Skip to main content

The Phragmèn-Lindelöf Theorem for a Fully Nonlinear Elliptic Problem with a Dynamical Boundary Condition

  • Conference paper
  • First Online:
Book cover Geometric Properties for Parabolic and Elliptic PDE's (GPPEPDEs 2015)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 176))

Abstract

The Phragmén-Lindelöf theorem is established for viscosity solutions of fully nonlinear second order elliptic equations in a half space of \(\mathbb {R}^n\) with a dynamical boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Aidarous, E.S., Alzahrani, E.O., Ishii, H., Younas, A.M.M.: Asymptotic analysis for the eikonal equation with the dynamical boundary conditions. Math. Nachr. 287, 1563–1588 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amann, H., Fila, M.: A Fujita-type theorem for the Laplace equation with a dynamical boundary condition. Acta Math. Univ. Comen. 66, 321–328 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Bejenaru, I., Díaz, J.I., Vrabie, I.I.: An abstract approximate controllability result and applications to elliptic and parabolic systems with dynamic boundary conditions. Electron. J. Differ. Equ. 2001, 1–19 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L.A., Li, Y., Nirenberg, L.: Some remarks on singular solutions of nonlinear elliptic equations III: viscosity solutions including parabolic operators. Comm. Pure Appl. Math. 66, 109–143 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin, A., Escher, J.: Global solutions for quasilinear parabolic problems. J. Evol. Equ. 2, 97–111 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Capuzzo-Dolcetta, I., Leoni, F., Vitolo, A.: The Alexandrov-Bakelman-Pucci weak maximum principle for fully nonlinear equations in unbounded domains. Comm. Partial Differ. Equ. 30, 1863–1881 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Capuzzo-Dolcetta, I., Vitolo, A.: A qualitative Phragmèn-Lindelöf theorem for fully nonlinear elliptic equations. J. Differ. Equ. 243, 578–592 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Crank, J.: The Mathematics of Diffusion, 2nd edn. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  9. Escher, J.: Nonlinear elliptic systems with dynamic boundary conditions. Math. Z. 210, 413–439 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Escher, J.: Smooth solutions of nonlinear elliptic systems with dynamic boundary conditions. In: Lecture Notes Pure Applied Mathematics, vol. 155, pp.173–183 (1994)

    Google Scholar 

  11. Fila, M., Ishige, K., Kawakami, T.: Large time behavior of solutions of a semilinear elliptic equation with a dynamical boundary condition. Adv. Differ. Equ. 18, 69–100 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Fila, M., Ishige, K., Kawakami, T.: Large time behavior of the solution for a two dimensional semilinear elliptic equation with a dynamical boundary condition. Asymptot. Anal. 85, 107–123 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Fila, M., Ishige, K., Kawakami, T.: Existence of positive solutions of a semilinear elliptic equation with a dynamical boundary condition. Calc. Var. Partial Differ. Equ. 54, 2059–2078 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fila, M., Ishige, K., Kawakami, T.: Minimal solutions of a semilinear elliptic equation with a dynamical boundary condition. J. Math. Pures Appl. 105, 788–809 (2016)

    Google Scholar 

  15. Fila, M., Poláčik, P.: Global nonexistence without blow-up for an evolution problem. Math. Z. 232, 531–545 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fila, M., Quittner, P.: Global solutions of the Laplace equation with a nonlinear dynamical boundary condition. Math. Methods Appl. Sci. 20, 1325–1333 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gilbarg, D.: The Phragmén-Lindelöf theorem for elliptic partial differential equations. J. Ration. Mech. Anal. 1, 411–417 (1952)

    MathSciNet  MATH  Google Scholar 

  18. Gal, C.G., Meyries, M.: Nonlinear elliptic problems with dynamical boundary conditions of reactive and reactive-diffusive type. Proc. Lond. Math. Soc. 108, 1351–1380 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hopf, E.: Remarks on the preceding paper by D. Gilbarg. J. Ration. Mech. Anal. 1, 419–424 (1952)

    Google Scholar 

  20. Kirane, M.: Blow-up for some equations with semilinear dynamical boundary conditions of parabolic and hyperbolic type. Hokkaido Math. J. 21, 221–229 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kondrat’ev, V.A., Landis, E.M.: Qualitative theory of second-order linear partial differential equations. In: Partial Differential Equations III. Itogi Nauki i Tekhniki, vol.220, pp. 99–215 (1988). (Russian)

    Google Scholar 

  22. Kirane, M., Nabana, E., Pokhozhaev, S.I.: The absence of solutions of elliptic systems with dynamic boundary conditions. Differ. Equ. (Differ. Uravn.) 38, 768–774 (2002)

    Google Scholar 

  23. Kirane, M., Nabana, E., Pohozaev, S.I.: Nonexistance of globalsolutions to an elliptic equation with nonlinear dynamical boundary condition. Bol. Soc. Parana. Mat. 22, 9–16 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Koike, S., Nakagawa, K.: Remarks on the Phragmén-Lindelöf theorem for \(L^p\)-viscosity solutions of fully nonlinear PDEs with unbounded ingredients. Electron. J. Differ. Equ. 2009, 1–14 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Koleva, M.: On the computation of blow-up solutions of elliptic equations with semilinear dynamical boundary conditions. In: Lecture Notes in Computer Science, vol. 2907, pp. 473–480 (2004)

    Google Scholar 

  26. Koleva, M., Vulkov, L: Blow-up of continuous and semidiscrete solutions to elliptic equations with semilinear dynamical boundary conditions of parabolic type. J. Comput. Appl. Math. 202, 414–434 (2007)

    Google Scholar 

  27. Landis, E.M.: Second Order Equations of Elliptic and Parabolic Type. Translations of Mathematical Monographs, vol. 171 (1998)

    Google Scholar 

  28. Lions, J.L.: Quelques Méthodes de Résolutions des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969)

    MATH  Google Scholar 

  29. Miller, K.: Extremal barriers on cones with Phragmén-Lindelöf theorems and other applications. Ann. Mat. Pura Appl. 90, 297–329 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Oddson, J.K.: Phragmén-Lindelöf theorems for ellipticequations in the plane. Trans. Am. Math. Soc. 145, 347–356 (1969)

    MathSciNet  MATH  Google Scholar 

  31. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984). Corrected reprint of the 1967 original

    Google Scholar 

  32. Vitillaro, E.: On the Laplace equation with non-linear dynamical boundary conditions. Proc. Lond. Math. Soc. 93, 418–446 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vitolo, A.: On the Phragmén-Lindelöf principle for second-order elliptic equations. J. Math. Anal. Appl. 300, 244–259 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yin, Z.: Global existence for elliptic equations with dynamic boundary conditions. Arch. Math. 81, 567–574 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to referees for helpful comment to improve the original manuscript. The first author of this paper was supported partially by the Grant-in-Aid for Scientific Research (A)(No. 15H02058) from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazushige Nakagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ishige, K., Nakagawa, K. (2016). The Phragmèn-Lindelöf Theorem for a Fully Nonlinear Elliptic Problem with a Dynamical Boundary Condition. In: Gazzola, F., Ishige, K., Nitsch, C., Salani, P. (eds) Geometric Properties for Parabolic and Elliptic PDE's. GPPEPDEs 2015. Springer Proceedings in Mathematics & Statistics, vol 176. Springer, Cham. https://doi.org/10.1007/978-3-319-41538-3_10

Download citation

Publish with us

Policies and ethics