Skip to main content

Control of Skeletal Muscle Cell Growth and Size Through Adhesion GPCRs

  • Chapter
  • First Online:
Adhesion G Protein-coupled Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 234))

Graphical Abstract

Abstract

Skeletal muscle homeostasis is regulated by a constant influx of chemicals and exposure to mechanical stimuli. A number of key signaling pathways that translate these stimuli into changes in muscle physiology have been established. The GPCR family known as adhesion GPCRs (aGPCRs) has largely elusive roles in skeletal muscle biology; however, their unique capacity to activate adhesion and G protein signaling pathways makes them an attractive point of investigation. The skeletal muscle myofiber contains a highly organized cytoarchitecture to ensure contractile function. This requires intricate interactions with components of the extracellular matrix (ECM) surrounding each fiber. aGPCRs possess extended N-termini known to interact with ECM proteins and complexes suggesting a compatible role in skeletal muscle biology. Furthermore, recent work demonstrated the involvement of certain aGPCRs in whole muscle hypertrophy and differentiation of muscle progenitor cells. Signaling pathways downstream of aGPCRs are still incompletely understood; however, initial findings show involvement of the Gα12/13 subunit signaling to the pro-anabolic Akt/mTOR pathway. Together, this chapter will review the emerging role of aGPCRs in skeletal muscle biology and putative mechanism(s) employed to regulate skeletal muscle growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egerman MA, Glass DJ (2014) Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol 49:59–68

    Article  CAS  PubMed  Google Scholar 

  2. Jacobs BL, Goodman CA, Hornberger TA (2014) The mechanical activation of mTOR signaling: an emerging role for late endosome/lysosomal targeting. J Muscle Res Cell Motil 35:11–21

    Article  CAS  PubMed  Google Scholar 

  3. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Glass DJ (2010) PI3 kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol 346:267–278

    CAS  PubMed  Google Scholar 

  5. Frost RA, Lang CH (2007) Protein kinase B/Akt: a nexus of growth factor and cytokine signaling in determining muscle mass. J Appl Physiol 103:378–387

    Article  CAS  PubMed  Google Scholar 

  6. Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M (2002) Regulation of Raf-Akt Cross-talk. J Biol Chem 277:31099–31106

    Article  CAS  PubMed  Google Scholar 

  7. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR et al (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269

    Article  CAS  PubMed  Google Scholar 

  8. Andjelkovic M, Alessi DR, Meier R, Fernandez A, Lamb NJ et al (1997) Role of translocation in the activation and function of protein kinase B. J Biol Chem 272:31515–31524

    Article  CAS  PubMed  Google Scholar 

  9. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL et al (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019

    Article  CAS  PubMed  Google Scholar 

  10. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L et al (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013

    Article  CAS  PubMed  Google Scholar 

  11. Lai KM, Gonzalez M, Poueymirou WT, Kline WO, Na E et al (2004) Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24:9295–9304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y et al (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403

    Article  CAS  PubMed  Google Scholar 

  13. Carson JA, Yan Z, Booth FW, Coleman ME, Schwartz RJ et al (1995) Regulation of skeletal alpha-actin promoter in young chickens during hypertrophy caused by stretch overload. Am J Physiol 268:C918–C924

    CAS  PubMed  Google Scholar 

  14. White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP et al (2014) G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proc Natl Acad Sci U S A 111:15756–15761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. White JP, Reecy JM, Washington TA, Sato S, Le ME et al (2009) Overload-induced skeletal muscle extracellular matrix remodelling and myofibre growth in mice lacking IL-6. Acta Physiol (Oxf) 197:321–332

    Article  CAS  PubMed Central  Google Scholar 

  16. Farthing JP, Chilibeck PD (2003) The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol 89:578–586

    Article  PubMed  Google Scholar 

  17. Tsumiyama W, Oki S, Takamiya N, Umei N, Shimizu ME et al (2014) Induction of muscle hypertrophy in rats through low intensity eccentric contraction. J Phys Ther Sci 26:1623–1625

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hornberger TA (2011) Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int J Biochem Cell Biol 43:1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML et al (2004) Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380:795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA (2011) Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. J Physiol 589:1831–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC et al (2011) The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol 589:5485–5501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S et al (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587:1535–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carson JA, Wei L (2000) Integrin signaling’s potential for mediating gene expression in hypertrophying skeletal muscle. J Appl Physiol 88:337–343

    CAS  PubMed  Google Scholar 

  24. Frisch SM, Francis H (1994) Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 124:619–626

    Article  CAS  PubMed  Google Scholar 

  25. Zou K, Meador BM, Johnson B, Huntsman HD, Mahmassani Z et al (2011) The alpha(7)beta(1)-integrin increases muscle hypertrophy following multiple bouts of eccentric exercise. J Appl Physiol 111:1134–1141

    Article  CAS  PubMed  Google Scholar 

  26. Luo R, Jeong SJ, Jin Z, Strokes N, Li S et al (2011) G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination. Proc Natl Acad Sci U S A 108:12925–12930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR (2015) The adhesion GPCR Gpr56 regulates oligodendrocyte development via interactions with Galpha12/13 and RhoA. Nat Commun 6:6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murga C, Fukuhara S, Gutkind JS (2000) A novel role for phosphatidylinositol 3-kinase beta in signaling from G protein-coupled receptors to Akt. J Biol Chem 275:12069–12073

    Article  CAS  PubMed  Google Scholar 

  29. Langenhan T, Aust G, Hamann J (2013) Sticky signaling–adhesion class G protein-coupled receptors take the stage. Sci Signal 6:re3

    Article  PubMed  Google Scholar 

  30. Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L et al (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303:2033–2036

    Article  CAS  PubMed  Google Scholar 

  31. Sigoillot SM, Monk KR, Piao X, Selimi F, Harty BL (2016) Adhesion G protein-coupled receptors in the nervous system: from synapse and dendrite morphogenesis to myelination. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  32. Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT et al (2012) A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151:1319–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu MP, Doyle JR, Barry B, Beauvais A, Rozkalne A et al (2013) G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo. FEBS J 280:6097–6113

    Article  CAS  PubMed  Google Scholar 

  34. Hamoud N, Tran V, Croteau LP, Kania A, Cote JF (2014) G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates. Proc Natl Acad Sci U S A 111:3745–3750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zyryanova T, Schneider R, Adams V, Sittig D, Kerner C et al (2014) Skeletal muscle expression of the adhesion-GPCR CD97: CD97 deletion induces an abnormal structure of the sarcoplasmatic reticulum but does not impair skeletal muscle function. PLoS One 9, e100513

    Article  PubMed  PubMed Central  Google Scholar 

  36. Minetti GC, Feige JN, Bombard F, Heier A, Morvan F et al (2014) Galphai2 signaling is required for skeletal muscle growth, regeneration, and satellite cell proliferation and differentiation. Mol Cell Biol 34:619–630

    Article  PubMed  PubMed Central  Google Scholar 

  37. Minetti GC, Feige JN, Rosenstiel A, Bombard F, Meier V et al (2011) Galphai2 signaling promotes skeletal muscle hypertrophy, myoblast differentiation, and muscle regeneration. Sci Signal 4:ra80

    Article  PubMed  Google Scholar 

  38. Takefuji M, Wirth A, Lukasova M, Takefuji S, Boettger T et al (2012) G(13)-mediated signaling pathway is required for pressure overload-induced cardiac remodeling and heart failure. Circulation 126:1972–1982

    Article  PubMed  Google Scholar 

  39. Scholz N, Monk KR, Kittel RJ, Langenhan T (2016) Adhesion GPCRs as a putative class of metabotropic mechanosensors. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, Heidelberg

    Google Scholar 

  40. McClung JM, Lee WJ, Thompson RW, Lowe LL, Carson JA (2003) RhoA induction by functional overload and nandrolone decanoate administration in rat skeletal muscle. Pflugers Arch 447:345–355

    Article  CAS  PubMed  Google Scholar 

  41. Gordon SE, Fluck M, Booth FW (2001) Selected contribution: skeletal muscle focal adhesion kinase, paxillin, and serum response factor are loading dependent. J Appl Physiol 90:1174–1183, discussion 1165

    CAS  PubMed  Google Scholar 

  42. Castellani L, Salvati E, Alema S, Falcone G (2006) Fine regulation of RhoA and Rock is required for skeletal muscle differentiation. J Biol Chem 281:15249–15257

    Article  CAS  PubMed  Google Scholar 

  43. Shin J, McFarland DC, Velleman SG (2013) Migration of turkey muscle satellite cells is enhanced by the syndecan-4 cytoplasmic domain through the activation of RhoA. Mol Cell Biochem 375:115–130

    CAS  PubMed  Google Scholar 

  44. Wu EH, Tam BH, Wong YH (2006) Constitutively active alpha subunits of G(q/11) and G(12/13) families inhibit activation of the pro-survival Akt signaling cascade. FEBS J 273:2388–2398

    Article  CAS  PubMed  Google Scholar 

  45. Bhasin S, He EJ, Kawakubo M, Schroeder ET, Yarasheski K et al (2009) N-terminal propeptide of type III procollagen as a biomarker of anabolic response to recombinant human GH and testosterone. J Clin Endocrinol Metab 94:4224–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Adams GR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84:1716–1722

    CAS  PubMed  Google Scholar 

  47. Pal M, Febbraio MA, Whitham M (2014) From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol Cell Biol 92:331–339

    Article  CAS  PubMed  Google Scholar 

  48. Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98:1154–1162

    Article  CAS  PubMed  Google Scholar 

  49. Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L et al (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rao RR, Long JZ, White JP, Svensson KJ, Lou J et al (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. White .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

White, J.P. (2016). Control of Skeletal Muscle Cell Growth and Size Through Adhesion GPCRs. In: Langenhan, T., Schöneberg, T. (eds) Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-41523-9_13

Download citation

Publish with us

Policies and ethics