Skip to main content

Versatile Signaling Activity of Adhesion GPCRs

  • Chapter
  • First Online:
Adhesion G Protein-coupled Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 234))

Graphical Abstract

Abstract

The adhesion G protein-coupled receptors (aGPCRs) are a family of 33 receptors in humans that are widely expressed in various tissues and involved in many diverse biological processes. These receptors possess extremely large N-termini (NT) containing a variety of adhesion domains. A distinguishing feature of these receptors is the presence within the NT of a highly conserved GPCR autoproteolysis-inducing (GAIN) domain, which mediates autoproteolysis of the receptors into N-terminal and C-terminal fragments that stay non-covalently associated. The downstream signaling pathways and G protein-coupling preferences of many aGPCRs have recently been elucidated, and putative endogenous ligands for some aGPCRs have also been discovered and characterized in recent years. A pivotal observation for aGPCRs has been that deletion or removal of the NT up the point of GAIN cleavage results in constitutive receptor activation. For at least some aGPCRs, this activation is dependent on the unmasking of specific agonistic peptide sequences within the N-terminal stalk region (i.e., the region between the site of GAIN domain cleavage and the first transmembrane domain). However, the specific peptide sequences involved and the overall importance of the stalk region for activation can vary greatly from receptor to receptor. An emerging theme of work in this area is that aGPCRs are capable of versatile signaling activity that may be fine-tuned to suit the specific physiological roles played by the various members of this family.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3(9):639–650

    Article  CAS  PubMed  Google Scholar 

  2. Fredriksson R, Gloriam DE, Hoglund PJ, Lagerstrom MC, Schioth HB (2003) There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini. Biochem Biophys Res Commun 301(3):725–734

    Article  CAS  PubMed  Google Scholar 

  3. Langenhan T, Aust G, Hamann J (2013) Sticky signaling–adhesion class G protein-coupled receptors take the stage. Sci Signal 6(276):re3

    Article  PubMed  Google Scholar 

  4. Hamann J, Aust G, Arac D, Engel FB, Formstone C, Fredriksson R et al (2015) International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Rev 67(2):338–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krishnan A, Nijmeijer S, de Graaf C, Schiöth HB (2016) Classification, nomenclature and structural aspects of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  6. Araç D, Sträter N, Seiradake E (2016) Understanding the structural basis of adhesion GPCR functions. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  7. Krasnoperov VG, Bittner MA, Beavis R, Kuang Y, Salnikow KV, Chepurny OG et al (1997) alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18(6):925–937

    Article  CAS  PubMed  Google Scholar 

  8. Lin HH, Chang GW, Davies JQ, Stacey M, Harris J, Gordon S (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279(30):31823–31832

    Article  CAS  PubMed  Google Scholar 

  9. Nieberler M, Kittel RJ, Petrenko AG, Lin H-H, Langenhan T (2016) Control of adhesion GPCR function through proteolytic processing. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  10. Arac D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Sudhof TC et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31(6):1364–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liebscher I, Ackley B, Arac D, Ariestanti DM, Aust G, Bae BI et al (2014) New functions and signaling mechanisms for the class of adhesion G protein-coupled receptors. Ann N Y Acad Sci 1333:43–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Promel S, Langenhan T, Arac D (2013) Matching structure with function: the GAIN domain of adhesion-GPCR and PKD1-like proteins. Trends Pharmacol Sci 34(8):470–478

    Article  PubMed  Google Scholar 

  13. Davletov BA, Shamotienko OG, Lelianova VG, Grishin EV, Ushkaryov YA (1996) Isolation and biochemical characterization of a Ca2+-independent alpha-latrotoxin-binding protein. J Biol Chem 271(38):23239–23245

    Article  CAS  PubMed  Google Scholar 

  14. Lelianova VG, Davletov BA, Sterling A, Rahman MA, Grishin EV, Totty NF et al (1997) Alpha-latrotoxin receptor, latrophilin, is a novel member of the secretin family of G protein-coupled receptors. J Biol Chem 272(34):21504–21508

    Article  CAS  PubMed  Google Scholar 

  15. Ichtchenko K, Khvotchev M, Kiyatkin N, Simpson L, Sugita S, Sudhof TC (1998) alpha-Latrotoxin action probed with recombinant toxin: receptors recruit alpha-latrotoxin but do not transduce an exocytotic signal. EMBO J 17(21):6188–6199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Volynski KE, Silva JP, Lelianova VG, Atiqur Rahman M, Hopkins C, Ushkaryov YA (2004) Latrophilin fragments behave as independent proteins that associate and signal on binding of LTX(N4C). EMBO J 23(22):4423–4433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rahman MA, Ashton AC, Meunier FA, Davletov BA, Dolly JO, Ushkaryov YA (1999) Norepinephrine exocytosis stimulated by alpha-latrotoxin requires both external and stored Ca2+ and is mediated by latrophilin, G proteins and phospholipase C. Philos Trans R Soc Lond B Biol Sci 354(1381):379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R et al (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303(5666):2033–2036

    Article  CAS  PubMed  Google Scholar 

  19. Bae BI, Tietjen I, Atabay KD, Evrony GD, Johnson MB, Asare E et al (2014) Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 343(6172):764–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H (2008) Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 283(21):14469–14478

    Article  CAS  PubMed  Google Scholar 

  21. Paavola KJ, Stephenson JR, Ritter SL, Alter SP, Hall RA (2011) The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. J Biol Chem 286(33):28914–28921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shashidhar S, Lorente G, Nagavarapu U, Nelson A, Kuo J, Cummins J et al (2005) GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 24(10):1673–1682

    Article  CAS  PubMed  Google Scholar 

  23. Wu MP, Doyle JR, Barry B, Beauvais A, Rozkalne A, Piao X et al (2013) G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo. FEBS J 280(23):6097–6113

    Article  CAS  PubMed  Google Scholar 

  24. Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A 112(19):6194–6199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim JE, Han JM, Park CR, Shin KJ, Ahn C, Seong JY et al (2010) Splicing variants of the orphan G-protein-coupled receptor GPR56 regulate the activity of transcription factors associated with tumorigenesis. J Cancer Res Clin Oncol 136(1):47–53

    Article  CAS  PubMed  Google Scholar 

  26. Kishore A, Purcell RH, Nassiri-Toosi Z, Hall RA (2016) Stalk-dependent and stalk-independent signaling by the adhesion G protein-coupled receptors GPR56 (ADGRG1) and BAI1 (ADGRB1). J Biol Chem 291(7):3385–3394

    Article  CAS  PubMed  Google Scholar 

  27. Yang L, Chen G, Mohanty S, Scott G, Fazal F, Rahman A et al (2011) GPR56 regulates VEGF production and angiogenesis during melanoma progression. Cancer Res 71(16):5558–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Little KD, Hemler ME, Stipp CS (2004) Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol Biol Cell 15(5):2375–2387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ohta S, Sakaguchi S, Kobayashi Y, Mizuno N, Tago K, Itoh H (2015) Agonistic antibodies reveal the function of GPR56 in human glioma U87-MG cells. Biol Pharm Bull 38(4):594–600

    Article  CAS  PubMed  Google Scholar 

  30. Peeters MC, Fokkelman M, Boogaard B, Egerod KL, van de Water B, IJzerman AP et al (2015) The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFkB and is involved in cell adhesion and migration. Cell Signal 27(12):2579–2588

    Article  CAS  PubMed  Google Scholar 

  31. Demberg LM, Rothemund S, Schoneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464(3):743–747

    Article  CAS  PubMed  Google Scholar 

  32. Gupte J, Swaminath G, Danao J, Tian H, Li Y, Wu X (2012) Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett 586(8):1214–1219

    Article  CAS  PubMed  Google Scholar 

  33. Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schoneberg T et al (2016) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J 30(2):666–673

    Article  CAS  PubMed  Google Scholar 

  34. Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C et al (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325(5946):1402–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paavola KJ, Sidik H, Zuchero JB, Eckart M, Talbot WS (2014) Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci Signal 7(338):ra76

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mogha A, Benesh AE, Patra C, Engel FB, Schoneberg T, Liebscher I et al (2013) Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J Neurosci 33(46):17976–17985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liebscher I, Schon J, Petersen SC, Fischer L, Auerbach N, Demberg LM et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9(6):2018–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450(7168):430–434

    Article  CAS  PubMed  Google Scholar 

  39. Das S, Sarkar A, Ryan KA, Fox S, Berger AH, Juncadella IJ et al (2014) Brain angiogenesis inhibitor 1 is expressed by gastric phagocytes during infection with Helicobacter pylori and mediates the recognition and engulfment of human apoptotic gastric epithelial cells. FASEB J 28(5):2214–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mazaheri F, Breus O, Durdu S, Haas P, Wittbrodt J, Gilmour D et al (2014) Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia. Nat Commun 5:4046

    Article  CAS  PubMed  Google Scholar 

  41. Das S, Owen KA, Ly KT, Park D, Black SG, Wilson JM et al (2011) Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc Natl Acad Sci U S A 108(5):2136–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hochreiter-Hufford AE, Lee CS, Kinchen JM, Sokolowski JD, Arandjelovic S, Call JA et al (2013) Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497(7448):263–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Duman JG, Tzeng CP, Tu YK, Munjal T, Schwechter B, Ho TS et al (2013) The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. J Neurosci 33(16):6964–6978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu D, Li C, Swanson AM, Villalba RM, Guo J, Zhang Z et al (2015) BAI1 regulates spatial learning and synaptic plasticity in the hippocampus. J Clin Invest 125(4):1497–1508

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stephenson JR, Paavola KJ, Schaefer SA, Kaur B, Van Meir EG, Hall RA (2013) Brain-specific angiogenesis inhibitor-1 signaling, regulation, and enrichment in the postsynaptic density. J Biol Chem 288(31):22248–22256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Okajima D, Kudo G, Yokota H (2010) Brain-specific angiogenesis inhibitor 2 (BAI2) may be activated by proteolytic processing. J Recept Signal Transduct Res 30(3):143–153

    Article  CAS  PubMed  Google Scholar 

  47. Ward Y, Lake R, Yin JJ, Heger CD, Raffeld M, Goldsmith PK et al (2011) LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res 71(23):7301–7311

    Article  CAS  PubMed  Google Scholar 

  48. Hu QX, Dong JH, Du HB, Zhang DL, Ren HZ, Ma ML et al (2014) Constitutive Galphai coupling activity of very large G protein-coupled receptor 1 (VLGR1) and its regulation by PDZD7 protein. J Biol Chem 289(35):24215–24225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bohnekamp J, Schoneberg T (2011) Cell adhesion receptor GPR133 couples to Gs protein. J Biol Chem 286(49):41912–41916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Silva JP, Lelianova VG, Ermolyuk YS, Vysokov N, Hitchen PG, Berninghausen O et al (2011) Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci U S A 108(29):12113–12118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tobaben S, Sudhof TC, Stahl B (2002) Genetic analysis of alpha-latrotoxin receptors reveals functional interdependence of CIRL/latrophilin 1 and neurexin 1 alpha. J Biol Chem 277(8):6359–6365

    Article  CAS  PubMed  Google Scholar 

  52. O’Sullivan ML, de Wit J, Savas JN, Comoletti D, Otto-Hitt S, Yates JR III et al (2012) FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73(5):903–910

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jackson VA, del Toro D, Carrasquero M, Roversi P, Harlos K, Klein R et al (2015) Structural basis of latrophilin-FLRT interaction. Structure 23(4):774–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang YS, Chiang NY, Hu CH, Hsiao CC, Cheng KF, Tsai WP et al (2012) Activation of myeloid cell-specific adhesion class G protein-coupled receptor EMR2 via ligation-induced translocation and interaction of receptor subunits in lipid raft microdomains. Mol Cell Biol 32(8):1408–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stacey M, Chang GW, Davies JQ, Kwakkenbos MJ, Sanderson RD, Hamann J et al (2003) The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102(8):2916–2924

    Article  CAS  PubMed  Google Scholar 

  56. Karpus ON, Veninga H, Hoek RM, Flierman D, van Buul JD, Vandenakker CC et al (2013) Shear stress-dependent downregulation of the adhesion-G protein-coupled receptor CD97 on circulating leukocytes upon contact with its ligand CD55. J Immunol 190(7):3740–3748

    Article  CAS  PubMed  Google Scholar 

  57. Wang T, Ward Y, Tian L, Lake R, Guedez L, Stetler-Stevenson WG et al (2005) CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood 105(7):2836–2844

    Article  CAS  PubMed  Google Scholar 

  58. Wandel E, Saalbach A, Sittig D, Gebhardt C, Aust G (2012) Thy-1 (CD90) is an interacting partner for CD97 on activated endothelial cells. J Immunol 188(3):1442–1450

    Article  CAS  PubMed  Google Scholar 

  59. Sigoillot SM, Iyer K, Binda F, Gonzalez-Calvo I, Talleur M, Vodjdani G et al (2015) The secreted protein C1QL1 and its receptor BAI3 control the synaptic connectivity of excitatory inputs converging on cerebellar Purkinje cells. Cell Rep 10(5):820–832

    Article  CAS  Google Scholar 

  60. Bolliger MF, Martinelli DC, Sudhof TC (2011) The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins. Proc Natl Acad Sci U S A 108(6):2534–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Luo R, Jeong SJ, Jin Z, Strokes N, Li S, Piao X (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108(31):12925–12930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Petersen SC, Luo R, Liebscher I, Giera S, Jeong SJ, Mogha A et al (2015) The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 85(4):755–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu L, Hynes RO (2007) GPR56 and TG2: possible roles in suppression of tumor growth by the microenvironment. Cell Cycle 6(2):160–165

    Article  CAS  PubMed  Google Scholar 

  64. Boucard AA, Maxeiner S, Sudhof TC (2014) Latrophilins function as heterophilic cell-adhesion molecules by binding to teneurins: regulation by alternative splicing. J Biol Chem 289(1):387–402

    Article  CAS  PubMed  Google Scholar 

  65. Bang ML, Owczarek S (2013) A matter of balance: role of neurexin and neuroligin at the synapse. Neurochem Res 38(6):1174–1189

    Article  CAS  PubMed  Google Scholar 

  66. Geppert M, Khvotchev M, Krasnoperov V, Goda Y, Missler M, Hammer RE et al (1998) Neurexin I alpha is a major alpha-latrotoxin receptor that cooperates in alpha-latrotoxin action. J Biol Chem 273(3):1705–1710

    Article  CAS  PubMed  Google Scholar 

  67. Boucard AA, Ko J, Sudhof TC (2012) High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex. J Biol Chem 287(12):9399–9413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hamann J, Vogel B, van Schijndel GM, van Lier RA (1996) The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med 184(3):1185–1189

    Article  CAS  PubMed  Google Scholar 

  69. Hamann J, Stortelers C, Kiss-Toth E, Vogel B, Eichler W, van Lier RA (1998) Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. Eur J Immunol 28(5):1701–1707

    Article  CAS  PubMed  Google Scholar 

  70. Lin HH, Stacey M, Saxby C, Knott V, Chaudhry Y, Evans D et al (2001) Molecular analysis of the epidermal growth factor-like short consensus repeat domain-mediated protein-protein interactions: dissection of the CD97-CD55 complex. J Biol Chem 276(26):24160–24169

    Article  CAS  PubMed  Google Scholar 

  71. Iijima T, Miura E, Watanabe M, Yuzaki M (2010) Distinct expression of C1q-like family mRNAs in mouse brain and biochemical characterization of their encoded proteins. Eur J Neurosci 31(9):1606–1615

    PubMed  Google Scholar 

  72. Kakegawa W, Mitakidis N, Miura E, Abe M, Matsuda K, Takeo YH et al (2015) Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron 85(2):316–329

    Article  CAS  PubMed  Google Scholar 

  73. Xu L, Begum S, Hearn JD, Hynes RO (2006) GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl Acad Sci U S A 103(24):9023–9028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang L, Friedland S, Corson N, Xu L (2014) GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res 74(4):1022–1031

    Article  CAS  PubMed  Google Scholar 

  75. Singer K, Luo R, Jeong SJ, Piao X (2013) GPR56 and the developing cerebral cortex: cells, matrix, and neuronal migration. Mol Neurobiol 47(1):186–196

    Article  CAS  PubMed  Google Scholar 

  76. Luo R, Jin Z, Deng Y, Strokes N, Piao X (2012) Disease-associated mutations prevent GPR56-collagen III interaction. PLoS One 7(1), e29818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chiang NY, Hsiao CC, Huang YS, Chen HY, Hsieh IJ, Chang GW et al (2011) Disease-associated GPR56 mutations cause bilateral frontoparietal polymicrogyria via multiple mechanisms. J Biol Chem 286(16):14215–14225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jin Z, Tietjen I, Bu L, Liu-Yesucevitz L, Gaur SK, Walsh CA et al (2007) Disease-associated mutations affect GPR56 protein trafficking and cell surface expression. Hum Mol Genet 16(16):1972–1985

    Article  CAS  PubMed  Google Scholar 

  79. Weston MD, Luijendijk MW, Humphrey KD, Moller C, Kimberling WJ (2004) Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am J Hum Genet 74(2):357–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Robinson A, Escuin S, Doudney K, Vekemans M, Stevenson RE, Greene ND et al (2012) Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat 33(2):440–447

    Article  CAS  PubMed  Google Scholar 

  81. Paavola KJ, Hall RA (2012) Adhesion G protein-coupled receptors: signaling, pharmacology, and mechanisms of activation. Mol Pharmacol 82(5):777–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liebscher I, Schöneberg T (2016) Tethered agonism: a common activation mechanism of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  83. Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407(6801):258–264

    Article  CAS  PubMed  Google Scholar 

  84. Promel S, Waller-Evans H, Dixon J, Zahn D, Colledge WH, Doran J et al (2012) Characterization and functional study of a cluster of four highly conserved orphan adhesion-GPCR in mouse. Dev Dyn 241(10):1591–1602

    Article  PubMed  Google Scholar 

  85. Promel S, Frickenhaus M, Hughes S, Mestek L, Staunton D, Woollard A et al (2012) The GPS motif is a molecular switch for bimodal activities of adhesion class G protein-coupled receptors. Cell Rep 2(2):321–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krasnoperov V, Deyev IE, Serova OV, Xu C, Lu Y, Buryanovsky L et al (2009) Dissociation of the subunits of the calcium-independent receptor of alpha-latrotoxin as a result of two-step proteolysis. Biochemistry 48(14):3230–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Scholz N, Gehring J, Guan C, Ljaschenko D, Fischer R, Lakshmanan V et al (2015) The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep 11(6):866–874

    Article  CAS  PubMed  Google Scholar 

  88. Scholz N, Monk KR, Kittel RJ, Langenhan T (2016) Adhesion GPCRs as a putative class of metabotropic mechanosensors. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  89. Knapp B, Wolfrum U (2016) Adhesion G protein-coupled receptor-related protein networks. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  90. Zou J, Zheng T, Ren C, Askew C, Liu XP, Pan B et al (2014) Deletion of PDZD7 disrupts the Usher syndrome type 2 protein complex in cochlear hair cells and causes hearing loss in mice. Hum Mol Genet 23(9):2374–2390

    Article  CAS  PubMed  Google Scholar 

  91. Lanoue V, Usardi A, Sigoillot SM, Talleur M, Iyer K, Mariani J et al (2013) The adhesion-GPCR BAI3, a gene linked to psychiatric disorders, regulates dendrite morphogenesis in neurons. Mol Psychiatry 18(8):943–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jeong BC, Kim MY, Lee JH, Kee HJ, Kho DH, Han KE et al (2006) Brain-specific angiogenesis inhibitor 2 regulates VEGF through GABP that acts as a transcriptional repressor. FEBS Lett 580(2):669–676

    Article  CAS  PubMed  Google Scholar 

  93. Nishimura T, Honda H, Takeichi M (2012) Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149(5):1084–1097

    Article  CAS  PubMed  Google Scholar 

  94. Li X, Roszko I, Sepich DS, Ni M, Hamm HE, Marlow FL et al (2013) Gpr125 modulates Dishevelled distribution and planar cell polarity signaling. Development 140(14):3028–3039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors’ research is supported by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy A. Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Kishore, A., Hall, R.A. (2016). Versatile Signaling Activity of Adhesion GPCRs. In: Langenhan, T., Schöneberg, T. (eds) Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-41523-9_7

Download citation

Publish with us

Policies and ethics