Skip to main content

Tethered Agonism: A Common Activation Mechanism of Adhesion GPCRs

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 234))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ritter E, Zimmermann K, Heck M, Hofmann KP, Bartl FJ (2004) Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization. J Biol Chem 279:48102–48111

    Article  CAS  PubMed  Google Scholar 

  2. Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3:1800–1814

    Article  CAS  PubMed  Google Scholar 

  3. Adams MN, Ramachandran R, Yau M-K, Suen JY, Fairlie DP, Hollenberg MD et al (2011) Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 130:248–282

    Article  CAS  PubMed  Google Scholar 

  4. Austin KM, Covic L, Kuliopulos A (2013) Matrix metalloproteases and PAR1 activation. Blood 121:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Araç D, Sträter N, Seiradake E (2016) Understanding the structural basis of adhesion GPCR functions. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  6. Schulz A, Schoneberg T (2003) The structural evolution of a P2Y-like G-protein-coupled receptor. J Biol Chem 278:35531–35541

    Article  CAS  PubMed  Google Scholar 

  7. Böselt I, Römpler H, Hermsdorf T, Thor D, Busch W, Schulz A et al (2009) Involvement of the V2 vasopressin receptor in adaptation to limited water supply. PLoS One 4, e5573

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sanchez-Mas J, Hahmann C, Gerritsen I, Garcia-Borron JC, Jimenez-Cervantes C (2004) Agonist-independent, high constitutive activity of the human melanocortin 1 receptor. Pigment Cell Res 17:386–395

    Article  CAS  PubMed  Google Scholar 

  9. Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H (2008) Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 283:14469–14478

    Article  CAS  PubMed  Google Scholar 

  10. Luo R, Jeong S-J, Jin Z, Strokes N, Li S, Piao X (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108:12925–12930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ward Y, Lake R, Yin JJ, Heger CD, Raffeld M, Goldsmith PK et al (2011) LPA receptor heterodimerizes with CD97 to amplify LPA-initiated RHO-dependent signaling and invasion in prostate cancer cells. Cancer Res 71:7301–7311

    Article  CAS  PubMed  Google Scholar 

  12. Bohnekamp J, Schöneberg T (2011) Cell adhesion receptor GPR133 couples to Gs protein. J Biol Chem 286:41912–41916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupte J, Swaminath G, Danao J, Tian H, Li Y, Wu X (2012) Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett 586:1214–1219

    Article  CAS  PubMed  Google Scholar 

  14. Stephenson JR, Paavola KJ, Schaefer SA, Kaur B, Van Meir EG, Hall RA (2013) Brain-specific angiogenesis inhibitor-1 signaling, regulation, and enrichment in the postsynaptic density. J Biol Chem 288:22248–22256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mogha A, Benesh AE, Patra C, Engel FB, Schoneberg T, Liebscher I et al (2013) Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J Neurosci 33:17976–17985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu QX, Dong JH, Du HB, Zhang DL, Ren HZ, Ma ML et al (2014) Constitutive Galphai coupling activity of very large G protein-coupled receptor 1 (VLGR1) and its regulation by PDZD7 protein. J Biol Chem 289:24215–24225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Demberg LM, Rothemund S, Schoneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464:743–747

    Article  CAS  PubMed  Google Scholar 

  18. Peeters MC, Fokkelman M, Boogaard B, Egerod KL, van de Water B, IJzerman AP et al (2015) The adhesion G protein-coupled receptor G2 (ADGRG2/GPR64) constitutively activates SRE and NFkB and is involved in cell adhesion and migration. Cell Signal 27(12):2579–2588

    Article  CAS  PubMed  Google Scholar 

  19. Müller A, Winkler J, Fiedler F, Sastradihardja T, Binder C, Schnabel R et al (2015) Oriented cell division in the C. elegans embryo is coordinated by G-protein signaling dependent on the adhesion GPCR LAT-1. PLoS Genet 11, e1005624

    Article  PubMed  PubMed Central  Google Scholar 

  20. Okajima D, Kudo G, Yokota H (2010) Brain-specific angiogenesis inhibitor 2 (BAI2) may be activated by proteolytic processing. J Recept Signal Transduct Res 30:143–153

    Article  CAS  PubMed  Google Scholar 

  21. Yang L, Chen G, Mohanty S, Scott G, Fazal F, Rahman A et al (2011) GPR56 regulates VEGF production and angiogenesis during melanoma progression. Cancer Res 71:5558–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paavola KJ, Stephenson JR, Ritter SL, Alter SP, Hall RA (2011) The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. J Biol Chem 286:28914–28921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liebscher I, Schoneberg T, Promel S (2013) Progress in demystification of adhesion G protein-coupled receptors. Biol Chem 394:937–950

    Article  CAS  PubMed  Google Scholar 

  24. Liebscher I, Schon J, Petersen SC, Fischer L, Auerbach N, Demberg LM et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9:2018–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C et al (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A 112:6194–6199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schoneberg T et al (2016) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J 30:666–673

    Article  CAS  PubMed  Google Scholar 

  28. Kishore A, Purcell RH, Nassiri-Toosi Z, Hall RA (2016) Stalk-dependent and stalk-independent signaling by the adhesion G protein-coupled receptors GPR56 (ADGRG1) and BAI1 (ADGRB1). J Biol Chem 291:3385–3394

    Article  CAS  PubMed  Google Scholar 

  29. Kishore A, Hall RA (2016) Versatile signaling activity of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  30. Araç D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Südhof TC et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31:1364–1378

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lu YC, Nazarko OV, Sando R, Salzman GS, Südhof TC, Araç D (2015) Structural basis of latrophilin-FLRT-UNC5 interaction in cell adhesion. Structure 23:1678–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nijmeijer S, Wolf S, Ernst OP, de Graaf C (2016) 7TM domain structure of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  33. Petersen SC, Luo R, Liebscher I, Giera S, Jeong S-J, Mogha A et al (2015) The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 85:755–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Monk KR, Hamann J, Langenhan T, Nijmeijer S, Schöneberg T, Liebscher I (2015) Adhesion G protein-coupled receptors: from in vitro pharmacology to in vivo mechanisms. Mol Pharmacol 88:617–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Scholz N, Monk KR, Kittel RJ, Langenhan T (2016) Adhesion GPCRs as a putative class of metabotropic mechanosensors. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  36. Luo R, Jeong S-J, Yang A, Wen M, Saslowsky DE, Lencer WI et al (2014) Mechanism for adhesion G protein-coupled receptor GPR56-mediated RhoA activation induced by collagen III stimulation. PLoS One 9, e100043

    Article  PubMed  PubMed Central  Google Scholar 

  37. White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You J-S et al (2014) G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proc Natl Acad Sci U S A 111:15756–15761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scholz N, Gehring J, Guan C, Ljaschenko D, Fischer R, Lakshmanan V et al (2015) The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep 11:866–874

    Article  CAS  PubMed  Google Scholar 

  39. Paavola KJ, Sidik H, Zuchero JB, Eckart M, Talbot WS (2014) Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci Signal 7:ra76

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yang L, Friedland S, Corson N, Xu L (2014) GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res 74:1022–1031

    Article  CAS  PubMed  Google Scholar 

  41. Nieberler M, Kittel RJ, Petrenko AG, Lin H-H, Langenhan T (2016) Control of adhesion GPCR function through proteolytic processing. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  42. Krasnoperov V, Lu Y, Buryanovsky L, Neubert TA, Ichtchenko K, Petrenko AG (2002) Post-translational proteolytic processing of the calcium-independent receptor of alpha-latrotoxin (CIRL), a natural chimera of the cell adhesion protein and the G protein-coupled receptor. Role of the G protein-coupled receptor proteolysis site (GPS) motif. J Biol Chem 277:46518–46526

    Article  CAS  PubMed  Google Scholar 

  43. Lin H-H, Chang G-W, Davies JQ, Stacey M, Harris J (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279:31823–31832

    Article  CAS  PubMed  Google Scholar 

  44. Moriguchi T, Haraguchi K, Ueda N, Okada M, Furuya T, Akiyama T (2004) DREG, a developmentally regulated G protein-coupled receptor containing two conserved proteolytic cleavage sites. Genes Cells 9:549–560

    Article  CAS  PubMed  Google Scholar 

  45. Prömel S, Waller-Evans H, Dixon J, Zahn D, Colledge WH, Doran J et al (2012) Characterization and functional study of a cluster of four highly conserved orphan adhesion-GPCR in mouse. Dev Dyn 241:1591–1602

    Article  PubMed  Google Scholar 

  46. Stephenson JR, Purcell RH, Hall RA (2014) The BAI subfamily of adhesion GPCRs: synaptic regulation and beyond. Trends Pharmacol Sci 35:208–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prömel S, Frickenhaus M, Hughes S, Mestek L, Staunton D, Woollard A et al (2012) The GPS motif is a molecular switch for bimodal activities of adhesion class G protein-coupled receptors. Cell Rep 2:321–331

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wald G (1968) The molecular basis of visual excitation. Nature 219:800–807

    Article  CAS  PubMed  Google Scholar 

  49. Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068

    Article  CAS  PubMed  Google Scholar 

  50. Bruser A, Schulz A, Rothemund S, Ricken A, Calebiro D, Kleinau G et al (2016) The Activation Mechanism of Glycoprotein Hormone Receptors with Implications in the Cause and Therapy of Endocrine Diseases. J Biol Chem 291:508–520

    Article  CAS  PubMed  Google Scholar 

  51. Vlaeminck-Guillem V, Ho S-C, Rodien P, Vassart G, Costagliola S (2002) Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist. Mol Endocrinol 16:736–746

    Article  CAS  PubMed  Google Scholar 

  52. van Sande J, Massart C, Costagliola S, Allgeier A, Cetani F, Vassart G et al (1996) Specific activation of the thyrotropin receptor by trypsin. Mol Cell Endocrinol 119:161–168

    Article  PubMed  Google Scholar 

  53. Zhang M, Tong KP, Fremont V, Chen J, Narayan P, Puett D et al (2000) The extracellular domain suppresses constitutive activity of the transmembrane domain of the human TSH receptor: implications for hormone-receptor interaction and antagonist design. Endocrinology 141:3514–3517

    Article  CAS  PubMed  Google Scholar 

  54. Sangkuhl K, Schulz A, Schultz G, Schoneberg T (2002) Structural requirements for mutational lutropin/choriogonadotropin receptor activation. J Biol Chem 277:47748–47755

    Article  CAS  PubMed  Google Scholar 

  55. Krause G, Kreuchwig A, Kleinau G (2012) Extended and structurally supported insights into extracellular hormone binding, signal transduction and organization of the thyrotropin receptor. PLoS One 7, e52920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y et al (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492:387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heitman LH, Oosterom J, Bonger KM, Timmers CM, Wiegerinck PHG, Ijzerman AP (2008) 3HOrg 43553, the first low-molecular-weight agonistic and allosteric radioligand for the human luteinizing hormone receptor. Mol Pharmacol 73:518–524

    Article  CAS  PubMed  Google Scholar 

  58. Neumann S, Huang W, Titus S, Krause G, Kleinau G, Alberobello AT et al (2009) Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in human thyrocytes and mice. Proc Natl Acad Sci U S A 106:12471–12476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Neumann S, Nir EA, Eliseeva E, Huang W, Marugan J, Xiao J et al (2014) A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology 155:310–314

    Article  PubMed  Google Scholar 

  60. van Amerongen PC, Machteld J, Ghosh S, Ricciardi F, Sajjad A, Novoyatleva T et al (2013) Organ-specific function of adhesion G protein-coupled receptor GPR126 is domain-dependent. Proc Natl Acad Sci U S A 110:16898–16903

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fukuzawa T, Hirose S (2006) Multiple processing of Ig-Hepta/GPR116, a G protein-coupled receptor with immunoglobulin (Ig)-like repeats, and generation of EGF2-like fragment. J Biochem 140:445–452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (FOR2149, Projects 4 & 5) and the BMBF (IFB AdipositasDiseases Leipzig ADI-K767).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Liebscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Liebscher, I., Schöneberg, T. (2016). Tethered Agonism: A Common Activation Mechanism of Adhesion GPCRs. In: Langenhan, T., Schöneberg, T. (eds) Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-41523-9_6

Download citation

Publish with us

Policies and ethics