Skip to main content

Role of Mycorrhizal Fungi in Caesium Uptake by Plants

  • Chapter
  • First Online:
Book cover Impact of Cesium on Plants and the Environment

Abstract

It was demonstrated that rhizospheric processes involving mycorrhizal fungi can influence root uptake of radiocaesium. The ability of both ectomycorrhizal and endomycorrhizal fungi to limit radiocaesium availability to their host plants was considered. The ectomycorrhizal fungi grown in forest ecosystems were suggested to immobilize between 10 and 100 % of the total 137Cs activity. Radiocaesium was found to be accumulated in mycelium and fruit bodies of ectomycorrhizal fungi by simple diffusion and facilitated transport. Ectomycorrhizal fungi was considered to be efficient indicators of cumulative biogeochemical fluxes of radiocaesium in terrestrial ecosystems and thus to be appropriate candidates for phytoremediation technique.

The significance of arbuscular mycorrhizal fungi as participants in radiocaesium cycle in the upper soil layers was discussed. Up to date, their role in processes of radiocaesium uptake by plants remains incompletely understood and controversial. It was demonstrated that arbuscular mycorrhizal fungi could accumulate 137Cs in their extraradical or intraradical structures, transport the radionuclide to their hosts and influence its distribution among plant roots/shoots. Depending on arbuscular mycorrhizal fungi and plant species used, the significant reduction or increase of radiocaesium transfer to aboveground plants biomass was found. The perspectives of arbuscular mycorrhizal fungi application in phytoremediation techniques were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Berreck M, Haselwandter K (2001) Effect of the arbuscular mycorrhizal symbiosis upon uptake of caesium and other cations by plants. Mycorrhiza 10:275–280

    Article  CAS  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Atkinson D, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–293

    Article  Google Scholar 

  • Bruckmann A, Wolter V (1994) Microbial immobilization and recycling of 137Cs in organic layers of forest ecosystems: Relationship to environmental conditions, humification and invertebrate activity. Sci Total Environ 157:249–256

    Article  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Calvet C, Estaún V, Camprub A, Hernández-Dorrego A (2004) Aptitude for mycorrhizal root colonization in Prunus rootstocks. Sci Horti 100:39–49

    Article  Google Scholar 

  • Campbell L, Davies B (1997) Experimental investigation of plant uptake of caesium from soils amended with clinoptilolite and calcium carbonate. Plant Soil 189:65–74

    Article  CAS  Google Scholar 

  • Chen BD, Jakobsen I, Roos P, Borggaard OK, Zhu YG (2005) Mycorrhiza and root hairs enhance acquisition of phosphorus and uranium from phosphate rock but mycorrhiza decreases root to shoot uranium transfer. New Phytol 165:591–598

    Article  CAS  Google Scholar 

  • Clint GM, Dighton J (1992) Uptake and accumulation of radiocaesium by mycorrhizal and non-mycorrhizal heather plants. New Phytol 121:555–561

    Article  CAS  Google Scholar 

  • Declerck S, Dupre de Boulois H, Bivort C, Delvaux B (2003) Extraradical mycelium of the arbuscular mycorrhizal fungus Glomus lamellosum can take up, accumulate and translocate radiocaesium under root-organ culture conditions. Environ Microbiol 5:510–516

    Article  Google Scholar 

  • Dighton J, Clint G, Poskitt J (1991) Uptake and accumulation of 137Cs by upland grassland soil fungi: A potential pool of Cs immobilization. Mycol Res 95:1052–1056

    Article  CAS  Google Scholar 

  • Dighton J, Terry GM (1996) Uptake and immobilization of caesium in UK grassland and forest soils by fungi following the Chornobyl accident. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Cambridge University Press, Cambridge, p 184–200

    Chapter  Google Scholar 

  • Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:103–108

    Article  Google Scholar 

  • Dubchak S (2013) Influence of arbuscular mycorrhizal fungi on caesium uptake by plants. Ph.D. Thesis, Jagiellonian University, Krakow, Poland

    Google Scholar 

  • Dubchak S (2015) The role of arbuscular mycorrhizal symbiosis in 134Cs uptake by crop and wild plant species. Ecol Sci 8:175–184

    Google Scholar 

  • Dupré de Boulois H, Delvaux B, Declerck S (2005) Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium. Environ Pollut 134:515–524

    Article  Google Scholar 

  • Dupré de Boulois H, (2007) Role of arbuscular mycorrhizal fungi on the accumulation of radiocaesium by plants. Ph.D. Thesis, Université Catholique de Louvain, Belgium

    Google Scholar 

  • Dupré de Boulois H, Joner EJ, Leyval C, Jakobsen I, Chen BD, Roos P, Thiry Y, Rufyikiri G, Delvaux B, Declerck S (2008) Role and influence of mycorrhizal fungi on radiocaesium accumulation by plants. J Environ Radioact 99:785–800

    Article  Google Scholar 

  • Dushenkov S, Mikheev A, Prokhnevsky A, Ruchko M, Sorochinsky B (1999) Phytoremediation of radiocaesium‐contaminated soil in the vicinity of Chornobyl, Ukraine. Environ Sci Technol 33:469–475

    Article  CAS  Google Scholar 

  • Dutov O, Dubchak S (2014) Environmental and biological approaches in agriculture of radioactively contaminated areas. Bull Uzhgorod Nat Uni, (Series Biol) 36:98–101

    Google Scholar 

  • Entry JA, Astrud LS, Reeves M (1999) Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environ Pollut 104:449–457

    Article  CAS  Google Scholar 

  • Entry JA, Vance NC, Hamilton MA, Zabowski D, Watrud LS, Adriano DC (1996) Phytoremediation of soil contaminated with low concentrations of radionuclides. Water Air Soil Pollut 88:167–176

    CAS  Google Scholar 

  • Fulekar MH, Singh A, Thorat V, Kaushik CP, Eapen S (2010) Phytoremediation of Cs-137 from low level nuclear waste using Catharanthus roseus. Ind J Pure App Phys 48:516–519

    CAS  Google Scholar 

  • Furdychko OI (2012) Recommendations on forest management in conditions of radioactive contamination. Ministry of Agriculture of Ukraine, Kyiv, p 318

    Google Scholar 

  • Gadd GM (1996) Influence of microorganisms on the environmental fate of radionuclides. Endeavour 20:150–156

    Article  CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gerzabek MH, Strebl F, Temmel B (1998) Plant uptake of radionuclides in lysimeter experiments. Environ Pollut 99:93–103

    Article  CAS  Google Scholar 

  • Grueter H (1971) Radioactive fission product 137Cs in mushrooms in Western Germany during 1963-1970. Heal Phys 20:655–656

    CAS  Google Scholar 

  • Gyuricza V, Declerck S, Dupré de Boulois H (2010a) Arbuscular mycorrhizal fungi decrease radiocaesium accumulation in Medicago truncatula. J Environ Radioact 101:591–596

    Article  CAS  Google Scholar 

  • Gyuricza V, Dupré de Boulois H, Declerck S (2010b) Effect of potassium and phosphorus on the transport of radiocaesium by arbuscular mycorrhizal fungi. J Environ Radioact 101:482–487

    Article  CAS  Google Scholar 

  • Heinrich G (1992) Uptake and transfer factors of 137Cs by mushrooms. Rad Environ Biophys 31:39–49

    Article  CAS  Google Scholar 

  • Hornik M, Pipiska M, Vrtoch L, Augustin J, Lesny J (2005) Bioaccumulation of Cs-137 and Co-60 by Helianthus annuus. Nukleonika 50:49–52

    Google Scholar 

  • January MC, Cutright TJ, Van Keulen H, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70:531–537

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360

    Article  CAS  Google Scholar 

  • Kalac P (2001) A review of edible mushroom radioactivity. Food Chem 75:29–35

    Article  CAS  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trend Plant Sci 10:22–29

    Article  CAS  Google Scholar 

  • Kripka A (2005) Use of the arbuscular mycorrhizal fungi for the phyroremediation of radioactive conaminants. Ph.D. Thesis, Institute of cell biology and genetic engineering, Kyiv, Ukraine

    Google Scholar 

  • Kripka A, Sorochinsky B, Bothe H (2003) Arbuscular mycorrhizal fungi can affect radionuclides transport into herbaceous plants. In: 2nd International workshop on bioavailability of soil pollutants and risk assessment, Centro Stefano Franscini Ascona, Switzerland p 64–67

    Google Scholar 

  • Kurbet T (2007) Ecological peculiarities of 137Cs accumulation by edible macromycetes of Ukrainian Polissya forests. Ph.D. Thesis. Zhytomyr University, Ukraine

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Mietelski JW, Dubchak S, Błażej S, Anielska T, Turnau K (2010) 137Cs and 40K in fruiting bodies of different fungal species collected in a single forest in southern Poland. J Environ Radioact 101:706–711

    Article  CAS  Google Scholar 

  • Peterson RL, Massicotte HB, Merville LH (2004) Mycorrhizas: anatomy and cell biology. NRC Research Press, Ottawa

    Google Scholar 

  • Pfeffer P, Douds D, Becard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587–598

    Article  CAS  Google Scholar 

  • Polaynskaya L (1996) Microbial succession in the soil. Ph.D. Thesis, Moscow University, Russia.

    Google Scholar 

  • Rafferty B, Dawson D, Kliashtorin A (1997) Decomposition in two pine forests: The mobilisation of 137Cs and K from forest litter. Soil Biol Biochem 29:1673–1681

    Article  CAS  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    Article  CAS  Google Scholar 

  • Riesen TK, Brunner I (1996) Effect of ectomycorrhizae and ammonium on 134Cs and 85Sr uptake into Picea abies seedlings. Environ Pollut 93:1–8

    Article  CAS  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Article  Google Scholar 

  • Rosen K, Weiliang Z, Martensson A (2005) Arbuscular mycorrhizal fungi mediated uptake of 137Cs in leek and ryegrass. Sci Total Environ 338:283–290

    Article  CAS  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Shcheglov A, Tsvetnova O, Klyashtorin A (2001) Biogeochemical migration of technogenic radionuclides in forest ecosystems. Nauka, Moscow

    Google Scholar 

  • Singh S, Eapen S, Thorat V, Kaushik CP, Raj K, D'Souza SF (2008) Phytoremediation of Cs-137 and Sr-90 from solutions and low-level nuclear waste by Vetiveria zizanoides. Ecotoxicol Environ Saft 69:306–311

    Article  CAS  Google Scholar 

  • Sikes BA (2010) When do arbuscular mycorrhizal fungi protect plant roots from pathogens? Plant Sig Behav 5:763–765

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth and total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Thiry Y, Colle C, Yoschenko V, Levchuk S, Van Hees M, Hurtevent P, Kashparov V (2009) Impact of Scots pine (Pinus sylvestris L.) plantings on long term 137Cs and 90Sr recycling from a waste burial site in the Chornobyl Red Forest. J Environ Radioact 100:1062–1068

    Google Scholar 

  • Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schűepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to mycorrhiza application. Birkhauser, Basel, p 137–149

    Chapter  Google Scholar 

  • Vinichuk M, Johanson KJ (2003) Accumulation of 137Cs by fungal mycelium in forest ecosystems of Ukraine. J Environ Radioact 64:27–43

    Article  Google Scholar 

  • Vinichuk M, Mårtensson A, Rosén K (2013) Inoculation with arbuscular mycorrhizae does not improve 137Cs uptake in crops grown in the Chornobyl region. J Environ Radioact 126:14–19

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2000) Mechanisms of caesium uptake by plants. New Phytol 147:241–256

    Article  CAS  Google Scholar 

  • White PJ, Swarup K, Escobar-Gutiérrez AJ, Bowen HC, Willey NJ, Broadley MR (2003) Selecting plants to minimise radiocaesium in the food chain. Plant Soil 249:177–186

    Article  CAS  Google Scholar 

  • Wei SH, Anders I, Feller U (2014) Selective uptake, distribution, and redistribution of Cd-109, Co-57, Zn-65, Ni-63, and Cs-134 via xylem and phloem in the heavy metal hyperaccumulator Solanum nigrum L. Environ Sci Pollut Res 21:7624–7630

    Article  CAS  Google Scholar 

  • Wiesel L, Dubchak S, Turnau K, Broadley M, White PJ (2015) Caesium inhibits the colonization of Medicago truncatula by arbuscular mycorrhizal fungi. J Environ Radioact 141:57–61

    Article  CAS  Google Scholar 

  • Willey N (2005) Amelioration of soils contaminated with radionuclides: Exploiting biodiversity to minimize or maximize soil to plant transfer. Radioprotection 40:819–824

    Article  Google Scholar 

  • Zhu YG, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41:121–128

    Article  CAS  Google Scholar 

  • Zhu YG, Smolders E (2000) Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J Exp Bot 51:1635–1645

    Article  CAS  Google Scholar 

Download references

Acknowledgements

First and foremost I want to thank my former supervisor in the Institute of Environmental Sciences of Jagiellonian University (Krakow, Poland) Dr. hab. Prof. Katarzyna Turnau for welcoming me in Plant-Microbial Research team and introducing me to the world of mycorrhiza, for her guidance, manifold reading and comprehensive help in the preparation of my doctoral thesis, and support in every possible way. I am very grateful to Dr. hab. Jerzy Wojciech Mietelski from the Henryk Niewodniczański Institute of Nuclear Physics (Krakow, Poland), and Dr. Grzegorz Tylko from the Institute of Zoology of Jagiellonian University for providing facilities, help and advices in evaluation of results and writing papers as well as for hospitality of their research teams. Many thanks to everybody from MYCOREMED project for interesting meetings and discussions. The financial support of the work from MYCOREMED European Project MEST-CT-2005-020387 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy Dubchak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubchak, S. (2017). Role of Mycorrhizal Fungi in Caesium Uptake by Plants. In: Gupta, D., Walther, C. (eds) Impact of Cesium on Plants and the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-41525-3_3

Download citation

Publish with us

Policies and ethics