Skip to main content

Pilot-Induced-Oscillations Alleviation Through Anti-windup Based Approach

  • Chapter
  • First Online:
Book cover Space Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 114))

Abstract

The chapter is dedicated to the optimization of a well-known structure of compensators: the anti-windup scheme. This approach belongs to the saturation allowance control class which aims to exploit at the most the actuators capabilities. The objective of this chapter consists of adapting and developing the anti-windup compensator design to some particular classes of nonlinear actuators presenting both magnitude and rate saturations. It is illustrated on the lateral flying case for a civil aircraft in presence of aggressive maneuvering of the pilot. A complete methodology is then proposed comparing several approaches including given anti-PIO filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Andrieu, V., Prieur, C., Tarbouriech, S., Arzelier, D.: Global asymptotic stabilization of systems satisfying two different sector conditions. Syst. Control Lett. 60 (8), 570–578 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anon.: Why the gripen crashed. Aerosp. Am. 32 (2), 11 (1994)

    Google Scholar 

  3. Åström, K.J., Rundqwist, L.: Integrator windup and how to avoid it. In: American Control Conference, pp. 1693–1698, Pittsburgh, PA (1989)

    Google Scholar 

  4. Biannic, J.-M., Tarbouriech, S.: Analyse et ajustement de lois de commande en présence de saturations implantation de filtres anti-PIO générés par synthèse anti-windup. Technical Report, Rapport COCKPIT/OCKF/CO1.1, 2011

    Google Scholar 

  5. Boyd, S., Vandenberghe, S.P.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  6. Brieger, O., Kerr, M., Leissling, D., Postlethwaite, I., Sofrony, J., Turner, M.C.: Anti-windup compensation of rate saturation in an experimental aircraft. In: American Control Conference, pp. 924–929, New York (2007)

    Google Scholar 

  7. D’Andrea, R., Wyss, M., Waibel, M.: Challenges actuated wingsuit for controlled, self-propelled flight. In: Samad, T., Annaswamy, A.M. (eds.) The Impact of Control Technology, 2nd edn. IEEE-CSS, The Impact of Control Technology (2014)

    Google Scholar 

  8. Duda, H.: Prediction of pilot-in-the-loop oscillations due to rate saturation. J. Guid. Control. Dyn. 20 (3), 581–587 (1997)

    Article  MATH  Google Scholar 

  9. Fertik, H.A., Ross, C.W.: Direct digital control algorithm with anti-windup feature. ISA Trans. 6, 317–328 (1967)

    Google Scholar 

  10. Galeani, S., Onori, S., Teel, A.R., Zaccarian, L.: A magnitude and rate saturation model and its use in the solution of a static anti-windup problem. Syst. Control Lett. 57 (1), 1–9 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Galeani, S., Tarbouriech, S., Turner, M.C., Zaccarian, L.: A tutorial on modern anti-windup design. Eur. J. Control 15 (3–4), 418–440 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gilbreath, G.P.: Prediction of PIO due to actuator rate limiting using the open-loop onset point (OLOP) criterion. Msc Thesis, Department of Aeronautics and Astronautics, AirForce Institute of Technology, Ohio, USA (2001)

    Google Scholar 

  13. Glattfelder, A.H., Schaufelberger, W.: Control Systems with Input and Output Constraints. Springer, London (2003)

    Book  MATH  Google Scholar 

  14. Grimm, G., Hatfield, J., Postlethwaite, I., Teel, A.R., Turner, M.C., Zaccarian, L.: Anti-windup for stable linear systems with input saturation: an LMI based synthesis. IEEE Trans. Autom. Control 48 (9), 1509–1525 (2003)

    Article  MATH  Google Scholar 

  15. Hippe, P.: Windup in control. Its effects and their prevention. Advances in Industrial Control. Springer, Germany (2006)

    MATH  Google Scholar 

  16. Hu, T., Lin, Z.: Control systems with actuator saturation: analysis and design. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  17. Kapila, V., Grigoriadis, K. (eds.): Actuator Saturation Control. Marcel Dekker, Inc., New York (2002)

    MATH  Google Scholar 

  18. Khalil, H.K.: Nonlinear Systems. MacMillan, New York (1992)

    MATH  Google Scholar 

  19. Klyde, D.H., McRuer, D.T., Myers, T.T.: Pilot-induced oscillation analysis and prediction with actuator rate limiting. J. Guid. Control. Dyn. 20 (1), 81–89 (1997)

    Article  Google Scholar 

  20. Klyde, D.H., Richards, N., Cogan, B.: Use of active inceptor cueing to mitigate pilot-vehicle system loss of control. In: AIAA Guidance, Navigation, and Control Conference, Minneapolis, USA, August 2012

    Book  Google Scholar 

  21. Liu, Q.: Pilot-induced-oscillation detection and mitigation. Ph.D. Thesis, Cranfield University (2012)

    Google Scholar 

  22. Puyou, G., Biannic, J.-M., Boada-Bauxell, J.: Application of robust antiwindup design to the longitudinal aircraft control to cover actuator loss. In: 19th IFAC Symposium on Automatic Control in Aerospace, University of Wurzburg, W’́urzburg, September 2013

    Google Scholar 

  23. Queinnec, I., Tarbouriech, S., Garcia, G.: Anti-windup design for aircraft control. In: IEEE Conference on Control Applications (CCA), Munich, Germany, 2006

    Google Scholar 

  24. Roos, C., Biannic, J-M., Tarbouriech, S., Prieur, C., Jeanneau, M.: On-ground aircraft control design using a parameter-varying anti-windup approach. Aerosp. Sci. Technol. 14 (7), 459–471 (2010)

    Article  Google Scholar 

  25. Rundquist, L., Stahl-Gunnarsson, K.: Phase compensation of rate-limiters in unstable aircraft. In: IEEE Conference on Control Applications, 1996

    Book  Google Scholar 

  26. Tarbouriech, S., Turner, M.C.: Anti-windup design: an overview of some recent advances and open problems. IET Control Theory Appl. 3 (1), 1–19 (2009)

    Article  MathSciNet  Google Scholar 

  27. Tarbouriech, S., Queinnec, I., Turner, M.C.: Anti-windup design with rate and magnitude actuator and sensor saturations. In: European Control Conference, Budapest, Hungary, 2009

    Book  Google Scholar 

  28. Tarbouriech, S., Loquen, T., Prieur, C.: Anti-windup strategy for reset control systems. Int. J. Robust Nonlinear Control 21 (10), 1159–1177 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tarbouriech, S., Garcia, G., Gomes da Silva Jr., J.M., Queinnec, I.: Stability and Stabilization of Linear Systems with Saturating Actuators. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  30. Tarbouriech, S., Queinnec, I., Prieur, C.: Stability analysis and stabilization of systems with input backlash. IEEE Trans. Autom. Control 59 (2), 488–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Teel, A.R.: Anti-windup for exponentially unstable linear systems. Int. J. Robust Nonlinear Control 9, 701–716 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zaccarian, L., Teel, A.R.: Modern Anti-windup Synthesis. Princeton University Press, Princeton (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by COCKPIT project, convention ONERA F/20 334/DA PPUJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Tarbouriech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tarbouriech, S., Queinnec, I., Biannic, JM., Prieur, C. (2016). Pilot-Induced-Oscillations Alleviation Through Anti-windup Based Approach. In: Fasano, G., Pintér, J.D. (eds) Space Engineering. Springer Optimization and Its Applications, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-319-41508-6_15

Download citation

Publish with us

Policies and ethics