Skip to main content

Adhesion GPCRs as Modulators of Immune Cell Function

  • Chapter
  • First Online:
Adhesion G Protein-coupled Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 234))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

7TM:

Seven transmembrane

Ab:

Antibody

ABCA:

ATP-binding cassette transporter

ACAID:

Anterior chamber-associated immune deviation

Ag:

Antigen

AML:

Acute myeloid leukemia

BAI:

Brain-specific angiogenesis inhibitor

BDCA:

Blood dendritic cell antigen

CTF:

C-terminal fragment

DC:

Dendritic cell

EGF:

Epidermal growth factor

ELMO:

Engulfment and cell motility

EMR:

EGF-like module-containing mucin-like hormone receptor-like

GAIN:

GPCR autoproteolysis inducing

GEF:

Guanine nucleotide exchange factor

GPCR:

G protein-coupled receptor

GPS:

GPCR proteolysis site

HDL:

High-density lipoprotein

HRM:

Hormone receptor motif

HSPC:

Hematopoietic stem and progenitor cell

IFN:

Interferon

IL:

Interleukin

LDL:

Low-density lipoprotein

LPS:

Lipopolysaccharide

mAb:

Monoclonal antibody

Mφ:

Macrophages

NK:

Natural killer

NTF:

N-terminal fragment

PtdSer:

Phosphatidylserine

ROS:

Reactive oxygen species

SIRS:

Systemic inflammatory response syndrome

TGF:

Tumor growth factor

TNF:

Tumor necrosis factor

Treg:

Regulatory T

TSR:

Thrombospondin type 1 repeat

References

  1. Rot A, von Andrian UH (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    Article  CAS  PubMed  Google Scholar 

  2. Austyn JM, Gordon S (1981) F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 11:805–815

    Article  CAS  PubMed  Google Scholar 

  3. Eichler W, Aust G, Hamann D (1994) Characterization of an early activation-dependent antigen on lymphocytes defined by the monoclonal antibody BL-Ac(F2). Scand J Immunol 39:111–115

    Article  CAS  PubMed  Google Scholar 

  4. McKnight AJ, Gordon S (1996) EGF-TM7: a novel subfamily of seven-transmembrane-region leukocyte cell-surface molecules. Immunol Today 17:283–287

    Article  CAS  PubMed  Google Scholar 

  5. McKnight AJ, Gordon S (1998) The EGF-TM7 family: unusual structures at the leukocyte surface. J Leukoc Biol 63:271–280

    CAS  PubMed  Google Scholar 

  6. Kwakkenbos MJ, Kop EN, Stacey M, Matmati M, Gordon S, Lin H-H et al (2004) The EGF-TM7 family: a postgenomic view. Immunogenetics 55:655–666

    Article  CAS  PubMed  Google Scholar 

  7. Lin H-H, Stacey M, Stein-Streilein J, Gordon S (2010) F4/80: the macrophage-specific adhesion-GPCR and its role in immunoregulation. Adv Exp Med Biol 706:149–156

    Article  CAS  PubMed  Google Scholar 

  8. Gordon S, Hamann J, Lin H-H, Stacey M (2011) F4/80 and the related adhesion-GPCRs. Eur J Immunol 41:2472–2476

    Article  CAS  PubMed  Google Scholar 

  9. McGarry MP, Stewart CC (1991) Murine eosinophil granulocytes bind the murine macrophage-monocyte specific monoclonal antibody F4/80. J Leukoc Biol 50:471–478

    CAS  PubMed  Google Scholar 

  10. Taylor PR, Martinez-Pomares L, Stacey M, Lin HH, Brown GD, Gordon S (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    Article  CAS  PubMed  Google Scholar 

  11. Hume DA, Gordon S (1983) Mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Identification of resident macrophages in renal medullary and cortical interstitium and the juxtaglomerular complex. J Exp Med 157:1704–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hume DA, Robinson AP, MacPherson GG, Gordon S (1983) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. Relationship between macrophages, Langerhans cells, reticular cells, and dendritic cells in lymphoid and hematopoietic organs. J Exp Med 158:1522–1536

    Article  CAS  PubMed  Google Scholar 

  13. Morris L, Graham CF, Gordon S (1991) Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. Development 112:517–526

    CAS  PubMed  Google Scholar 

  14. Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baud V, Chissoe SL, Viegas-Péquignot E, Diriong S, N’Guyen VC, Roe BA et al (1995) EMR1, an unusual member in the family of hormone receptors with seven transmembrane segments. Genomics 26:334–344

    Article  CAS  PubMed  Google Scholar 

  16. Lin HH, Stubbs LJ, Mucenski ML (1997) Identification and characterization of a seven transmembrane hormone receptor using differential display. Genomics 41:301–308

    Article  CAS  PubMed  Google Scholar 

  17. McKnight AJ, Macfarlane AJ, Dri P, Turley L, Willis AC, Gordon S (1996) Molecular cloning of F4/80, a murine macrophage-restricted cell surface glycoprotein with homology to the G-protein-linked transmembrane 7 hormone receptor family. J Biol Chem 271:486–489

    Article  CAS  PubMed  Google Scholar 

  18. Hamann J, Koning N, Pouwels W, Ulfman LH, van Eijk M, Stacey M et al (2007) EMR1, the human homolog of F4/80, is an eosinophil-specific receptor. Eur J Immunol 37:2797–2802

    Article  CAS  PubMed  Google Scholar 

  19. Legrand F, Tomasevic N, Simakova O, Lee C-CR, Wang Z, Raffeld M et al (2014) The eosinophil surface receptor epidermal growth factor-like module containing mucin-like hormone receptor 1 (EMR1): a novel therapeutic target for eosinophilic disorders. J Allergy Clin Immunol 133:1439–1447 1447.e1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Warschkau H, Kiderlen AF (1999) A monoclonal antibody directed against the murine macrophage surface molecule F4/80 modulates natural immune response to Listeria monocytogenes. J Immunol 163:3409–3416

    CAS  PubMed  Google Scholar 

  21. Lin H-H, Faunce DE, Stacey M, Terajewicz A, Nakamura T, Zhang-Hoover J et al (2005) The macrophage F4/80 receptor is required for the induction of antigen-specific efferent regulatory T cells in peripheral tolerance. J Exp Med 201:1615–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schaller E, Macfarlane AJ, Rupec RA, Gordon S, McKnight AJ, Pfeffer K (2002) Inactivation of the F4/80 glycoprotein in the mouse germ line. Mol Cell Biol 22:8035–8043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van den Berg TK, Kraal G (2005) A function for the macrophage F4/80 molecule in tolerance induction. Trends Immunol 26:506–509

    Article  PubMed  CAS  Google Scholar 

  24. Kwakkenbos MJ, Matmati M, Madsen O, Pouwels W, Wang Y, Bontrop RE et al (2006) An unusual mode of concerted evolution of the EGF-TM7 receptor chimera EMR2. FASEB J 20:2582–2584

    Article  CAS  PubMed  Google Scholar 

  25. Lin HH, Stacey M, Hamann J, Gordon S, McKnight AJ (2000) Human EMR2, a novel EGF-TM7 molecule on chromosome 19p13.1, is closely related to CD97. Genomics 67:188–200

    Article  CAS  PubMed  Google Scholar 

  26. Stacey M, Lin HH, Hilyard KL, Gordon S, McKnight AJ (2001) Human epidermal growth factor (EGF) module-containing mucin-like hormone receptor 3 is a new member of the EGF-TM7 family that recognizes a ligand on human macrophages and activated neutrophils. J Biol Chem 276:18863–18870

    Article  CAS  PubMed  Google Scholar 

  27. Kwakkenbos MJ, Chang G-W, Lin H-H, Pouwels W, de Jong EC, van Lier RAW et al (2002) The human EGF-TM7 family member EMR2 is a heterodimeric receptor expressed on myeloid cells. J Leukoc Biol 71:854–862

    CAS  PubMed  Google Scholar 

  28. Chang G-W, Davies JQ, Stacey M, Yona S, Bowdish DME, Hamann J et al (2007) CD312, the human adhesion-GPCR EMR2, is differentially expressed during differentiation, maturation, and activation of myeloid cells. Biochem Biophys Res Commun 353:133–138

    Article  CAS  PubMed  Google Scholar 

  29. van Eijk M, Aust G, Brouwer MSM, van Meurs M, Voerman JSA, Dijke IE et al (2010) Differential expression of the EGF-TM7 family members CD97 and EMR2 in lipid-laden macrophages in atherosclerosis, multiple sclerosis and Gaucher disease. Immunol Lett 129:64–71

    Article  PubMed  CAS  Google Scholar 

  30. Lin HH, Stacey M, Saxby C, Knott V, Chaudhry Y, Evans D et al (2001) Molecular analysis of the epidermal growth factor-like short consensus repeat domain-mediated protein-protein interactions: dissection of the CD97-CD55 complex. J Biol Chem 276:24160–24169

    Article  CAS  PubMed  Google Scholar 

  31. Stacey M, Chang G-W, Davies JQ, Kwakkenbos MJ, Sanderson RD, Hamann J et al (2003) The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102:2916–2924

    Article  CAS  PubMed  Google Scholar 

  32. Yona S, Lin H-H, Dri P, Davies JQ, Hayhoe RPG, Lewis SM et al (2008) Ligation of the adhesion-GPCR EMR2 regulates human neutrophil function. FASEB J 22:741–751

    Article  CAS  PubMed  Google Scholar 

  33. Lewis SM, Treacher DF, Edgeworth J, Mahalingam G, Brown CS, Mare TA et al (2015) Expression of CD11c and EMR2 on neutrophils: potential diagnostic biomarkers for sepsis and systemic inflammation. Clin Exp Immunol 182:184–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang Y-S, Chiang N-Y, Hu C-H, Hsiao C-C, Cheng K-F, Tsai W-P et al (2012) Activation of myeloid cell-specific adhesion class G protein-coupled receptor EMR2 via ligation-induced translocation and interaction of receptor subunits in lipid raft microdomains. Mol Cell Biol 32:1408–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boyden SE, Desai A, Cruse G, Young ML, Bolan HC, Scott LM et al (2016) Vibratory urticaria associated with a missense variant in ADGRE2. N Engl J Med 374:656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nieberler M, Kittel RJ, Petrenko AG, Lin H-H, Langenhan T (2016) Control of adhesion GPCR function through proteolytic processing. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  37. Scholz N, Monk KR, Kittel RJ, Langenhan T (2016) Adhesion GPCRs as a putative class of metabotropic mechanosensors. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  38. Liebscher I, Schöneberg T (2016) Tethered agonism: a common activation mechanism of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  39. Kishore A, Hall RA (2016) Versatile signaling activity of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  40. Matmati M, Pouwels W, van Bruggen R, Jansen M, Hoek RM, Verhoeven AJ et al (2007) The human EGF-TM7 receptor EMR3 is a marker for mature granulocytes. J Leukoc Biol 81:440–448

    Article  CAS  PubMed  Google Scholar 

  41. Drewniak A, van Raam BJ, Geissler J, Tool ATJ, Mook ORF, van den Berg TK et al (2009) Changes in gene expression of granulocytes during in vivo granulocyte colony-stimulating factor/dexamethasone mobilization for transfusion purposes. Blood 113:5979–5998

    Article  CAS  PubMed  Google Scholar 

  42. Caminschi I, Lucas KM, O’Keeffe MA, Hochrein H, Laâbi Y, Köntgen F et al (2001) Molecular cloning of F4/80-like-receptor, a seven-span membrane protein expressed differentially by dendritic cell and monocyte-macrophage subpopulations. J Immunol 167:3570–3576

    Article  CAS  PubMed  Google Scholar 

  43. Stacey M, Chang G-W, Sanos SL, Chittenden LR, Stubbs L, Gordon S et al (2002) EMR4, a novel epidermal growth factor (EGF)-TM7 molecule up-regulated in activated mouse macrophages, binds to a putative cellular ligand on B lymphoma cell line A20. J Biol Chem 277:29283–29293

    Article  CAS  PubMed  Google Scholar 

  44. Hamann J, Kwakkenbos MJ, de Jong EC, Heus H, Olsen AS, van Lier RAW (2003) Inactivation of the EGF-TM7 receptor EMR4 after the Pan-Homo divergence. Eur J Immunol 33:1365–1371

    Article  CAS  PubMed  Google Scholar 

  45. Caminschi I, Vandenabeele S, Sofi M, McKnight AJ, Ward N, Brodnicki TC et al (2006) Gene structure and transcript analysis of the human and mouse EGF-TM7 molecule, FIRE. DNA Seq 17:8–14

    Article  CAS  PubMed  Google Scholar 

  46. Hamann J, Eichler W, Hamann D, Kerstens HM, Poddighe PJ, Hoovers JM et al (1995) Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecule of the secretion receptor superfamily with an unusual extracellular domain. J Immunol 155:1942–1950

    CAS  PubMed  Google Scholar 

  47. van Pel M, Hagoort H, Hamann J, Fibbe WE (2008) CD97 is differentially expressed on murine hematopoietic stem-and progenitor-cells. Haematologica 93:1137–1144

    Article  PubMed  Google Scholar 

  48. Kop EN, Matmati M, Pouwels W, Leclercq G, Tak PP, Hamann J (2009) Differential expression of CD97 on human lymphocyte subsets and limited effect of CD97 antibodies on allogeneic T-cell stimulation. Immunol Lett 123:160–168

    Article  CAS  PubMed  Google Scholar 

  49. Jaspars LH, Vos W, Aust G, van Lier RA, Hamann J (2001) Tissue distribution of the human CD97 EGF-TM7 receptor. Tissue Antigens 57:325–331

    Article  CAS  PubMed  Google Scholar 

  50. Veninga H, Becker S, Hoek RM, Wobus M, Wandel E, van der Kaa J et al (2008) Analysis of CD97 expression and manipulation: antibody treatment but not gene targeting curtails granulocyte migration. J Immunol 181:6574–6583

    Article  CAS  PubMed  Google Scholar 

  51. Gray JX, Haino M, Roth MJ, Maguire JE, Jensen PN, Yarme A et al (1996) CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J Immunol 157:5438–5447

    CAS  PubMed  Google Scholar 

  52. Qian YM, Haino M, Kelly K, Song WC (1999) Structural characterization of mouse CD97 and study of its specific interaction with the murine decay-accelerating factor (DAF, CD55). Immunology 98:303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hamann J, van Zeventer C, Bijl A, Molenaar C, Tesselaar K, van Lier RA (2000) Molecular cloning and characterization of mouse CD97. Int Immunol 12:439–448

    Article  CAS  PubMed  Google Scholar 

  54. Hamann J, Vogel B, van Schijndel GM, van Lier RA (1996) The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med 184:1185–1189

    Article  CAS  PubMed  Google Scholar 

  55. Hamann J, Stortelers C, Kiss-Toth E, Vogel B, Eichler W, van Lier RA (1998) Characterization of the CD55 (DAF)-binding site on the seven-span transmembrane receptor CD97. Eur J Immunol 28:1701–1707

    Article  CAS  PubMed  Google Scholar 

  56. Karpus ON, Kiener HP, Niederreiter B, Yilmaz-Elis AS, van der Kaa J, Ramaglia V et al (2015) CD55 deposited on synovial collagen fibers protects from immune complex-mediated arthritis. Arthritis Res Ther 17:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kwakkenbos MJ, Pouwels W, Matmati M, Stacey M, Lin H-H, Gordon S et al (2005) Expression of the largest CD97 and EMR2 isoforms on leukocytes facilitates a specific interaction with chondroitin sulfate on B cells. J Leukoc Biol 77:112–119

    CAS  PubMed  Google Scholar 

  58. Wang T, Ward Y, Tian L, Lake R, Guedez L, Stetler-Stevenson WG et al (2005) CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood 105:2836–2844

    Article  CAS  PubMed  Google Scholar 

  59. Wandel E, Saalbach A, Sittig D, Gebhardt C, Aust G (2012) Thy-1 (CD90) is an interacting partner for CD97 on activated endothelial cells. J Immunol 188:1442–1450

    Article  CAS  PubMed  Google Scholar 

  60. Leemans JC, te Velde AA, Florquin S, Bennink RJ, de Bruin K, van Lier RAW et al (2004) The epidermal growth factor-seven transmembrane (EGF-TM7) receptor CD97 is required for neutrophil migration and host defense. J Immunol 172:1125–1131

    Article  CAS  PubMed  Google Scholar 

  61. Kop EN, Adriaansen J, Smeets TJM, Vervoordeldonk MJ, van Lier RAW, Hamann J et al (2006) CD97 neutralisation increases resistance to collagen-induced arthritis in mice. Arthritis Res Ther 8:R155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. de Groot DM, Vogel G, Dulos J, Teeuwen L, Stebbins K, Hamann J et al (2009) Therapeutic antibody targeting of CD97 in experimental arthritis: the role of antigen expression, shedding, and internalization on the pharmacokinetics of anti-CD97 monoclonal antibody 1B2. J Immunol 183:4127–4134

    Article  PubMed  Google Scholar 

  63. Hamann J, Veninga H, de Groot DM, Visser L, Hofstra CL, Tak PP et al (2010) CD97 in leukocyte trafficking. Adv Exp Med Biol 706:128–137

    Article  CAS  PubMed  Google Scholar 

  64. Veninga H, de Groot DM, McCloskey N, Owens BM, Dessing MC, Verbeek JS et al (2011) CD97 antibody depletes granulocytes in mice under conditions of acute inflammation via a Fc receptor-dependent mechanism. J Leukoc Biol 89:413–421

    Article  CAS  PubMed  Google Scholar 

  65. Wang T, Tian L, Haino M, Gao J-L, Lake R, Ward Y et al (2007) Improved antibacterial host defense and altered peripheral granulocyte homeostasis in mice lacking the adhesion class G protein receptor CD97. Infect Immun 75:1144–1153

    Article  CAS  PubMed  Google Scholar 

  66. Veninga H, Hoek RM, de Vos AF, de Bruin AM, An F-Q, van der Poll T et al (2011) A novel role for CD55 in granulocyte homeostasis and anti-bacterial host defense. PLoS One 6:e24431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hoek RM, de Launay D, Kop EN, Yilmaz-Elis AS, Lin F, Reedquist KA et al (2010) Deletion of either CD55 or CD97 ameliorates arthritis in mouse models. Arthritis Rheum 62:1036–1042

    Article  CAS  PubMed  Google Scholar 

  68. Capasso M, Durrant LG, Stacey M, Gordon S, Ramage J, Spendlove I (2006) Costimulation via CD55 on human CD4+ T cells mediated by CD97. J Immunol 177:1070–1077

    Article  CAS  PubMed  Google Scholar 

  69. Karpus ON, Veninga H, Hoek RM, Flierman D, van Buul JD, Vandenakker CC et al (2013) Shear stress-dependent downregulation of the adhesion-G protein-coupled receptor CD97 on circulating leukocytes upon contact with its ligand CD55. J Immunol 190:3740–3748

    Article  CAS  PubMed  Google Scholar 

  70. Cork SM, Van Meir EG (2011) Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development. J Mol Med 89:743–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Park D, Ravichandran KS (2010) Emerging roles of brain-specific angiogenesis inhibitor 1. Adv Exp Med Biol 706:167–178

    Article  CAS  PubMed  Google Scholar 

  72. Stephenson JR, Purcell RH, Hall RA (2014) The BAI subfamily of adhesion GPCRs: synaptic regulation and beyond. Trends Pharmacol Sci 35:208–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K, Tatsumi K et al (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15:2145–2150

    Article  CAS  PubMed  Google Scholar 

  74. Kaur B, Brat DJ, Calkins CC, Van Meir EG (2003) Brain angiogenesis inhibitor 1 is differentially expressed in normal brain and glioblastoma independently of p53 expression. Am J Pathol 162:19–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Park D, Tosello-Trampont A-C, Elliott MR, Lu M, Haney LB, Ma Z et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434

    Article  CAS  PubMed  Google Scholar 

  76. Das S, Owen KA, Ly KT, Park D, Black SG, Wilson JM et al (2011) Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proc Natl Acad Sci U S A 108:2136–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Koh JT, Kook H, Kee HJ, Seo Y-W, Jeong BC, Lee JH et al (2004) Extracellular fragment of brain-specific angiogenesis inhibitor 1 suppresses endothelial cell proliferation by blocking alphavbeta5 integrin. Exp Cell Res 294:172–184

    Article  CAS  PubMed  Google Scholar 

  78. Kaur B, Brat DJ, Devi NS, Van Meir EG (2005) Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24:3632–3642

    Article  CAS  PubMed  Google Scholar 

  79. Kaur B, Cork SM, Sandberg EM, Devi NS, Zhang Z, Klenotic PA et al (2009) Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism. Cancer Res 69:1212–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cork SM, Kaur B, Devi NS, Cooper L, Saltz JH, Sandberg EM et al (2012) A proprotein convertase/MMP-14 proteolytic cascade releases a novel 40 kDa vasculostatin from tumor suppressor BAI1. Oncogene 31:5144–5152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mazaheri F, Breus O, Durdu S, Haas P, Wittbrodt J, Gilmour D et al (2014) Distinct roles for BAI1 and TIM-4 in the engulfment of dying neurons by microglia. Nat Commun 5:4046

    Article  CAS  PubMed  Google Scholar 

  82. Fond AM, Lee CS, Schulman IG, Kiss RS, Ravichandran KS (2015) Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1. J Clin Invest 125:2748–2758

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lee CS, Penberthy KK, Wheeler KM, Juncadella IJ, Vandenabeele P, Lysiak JJ et al (2016) Boosting apoptotic cell clearance by colonic epithelial cells attenuates inflammation in vivo. Immunity 44(4):807–820

    Article  CAS  PubMed  Google Scholar 

  84. Billings EA, Lee CS, Owen KA, D’Souza RS, Ravichandran KS, Casanova JE (2016) The adhesion GPCR BAI1 mediates macrophage ROS production and microbicidal activity against Gram-negative bacteria. Sci Signal 9:ra14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Hochreiter-Hufford AE, Lee CS, Kinchen JM, Sokolowski JD, Arandjelovic S, Call JA et al (2013) Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497:263–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Duman JG, Tzeng CP, Tu Y-K, Munjal T, Schwechter B, Ho TS-Y et al (2013) The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. J Neurosci 33:6964–6978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhu D, Li C, Swanson AM, Villalba RM, Guo J, Zhang Z et al (2015) BAI1 regulates spatial learning and synaptic plasticity in the hippocampus. J Clin Invest 125:1497–1508

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shiratsuchi T, Nishimori H, Ichise H, Nakamura Y, Tokino T (1997) Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1). Cytogenet Cell Genet 79:103–108

    Article  CAS  PubMed  Google Scholar 

  89. Lanoue V, Usardi A, Sigoillot SM, Talleur M, Iyer K, Mariani J et al (2013) The adhesion-GPCR BAI3, a gene linked to psychiatric disorders, regulates dendrite morphogenesis in neurons. Mol Psychiatry 18:943–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hamoud N, Tran V, Croteau L-P, Kania A, Côté J-F (2014) G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. Proc Natl Acad Sci U S A 111:3745–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R et al (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303:2033–2036

    Article  CAS  PubMed  Google Scholar 

  92. Hamann J, Aust G, Araç D, Engel FB, Formstone C, Fredriksson R et al (2015) International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Rev 67:338–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Solaimani Kartalaei P, Yamada-Inagawa T, Vink CS, de Pater E, van der Linden R, Marks-Bluth J et al (2015) Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. J Exp Med 212:93–106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Rao TN, Marks-Bluth J, Sullivan J, Gupta MK, Chandrakanthan V, Fitch SR et al (2015) High-level Gpr56 expression is dispensable for the maintenance and function of hematopoietic stem and progenitor cells in mice. Stem Cell Res 14:307–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chiesa Della M, Falco M, Parolini S, Bellora F, Petretto A, Romeo E et al (2010) GPR56 as a novel marker identifying the CD56dull CD16+ NK cell subset both in blood stream and in inflamed peripheral tissues. Int Immunol 22:91–100

    Article  CAS  Google Scholar 

  96. Peng Y-M, van de Garde MDB, Cheng K-F, Baars PA, Remmerswaal EBM, van Lier RAW et al (2011) Specific expression of GPR56 by human cytotoxic lymphocytes. J Leukoc Biol 90:735–740

    Article  CAS  PubMed  Google Scholar 

  97. Chang G-W, Hsiao C-C, Peng Y-M, Vieira Braga FA, Kragten NAM, Remmerswaal EBM et al (2016) The adhesion G protein-coupled receptor GPR56/ADGRG1 is an inhibitory receptor on human NK cells. Cell Rep 15:1757–1770

    Article  CAS  PubMed  Google Scholar 

  98. Sleckman BP, Khan WN, Xu W, Bassing CH, Malynn BA, Copeland NG et al (2000) Cloning and functional characterization of the early-lymphocyte-specific Pb99 gene. Mol Cell Biol 20:4405–4410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang J-J, Zhang L-L, Zhang H-X, Shen C-L, Lu S-Y, Kuang Y et al (2013) Gpr97 is essential for the follicular versus marginal zone B-lymphocyte fate decision. Cell Death Dis 4:e853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Shi J-P, Li X-N, Zhang X-Y, Du B, Jiang W-Z, Liu M-Y et al (2015) Gpr97 is dispensable for inflammation in OVA-induced asthmatic mice. PLoS One 10:e0131461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Aust G, Zhu D, Van Meir EG, Xu L (2016) Adhesion GPCRs in tumorigenesis. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  102. Wobus M, Bornhäuser M, Jacobi A, Kräter M, Otto O, Ortlepp C et al (2015) Association of the EGF-TM7 receptor CD97 expression with FLT3-ITD in acute myeloid leukemia. Oncotarget 6:38804–38815

    PubMed  PubMed Central  Google Scholar 

  103. Pabst C, Bergeron A, Lavallée V-P, Yeh J, Gendron P, Norddahl GL et al (2016) GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood 127:2018–2027

    Article  CAS  PubMed  Google Scholar 

  104. Saito Y, Kaneda K, Suekane A, Ichihara E, Nakahata S, Yamakawa N et al (2013) Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia 27:1637–1649

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of our laboratories for generating a large part of the data discussed in this chapter. This work was supported by grants to J.H. from the Deutsche Forschungsgemeinschaft (Research Unit 2149) and the Thyssen Foundation (2015-00387), to K.S.R. from the National Institutes of Health, USA (GM064709, HD074981, and MH096484), and to H.H.L. from the Ministry of Science and Technology, Taiwan (MOST-104-2320-B-182-035-MY3) and the Chang Gung Memorial Hospital (CMRPD1C0633, CMRPD1D0072-3, and CMRPD1D0392).

Author Contributions J.H., C.C.H., H.H.L., C.S.L., and K.S.R. wrote the manuscript.

Competing Financial Interests The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jörg Hamann or Hsi-Hsien Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Hamann, J., Hsiao, CC., Lee, C.S., Ravichandran, K.S., Lin, HH. (2016). Adhesion GPCRs as Modulators of Immune Cell Function. In: Langenhan, T., Schöneberg, T. (eds) Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-41523-9_15

Download citation

Publish with us

Policies and ethics