Skip to main content

7TM Domain Structure of Adhesion GPCRs

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 234))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fredriksson R, Lagerström MC, Höglund PJ, Schiöth HB (2002) Novel human G protein-coupled receptors with long N-terminals containing GPS domains and Ser/Thr-rich regions. FEBS Lett 531:407–414

    Article  CAS  PubMed  Google Scholar 

  2. Bjarnadóttir TK, Fredriksson R, Schiöth HB (2007) The adhesion GPCRs: a unique family of G protein-coupled receptors with important roles in both central and peripheral tissues. Cell Mol Life Sci 64:2104–2119. doi:10.1007/s00018-007-7067-1

    Article  PubMed  Google Scholar 

  3. Kolakowski LF (1994) GCRDb: a G-protein-coupled receptor database. Recept Channels 2:1–7

    CAS  PubMed  Google Scholar 

  4. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272. doi:10.1124/mol.63.6.1256

    Article  CAS  PubMed  Google Scholar 

  5. Isberg V, de Graaf C, Bortolato A, Cherezov V, Katritch V, Marshall FH et al (2015) Generic GPCR residue numbers – aligning topology maps while minding the gaps. Trends Pharmacol Sci 36:22–31. doi:10.1016/j.tips.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  6. Hamann J, Aust G, Araç D, Engel FB, Formstone C, Fredriksson R et al (2015) International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Rev 67:338–367. doi:10.1124/pr.114.009647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krasnoperov VG, Bittner MA, Beavis R, Kuang Y, Salnikow KV, Chepurny OG et al (1997) α-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18:925–937. doi:10.1016/S0896-6273(00)80332-3

    Article  CAS  PubMed  Google Scholar 

  8. Lin H-H, Chang G-W, Davies JQ, Stacey M, Harris J, Gordon S (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279:31823–31832. doi:10.1074/jbc.M402974200

    Article  CAS  PubMed  Google Scholar 

  9. Araç D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Südhof TC et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31:1364–1378. doi:10.1038/emboj.2012.26

    Article  PubMed  PubMed Central  Google Scholar 

  10. Prömel S, Langenhan T, Araç D (2013) Matching structure with function: the GAIN domain of Adhesion-GPCR and PKD1-like proteins. Trends Pharmacol Sci 34:470–478. doi:10.1016/j.tips.2013.06.002

    Article  PubMed  Google Scholar 

  11. Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z et al (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499:444–449. doi:10.1038/nature12393

    Article  CAS  PubMed  Google Scholar 

  12. Yang L, Yang D, de Graaf C, Moeller A, West GM, Dharmarajan V et al (2015) Conformational states of the full-length glucagon receptor. Nat Commun 6:7859. doi:10.1038/ncomms8859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang D, de Graaf C, Yang L, Song G, Dai A, Cai X, et al (2016) Structural determinants of binding the seven-transmembrane domain of the glucagon-like peptide-1 receptor. J Biol Chem 291:12991–13004. doi:10.1074/jbc.M116.721977

    Google Scholar 

  14. Langenhan T, Aust G, Hamann J (2013) Sticky signaling–adhesion class G protein-coupled receptors take the stage. Sci Signal 6:re3. doi: 10.1126/scisignal.2003825

    Google Scholar 

  15. Araç D, Sträter N, Seiradake E (2016) Understanding the structural basis of adhesion GPCR functions. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  16. Lu YC, Nazarko OV, Sando R, Salzman GS, Südhof TC, Araç D (2015) Structural basis of latrophilin-FLRT-UNC5 interaction in cell adhesion. Structure. doi:10.1016/j.str.2015.06.024

    Google Scholar 

  17. Stacey M, Lin H-H, Gordon S, McKnight AJ (2000) LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci 25:284–289. doi:10.1016/S0968-0004(00)01583-8

    Article  CAS  PubMed  Google Scholar 

  18. Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1421785112

    Google Scholar 

  19. Liebscher I, Monk KR, Schöneberg T (2015) How to wake a giant. Oncotarget 6:23038–23039. doi: 10.18632/oncotarget.5112

  20. Liebscher I, Schön J, Petersen SC, Fischer L, Auerbach N, Demberg LM et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9:2018–2026. doi:10.1016/j.celrep.2014.11.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paavola KJ, Sidik H, Zuchero JB, Eckart M, Talbot WS (2014) Type IV collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci Signal 7:ra76. doi:10.1126/scisignal.2005347

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bohnekamp J, Schöneberg T (2011) Cell adhesion receptor GPR133 couples to Gs protein. J Biol Chem 286:41912–41916. doi:10.1074/jbc.C111.265934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupte J, Swaminath G, Danao J, Tian H, Li Y, Wu X (2012) Signaling property study of adhesion G-protein-coupled receptors. FEBS Lett 586:1214–1219. doi:10.1016/j.febslet.2012.03.014

    Article  CAS  PubMed  Google Scholar 

  24. Stephenson JR, Paavola KJ, Schaefer SA, Kaur B, Van Meir EG, Hall RA (2013) Brain-specific angiogenesis inhibitor-1 signaling, regulation, and enrichment in the postsynaptic density. J Biol Chem 288:22248–22256. doi:10.1074/jbc.M113.489757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paavola KJ, Stephenson JR, Ritter SL, Alter SP, Hall RA (2011) The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. J Biol Chem 286:28914–28921. doi:10.1074/jbc.M111.247973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A et al (2013) Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. J Biomol Screen 18:599–609. doi:10.1177/1087057113475480

    Article  PubMed  Google Scholar 

  27. Yang L, Yang L, Friedland S, Friedland S, Corson N, Corson N et al (2014) GPR56 inhibits melanoma growth by internalizing and degrading its ligand TG2. Cancer Res 74:1022–1031. doi:10.1158/0008-5472.CAN-13-1268

    Article  CAS  PubMed  Google Scholar 

  28. Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schöneberg T et al (2015) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J. doi:10.1096/fj.15-276220

    PubMed Central  Google Scholar 

  29. Demberg LM, Rothemund S, Schöneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464:743–747. doi:10.1016/j.bbrc.2015.07.020

    Article  CAS  PubMed  Google Scholar 

  30. Liebscher I, Schöneberg T (2016) Tethered agonism: a common activation mechanism of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  31. Hamoud N, Tran V, Croteau L-P, Kania A, Côté J-F (2014) G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. Proc Natl Acad Sci U S A 111:3745–3750. doi:10.1073/pnas.1313886111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duman JG, Tzeng CP, Tu Y-K, Munjal T, Schwechter B, Ho TS-Y et al (2013) The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. J Neurosci 33:6964–6978. doi:10.1523/JNEUROSCI.3978-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li X, Roszko I, Sepich DS, Ni M, Hamm HE, Marlow FL et al (2013) Gpr125 modulates Dishevelled distribution and planar cell polarity signaling. Development 140:3028–3039. doi:10.1242/dev.094839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nordström KJV, Lagerström MC, Waller LMJ, Fredriksson R, Schiöth HB (2009) The secretin GPCRs descended from the family of adhesion GPCRs. Mol Biol Evol 26:71–84. doi:10.1093/molbev/msn228

    Article  PubMed  Google Scholar 

  35. Bryant D, Moulton V (2004) Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265. doi:10.1093/molbev/msh018

    Article  CAS  PubMed  Google Scholar 

  36. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wolf S, Grünewald S (2015) Sequence, structure and ligand binding evolution of rhodopsin-like G protein-coupled receptors: a crystal structure-based phylogenetic analysis. PLoS One 10, e0123533. doi:10.1371/journal.pone.0123533

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267. doi:10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  39. Kuhner MK, Felsenstein J (1994) A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol 11:459–468

    CAS  PubMed  Google Scholar 

  40. Jazayeri A, Doré AS, Lamb D, Krishnamurthy H, Southall SM, Baig AH et al (2016) Extra-helical binding site of a glucagon receptor antagonist. Nature. doi:10.1038/nature17414

    Google Scholar 

  41. Hollenstein K, Kean J, Bortolato A, Cheng RKY, Doré AS, Jazayeri A et al (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499:438–443. doi:10.1038/nature12357

    Article  CAS  PubMed  Google Scholar 

  42. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494:185–194. doi:10.1038/nature11896

    Article  CAS  PubMed  Google Scholar 

  43. Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64. doi:10.1126/science.1249489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang C, Wu H, Katritch V, Han GW, Huang X-P, Liu W et al (2013) Structure of the human smoothened receptor bound to an antitumour agent. Nature 497:338–343. doi:10.1038/nature12167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hollenstein K, de Graaf C, Bortolato A, Wang M-W, Marshall FH, Stevens RC (2014) Insights into the structure of class B GPCRs. Trends Pharmacol Sci 35:12–22. doi:10.1016/j.tips.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  46. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA et al (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289:739–745. doi: 10.1126/science.289.5480.739

    Google Scholar 

  47. Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V et al (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70. doi:10.1038/nature10236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. doi:10.1126/science.1194396

    Google Scholar 

  49. Coin I, Katritch V, Sun T, Xiang Z, Siu FY, Beyermann M, Stevens RC et al (2013) Genetically encoded chemical probes in cells reveal the binding path of urocortin-I to CRF Class B GPCR. Cell 155:1258–1269. doi:10.1016/j.cell.2013.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428. doi:10.1016/S1043-9471(05)80049-7

    Article  CAS  Google Scholar 

  51. Wootten D, Simms J, Miller LJ, Christopoulos A, Sexton PM (2013) Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc Natl Acad Sci 110:5211–5216. doi:10.1073/pnas.1221585110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pin J-P, Galvez T, Prezeau L (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 98:325–354

    Article  CAS  PubMed  Google Scholar 

  53. de Graaf C, Foata N, Engkvist O, Rognan D (2008) Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening. Proteins 71:599–620. doi:10.1002/prot.21724

    Article  PubMed  Google Scholar 

  54. Isberg V, Mordalski S, Munk C, Rataj K, Harpsøe K, Hauser AS et al (2015) GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res. doi:10.1093/nar/gkv1178

    PubMed  PubMed Central  Google Scholar 

  55. Pawson AJ, Sharman JL, Benson HE, Faccenda E, Alexander SPH, Buneman OP et al (2014) The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res 42:D1098–D1106. doi:10.1093/nar/gkt1143

    Article  CAS  PubMed  Google Scholar 

  56. Shi L, Liapakis G, Xu R, Guarnieri F, Ballesteros JA, Javitch JA (2002) Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J Biol Chem 277:40989–40996. doi:10.1074/jbc.M206801200

    Article  CAS  PubMed  Google Scholar 

  57. Tehan BG, Bortolato A, Blaney FE, Weir MP, Mason JS (2014) Unifying family A GPCR theories of activation. Pharmacol Ther 143:51–60. doi:10.1016/j.pharmthera.2014.02.004

    Article  CAS  PubMed  Google Scholar 

  58. Mirzadegan T, Benkö G, Filipek S, Palczewski K (2003) Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry 42:2759–2767. doi:10.1021/bi027224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Allosteric sodium in class A GPCR signaling. Trends Biochem Sci 39:233–244. doi:10.1016/j.tibs.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hofmann KP, Scheerer P, Hildebrand PW, Choe H-W, Park JH, Heck M et al (2009) A G protein-coupled receptor at work: the rhodopsin model. Trends Biochem Sci 34:540–552. doi:10.1016/j.tibs.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  61. Doré AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM et al (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511:557–562. doi:10.1038/nature13396

    Article  PubMed  Google Scholar 

  62. Rasmussen SGF, Devree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS et al (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555. doi:10.1038/nature10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Scheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe H-W et al (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497–502. doi:10.1038/nature07330

    Article  CAS  PubMed  Google Scholar 

  64. Choe H-W, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N et al (2011) Crystal structure of metarhodopsin II. Nature 471:651–655. doi:10.1038/nature09789

    Article  CAS  PubMed  Google Scholar 

  65. Fritze O, Filipek S, Kuksa V, Palczewski K, Hofmann KP, Ernst OP (2003) Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci U S A 100:2290–2295. doi:10.1073/pnas.0435715100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prioleau C, Visiers I, Ebersole BJ, Weinstein H, Sealfon SC (2002) Conserved helix 7 tyrosine acts as a multistate conformational switch in the 5HT2C receptor. identification of a novel “locked-on” phenotype and double revertant mutations. J Biol Chem 277:36577–36584. doi:10.1074/jbc.M206223200

    Article  CAS  PubMed  Google Scholar 

  67. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V-P, Chien EYT et al (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16:897–905. doi:10.1016/j.str.2008.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chrencik JE, Roth CB, Terakado M, Kurata H, Omi R, Kihara Y et al (2015) Crystal structure of antagonist bound human lysophosphatidic acid receptor 1. Cell 161:1633–1643. doi:10.1016/j.cell.2015.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G et al (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335:851–855. doi:10.1126/science.1215904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Legrand F, Tomasevic N, Simakova O, Lee C-CR, Wang Z, Raffeld M, et al (2014) The eosinophil surface receptor epidermal growth factor-like module containing mucin-like hormone receptor 1 (EMR1): a novel therapeutic target for eosinophilic disorders. J Allergy Clin Immunol 133:1439–1447, 1447.e1–e8. doi:10.1016/j.jaci.2013.11.041

    Google Scholar 

  71. Veninga H, de Groot DM, McCloskey N, Owens BM, Dessing MC, Verbeek JS et al (2011) CD97 antibody depletes granulocytes in mice under conditions of acute inflammation via a Fc receptor-dependent mechanism. J Leukoc Biol 89:413–421. doi:10.1189/jlb.0510280

    Article  CAS  PubMed  Google Scholar 

  72. Perret J, Craenenbroeck M, Langer I, Vertongen P (2002) Mutational analysis of the glucagon receptor: similarities with the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP). Biochem J 362:389–394

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Koth CM, Murray JM, Mukund S, Madjidi A, Minn A, Clarke HJ et al (2012) Molecular basis for negative regulation of the glucagon receptor. Proc Natl Acad Sci 109:14393–14398. doi:10.1073/pnas.1206734109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Unson CG, Wu C-R, Jiang Y, Yoo B, Cheung C, Sakmar TP et al (2002) Roles of specific extracellular domains of the glucagon receptor in ligand binding and signaling. Biochemistry 41:11795–11803. doi:10.1021/bi025711j

    Article  CAS  PubMed  Google Scholar 

  75. Hoare SRJ, Brown BT, Santos MA, Malany S, Betz SF, Grigoriadis DE (2006) Single amino acid residue determinants of non-peptide antagonist binding to the corticotropin-releasing factor1 (CRF1) receptor. Biochem Pharmacol 72:244–255. doi: 10.1016/j.bcp.2006.04.007

    Google Scholar 

  76. Donnelly D (2012) The structure and function of the glucagon‐like peptide‐1 receptor and its ligands. Br J Pharmacol 166:27–41. doi:10.1111/j.1476-5381.2011.01687.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wootten D, Savage EE, Willard FS, Bueno AB, Sloop KW, Christopoulos A et al (2013) Differential activation and modulation of the glucagon-like peptide-1 receptor by small molecule ligands. Mol Pharmacol 83:822–834. doi:10.1124/mol.112.084525

    Article  CAS  PubMed  Google Scholar 

  78. Coopman K, Wallis R, Robb G, Brown AJH, Wilkinson GF, Timms D et al (2011) Residues within the transmembrane domain of the glucagon-like peptide-1 receptor involved in ligand binding and receptor activation: modelling the ligand-bound receptor. Mol Endocrinol 25:1804–1818. doi:10.1210/me.2011-1160

    Article  CAS  PubMed  Google Scholar 

  79. Underwood CR, Garibay P, Knudsen LB, Hastrup S, Peters GH, Rudolph R et al (2010) Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J Biol Chem 285:723–730. doi:10.1074/jbc.M109.033829

    Article  CAS  PubMed  Google Scholar 

  80. Wootten D, Reynolds CA, Koole C, Smith KJ, Mobarec JC, Simms J et al (2016) A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism: lessons from class B crystal structures. Mol Pharmacol 89:335–347. doi:10.1124/mol.115.101246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yaqub T, Tikhonova IG, Lättig J, Magnan R, Laval M, Escrieut C et al (2010) Identification of determinants of glucose-dependent insulinotropic polypeptide receptor that interact with N-terminal biologically active region of the natural ligand. Mol Pharmacol 77:547–558. doi:10.1124/mol.109.060111

    Article  CAS  PubMed  Google Scholar 

  82. Tseng C-C, Lin L (1997) A point mutation in the glucose-dependent insulinotropic peptide receptor confers constitutive activity. Biochem Biophys Res Commun 232:96–100. doi:10.1006/bbrc.1997.6231

    Article  CAS  PubMed  Google Scholar 

  83. Di Paolo E, Petry H, Moguilevsky N, Bollen A, De Neef P, Waelbroeck M et al (1999) Mutations of aromatic residues in the first transmembrane helix impair signalling by the secretin receptor. Recept Channels 6:309–315

    PubMed  Google Scholar 

  84. Di Paolo E, De Neef P, Moguilevsky N, Petry H, Bollen A, Waelbroeck M et al (1998) Contribution of the second transmembrane helix of the secretin receptor to the positioning of secretin. FEBS Lett 424:207–210. doi: 10.1016/S0014-5793(98)00175-6

    Google Scholar 

  85. Solano RM, Langer I, Perret J, Vertongen P, Juarranz MG, Robberecht P et al (2001) Two basic residues of the h-VPAC1 receptor second transmembrane helix are essential for ligand binding and signal transduction. J Biol Chem 276:1084–1088. doi:10.1074/jbc.M007696200

    Article  CAS  PubMed  Google Scholar 

  86. Ceraudo E, Hierso R, Tan Y-V, Murail S, Rouyer-Fessard C, Nicole P et al (2012) Spatial proximity between the VPAC1 receptor and the amino terminus of agonist and antagonist peptides reveals distinct sites of interaction. FASEB J 26:2060–2071. doi:10.1096/fj.11-196444

    Article  CAS  PubMed  Google Scholar 

  87. Gensure RC, Shimizu N, Tsang J, Gardella TJ (2013) Identification of a contact site for residue 19 of parathyroid hormone (PTH) and PTH-related protein analogs in transmembrane domain two of the type 1 PTH receptor. Mol Endocrinol 17:2647–2658. doi:10.1210/me.2003-0275

    Article  Google Scholar 

  88. Gardella TJ, Jüppner H (2001) Molecular properties of the PTH/PTHrP receptor. Trends Endocrinol Metab 12:210–217. doi:10.1016/S1043-2760(01)00409-X

    Article  CAS  PubMed  Google Scholar 

  89. Qin L, Kufareva I, Holden LG, Wang C, Zheng Y, Zhao C et al (2015) Structural biology. Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347:1117–1122. doi:10.1126/science.1261064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. doi:10.1146/annurev-pharmtox-032112-135923

    Article  CAS  PubMed  Google Scholar 

  91. Christopher JA, Aves SJ, Bennett KA, Doré AS, Errey JC, Jazayeri A et al (2015) Fragment and structure-based drug discovery for a C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 58:6653–6664. doi:10.1021/acs.jmedchem.5b00892

    Article  CAS  PubMed  Google Scholar 

  92. Wang C, Wu H, Evron T, Vardy E, Han GW, Huang X-P et al (2014) Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat Commun 5:4355. doi:10.1038/ncomms5355

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Mason JS, Bortolato A, Congreve M, Marshall FH (2012) New insights from structural biology into the druggability of G protein-coupled receptors. Trends Pharmacol Sci 33:249–260. doi:10.1016/j.tips.2012.02.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Organization for Scientific Research (NWO VENI grant 722.014.011 to SN), the Netherlands eScience Center (NLeSC)/NWO (Enabling Technologies project, 3D-e-Chem, grant 027.014.201 to CdG), the National Natural Science Foundation of China (NSFC, Research Fund for International Young Scientists, grant No. 31250110070 to SW) and the Canada Excellence Research Chair program (OPE). OPE holds the Anne and Max Tanenbaum Chair in Neuroscience at the University of Toronto. SN and CdG participate in the European Cooperation in Science and Technology Action CM1207 [GPCR-Ligand Interactions, Structures, and Transmembrane Signalling: A European Research Network (GLISTEN)] and the GPCR Consortium (gpcrconsortium.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris de Graaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Nijmeijer, S., Wolf, S., Ernst, O.P., de Graaf, C. (2016). 7TM Domain Structure of Adhesion GPCRs. In: Langenhan, T., Schöneberg, T. (eds) Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-41523-9_3

Download citation

Publish with us

Policies and ethics