Skip to main content

Stability Analysis of Delaunay Surfaces as Steady States for the Surface Diffusion Equation

  • Conference paper
  • First Online:
Geometric Properties for Parabolic and Elliptic PDE's (GPPEPDEs 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 176))

Abstract

The stability of steady states for the surface diffusion equation will be studied. In the axisymmetric setting, steady states are the Delaunay surfaces, which are the axisymmetric constant mean curvature surfaces. We consider a linearized stability of these surfaces and derive criteria of the stability by investigating the sign of eigenvalues corresponding to the linearized problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athanassenas, M.: A variational problem for constant mean curvature surfaces with free boundary. J. Reine Angew. Math. 377, 97–107 (1987)

    MathSciNet  MATH  Google Scholar 

  2. Athanassenas, M.: Volume-preserving mean curvature flow of rotationally symmetric surfaces. Comment. Math. Helv. 72(1), 52–66 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Athanassenas, M., Kandanaarachchi, S.: Convergence of axially symmetric volume-preserving mean curvature flow. Pac. J. Math. 259(1), 41–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernoff, A.J., Bertozzi, A.L., Witelski, T.P.: Axisymmetric surface diffusion: dynamics and stability of self-similar pinchoff. J. Stat. Phys. 93(3–4), 725–776 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Courant, R., Hilbert, D.: Methods of mathematical physics, vol. I, Interscience, New York (1953)

    Google Scholar 

  6. Depner, D.: Linearized stability analysis of surface diffusion for hypersurfaces with boundary contact. Math. Nachr. 285(11–12), 1385–1403 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Farroni, F., Giova, R., Ricciardi, T.: Best constants and extremals for a vector Poincaré inequality with weights. Scientiae Math. Japonicae 71, 111–126 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Fel, L.G., Rubinstein, B.Y.: Stability of axisymmetric liquid bridges. Z. Angew. Math. Phys. 66(6), 3447–3471 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garcke, H., Ito, K., Kohsaka, Y.: Surface diffusion with triple junctions: a stability criterion for stationary solutions. Adv. Differ. Equ. 15(5–6), 437–472 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Kenmotsu, K.: Surfaces with Constant Mean Curvature, Translations of Mathematical Monographs, AMS (2003)

    Google Scholar 

  11. LeCrone, J., Simonett, G.: On well-posedness, stability, and bifurcation for the axisymmetric surface diffusion flow. SIAM J. Math. Anal. 45(5), 2834–2869 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mullins, W.W.: theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)

    Article  Google Scholar 

  13. Rubinstein, B.Y., Fel, L.G.: Stability of unduloidal and nodoidal menisci between two solid spheres. J. Geom. Symmetry Phys. 39, 77–98 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Taylor, J.E., Cahn, J.W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77(1-2), 183–197 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Vogel, T.I.: Stability of a liquid drop trapped between two parallel planes. SIAM J. Appl. Math. 47(3), 516–525 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vogel, T.I.: Stability of a liquid drop trapped between two parallel planes. II. General contact angles, SIAM J. Appl. Math. 49(4), 1009–1028 (1989)

    Google Scholar 

  17. Vogel, T.I.: Convex, rotationally symmetric liquid bridges between spheres. Pac. J. Math. 224(2), 367–377 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vogel, T.I.: Liquid bridges between balls: the small volume instability. J. Math. Fluid Mech. 15(2), 397–413 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vogel, T.I.: Liquid bridges between contacting balls. J. Math. Fluid Mech. 16, 737–744 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 24540200, 24244012, 25247008. Also I would like to express my gratitude to Professor Miyuki Koiso and Professor Shoji Yotsutani for the fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihito Kohsaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kohsaka, Y. (2016). Stability Analysis of Delaunay Surfaces as Steady States for the Surface Diffusion Equation. In: Gazzola, F., Ishige, K., Nitsch, C., Salani, P. (eds) Geometric Properties for Parabolic and Elliptic PDE's. GPPEPDEs 2015. Springer Proceedings in Mathematics & Statistics, vol 176. Springer, Cham. https://doi.org/10.1007/978-3-319-41538-3_8

Download citation

Publish with us

Policies and ethics