. (2017). Multifunctional Wings with Flexible Batteries and Solar Cells for Robotic Birds. In: Antoun, B., et al. Challenges in Mechanics of Time Dependent Materials, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-41543-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41543-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41542-0

  • Online ISBN: 978-3-319-41543-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics