Skip to main content

Heart Muscle Tissue Engineering

  • Chapter
  • First Online:
Tissue Engineering for the Heart

Part of the book series: Learning Materials in Biosciences ((LMB,volume 1))

  • 745 Accesses

Abstract

In this chapter, we present current state of the art in heart muscle tissue engineering. The field of heart muscle tissue engineering, or simply cardiac tissue engineering as it is commonly referred to, is focused on the fabrication of 3D artificial heart muscle. We start this chapter with a brief description of the potential clinical applications of 3D heart muscle as a patch to augment, repair and/or replace left ventricular function in infarcted hearts. We then describe the steps involved in the fabrication of 3D heart muscle. With this background in place, we present six different case studies that showcase different technological platforms to support the fabrication of 3D heart muscle. The six case studies have been carefully selected to highlight many facets of cardiac tissue engineering and are based on completely different technologies to bioengineer 3D heart muscle. The first case study describes a novel method to fabricate 3D heart muscle by the self-organization of primary cells in the absence of any synthetic scaffolding. The second case study is based on polymeric scaffolds to support formation of 3D heart muscle tissue. The third case study illustrates the use of acellular grafts to bioengineer 3D heart muscle. The fourth case study is based on magnetic levitation technology to fabricate 3D heart muscle in the absence of any synthetic scaffolding. The fifth case study illustrates the use of biodegradable hydrogels to bioengineer 3D heart muscle. The fifth and final case study describes a very novel model to fabricate vascularized 3D heart muscle using an in vivo culture environment. These six case studies have been carefully prepared to summarize the current state of the art in the field of heart muscle tissue engineering. After a detailed description of the case studies, we end by illustrating how different technological elements from each of the six case studies can be coupled to develop complete novel strategies to bioengineer functional 3D heart muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akhyari P, Fedak PW, Weisel RD, Lee TY, Verma S, Mickle DA, Li RK. Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation. 2002;106(12 Suppl 1):42.

    Google Scholar 

  2. Akins RE. Can tissue engineering mend broken hearts? Circ Res. 2002;90(2):120–2.

    CAS  PubMed  Google Scholar 

  3. Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, McLaughlin TA, Hartzell CR. Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng. 1999;5(2):103–18.

    Article  CAS  PubMed  Google Scholar 

  4. Alperin C, Zandstra PW, Woodhouse KA. Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials. 2005;26(35):7377–86.

    Google Scholar 

  5. Alperin C, Zandstra PW, Woodhouse KA. Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials. 2005;26(35):7377–86.

    Article  CAS  PubMed  Google Scholar 

  6. Annabi N, Tsang K, Mithieux SM, Nikkhah M, Ameri A, Khademhosseini A, Weiss AS. Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. AdvFunctMater. 2013. doi:10.1002/adfm.201300570.

    Google Scholar 

  7. Baar K, Birla R, Boluyt MO, Borschel GH, Arruda EM, Dennis RG. Heart muscle by design: self-organization of rat cardiac cells into contractile 3-D cardiac tissue. FASEB J. 2005;19:275–7.

    CAS  PubMed  Google Scholar 

  8. Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F. Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C Mater Biol Appl. 2014;44:24–37.

    Article  CAS  PubMed  Google Scholar 

  9. Bar A, Haverich A, Hilfiker A. Cardiac tissue engineering: “reconstructing the motor of life”. Scand J Surg. 2007;96(2):154–8.

    Article  CAS  PubMed  Google Scholar 

  10. Barash Y, Dvir T, Tandeitnik P, Ruvinov E, Guterman H, Cohen S. Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Tissue Eng Part C Methods. 2010;16(6):1417–26.

    Article  CAS  PubMed  Google Scholar 

  11. Barsotti MC, Felice F, Balbarini A, Di SR. Fibrin as a scaffold for cardiac tissue engineering. Biotechnol Appl Biochem. 2011;58(5):301–10.

    Article  CAS  PubMed  Google Scholar 

  12. Bat E, Harmsen MC, Plantinga JA, van Luyn MJ, Feijen J, Grijpma DW. Flexible scaffolds based on poly(trimethylene carbonate) networks for cardiac tissue engineering. J Contr Release. 2010;148(1):e74–6.

    Article  CAS  Google Scholar 

  13. Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S. Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Mater Sci Eng C Mater Biol Appl. 2014;44:268–77.

    Article  CAS  PubMed  Google Scholar 

  14. Blan NR, Birla RK. Design and fabrication of heart muscle using scaffold-based tissue engineering 25. J Biomed Mater Res. 2008;Part(1):195–208.

    Google Scholar 

  15. Boublik J, Park H, Radisic M, Tognana E, Chen F, Pei M, Vunjak-Novakovic G, Freed LE. Mechanical properties and remodeling of hybrid cardiac constructs made from heart cells, fibrin, and biodegradable, elastomeric knitted fabric. Tissue Eng. 2005;11(7–8):1122–32.

    Google Scholar 

  16. Bronshtein T, Au-Yeung GC, Sarig U, Nguyen EB, Mhaisalkar PS, Boey FY, Venkatraman SS, Machluf M. A mathematical model for analyzing the elasticity, viscosity, and failure of soft tissue: comparison of native and decellularized porcine cardiac extracellular matrix for tissue engineering. Tissue Eng Part C Methods. 2013;19(8):620–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brown MA, Iyer RK, Radisic M. Pulsatile perfusion bioreactor for cardiac tissue engineering. Biotechnol Prog. 2008;24(4):907–20.

    Article  CAS  PubMed  Google Scholar 

  18. Bursac N. Cardiac tissue engineering using stem cells. IEEE Eng Med Biol Mag. 2009;28(2):80,2,4-,2,9.

    Google Scholar 

  19. Bursac N, Papadaki M, Cohen RJ, Schoen FJ, Eisenberg SR, Carrier R, Vunjak-Novakovic G, Freed LE. Cardiac muscle tissue engineering: toward an in vitro model for electrophysiological studies. Am J Physiol. 1999;277(2:Pt 2):t-44.

    Google Scholar 

  20. Cannizzaro C, Tandon N, Figallo E, Park H, Gerecht S, Radisic M, Elvassore N, Vunjak-Novakovic G. Practical aspects of cardiac tissue engineering with electrical stimulation. Methods Mol Med. 2007;140:291–307.

    Article  CAS  PubMed  Google Scholar 

  21. Carrier RL, Papadaki M, Rupnick M, Schoen FJ, Bursac N, Langer R, Freed LE, Vunjak-Novakovic G. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol Bioeng. 1999;64(5):580–9.

    Article  CAS  PubMed  Google Scholar 

  22. Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng. 2002;8(2):175–88.

    Article  CAS  PubMed  Google Scholar 

  23. Carrier RL, Rupnick M, Langer R, Schoen FJ, Freed LE, Vunjak-Novakovic G. Effects of oxygen on engineered cardiac muscle. Biotechnol Bioeng. 2002;78(6):617–25.

    Article  CAS  PubMed  Google Scholar 

  24. Caspi O, Lesman A, Basevitch Y, Gepstein A, Arbel G, Habib IH, Gepstein L, Levenberg S. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res. 2007;100(2):263–72.

    Article  CAS  PubMed  Google Scholar 

  25. Chiu LL, Iyer RK, Reis LA, Nunes SS, Radisic M. Cardiac tissue engineering: current state and perspectives. Front Biosci. 2012;17:1533–50.

    Article  CAS  Google Scholar 

  26. Chiu LL, Iyer RK, Reis LA, Nunes SS, Radisic M. Cardiac tissue engineering: current state and perspectives. Front Biosci(LandmarkEd). 2012;17:1533-50.

    Google Scholar 

  27. Chiu LL, Reis LA, Radisic M. Controlled delivery of thymosin beta4 for tissue engineering and cardiac regenerative medicine. Ann NY Acad Sci. 2012;1269:16–25.

    Article  CAS  PubMed  Google Scholar 

  28. Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Eng Part A. 2009;15(6):1373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Crapo PM, Wang Y. Small intestinal submucosa gel as a potential scaffolding material for cardiac tissue engineering. Acta Biomater. 2010;6(6):2091–6.

    Article  CAS  PubMed  Google Scholar 

  30. Cui H, Liu Y, Cheng Y, Zhang Z, Zhang P, Chen X, Wei Y. In vitro study of electroactive tetraaniline-containing thermosensitive hydrogels for cardiac tissue engineering. Biomacromolecules. 2014;15(4):1115–23.

    Article  CAS  PubMed  Google Scholar 

  31. Curtis MW, Russell B. Cardiac tissue engineering. J Cardiovasc Nurs. 2009;24(2):87–92.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dar A, Shachar M, Leor J, Cohen S. Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. Biotechnol Bioeng. 2002;80(3):305–12.

    Article  CAS  PubMed  Google Scholar 

  33. Dehne T, Adam X, Materne EM, Reimann MC, Kruger JP, Van LS, Tschope C, Haag M, Sittinger M, Ringe J. A P19 and P19CL6 cell-based complementary approach to determine paracrine effects in cardiac tissue engineering. Cells Tissues Organs. 2014;199(1):24–36.

    Article  CAS  PubMed  Google Scholar 

  34. Dengler J, Song H, Thavandiran N, Masse S, Wood GA, Nanthakumar K, Zandstra PW, Radisic M. Engineered heart tissue enables study of residual undifferentiated embryonic stem cell activity in a cardiac environment. Biotechnol Bioeng. 2011;108(3):704–19.

    Article  CAS  PubMed  Google Scholar 

  35. Dhingra S, Weisel RD, Li RK. Synthesis of aliphatic polyester hydrogel for cardiac tissue engineering. Methods MolBiol. 2014;1181:51–9.

    Google Scholar 

  36. Di FV, Barone R, Nardone G, Forte G. Cardiac tissue engineering: a reflection after a decade of hurry. Front Physiol. 2014;5:365.

    Google Scholar 

  37. Dilley RJ, Morrison WA. Vascularisation to improve translational potential of tissue engineering systems for cardiac repair. Int J Biochem Cell Biol. 2014;56C:38–46.

    Article  CAS  Google Scholar 

  38. Dorfman J, Duong M, Zibaitis A, Pelletier MP, Shum-Tim D, Li C, Chiu RC. Myocardial tissue engineering with autologous myoblast implantation. J Thorac Cardiovasc Surg. 1998;116(5):744–51.

    Article  CAS  PubMed  Google Scholar 

  39. Efimov IR. Nature versus nurture in cardiac conduction: toward integrative paradigm of cardiac tissue engineering. Circ Res. 2008;103(2):119–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ehler E, Jayasinghe SN. Cell electrospinning cardiac patches for tissue engineering the heart. Analyst. 2014;139(18):4449–52.

    Article  CAS  PubMed  Google Scholar 

  41. Emmert MY, Hitchcock RW, Hoerstrup SP. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev. 2014;69–70:254–69.

    Google Scholar 

  42. Eschenhagen T, Didie M, Heubach J, Ravens U, Zimmermann WH. Cardiac tissue engineering. Transpl Immunol. 2002;9(2-4):315–21.

    Article  CAS  PubMed  Google Scholar 

  43. Eschenhagen T, Didie M, Munzel F, Schubert P, Schneiderbanger K, Zimmermann WH. 3D engineered heart tissue for replacement therapy. Basic Res Cardiol. 2002;97:52.

    Google Scholar 

  44. Eschenhagen T, Eder A, Vollert I, Hansen A. Physiological aspects of cardiac tissue engineering. Am J Physiol Heart Circ Physiol. 2012;303(2):H133–43.

    Article  CAS  PubMed  Google Scholar 

  45. Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, Zimmermann W, Dohmen HH, Schafer H, Bishopric N, Wakatsuki T, Elson EL. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 1997;11(8):683–94.

    CAS  PubMed  Google Scholar 

  46. Fedak PW, Weisel RD, Verma S, Mickle DA, Li RK. Restoration and regeneration of failing myocardium with cell transplantation and tissue engineering. Semin Thorac Cardiovasc Surg. 2003;15(3):277–86.

    Article  PubMed  Google Scholar 

  47. Fink C, Ergun S, Kralisch D, Remmers U, Weil J, Eschenhagen T. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J. 2000;14(5):669–79.

    CAS  PubMed  Google Scholar 

  48. Finosh GT, Jayabalan M. Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure: new developments and challenges. Biomatter. 2012;2(1):1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fleischer S, Feiner R, Shapira A, Ji J, Sui X, Daniel WH, Dvir T. Spring-like fibers for cardiac tissue engineering. Biomaterials. 2013;34(34):8599–606.

    Article  CAS  PubMed  Google Scholar 

  50. Folliguet TA, Rucker-Martin C, Pavoine C, Deroubaix E, Henaff M, Mercadier JJ, Hatem SN. Adult cardiac myocytes survive and remain excitable during long-term culture on synthetic supports. J Thorac Cardiovasc Surg. 2001;121(3):510–9.

    Article  CAS  PubMed  Google Scholar 

  51. Fujita M, Ishihara M, Morimoto Y, Simizu M, Saito Y, Yura H, Matsui T, Takase B, Hattori H, Kanatani Y, Kikuchi M, Maehara T. Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction. J Surg Res. 2005;126(1):27–33.

    Google Scholar 

  52. Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, Sluijter JP. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials. 2012;33(6):1782–90.

    Article  CAS  PubMed  Google Scholar 

  53. Galvez-Monton C, Prat-Vidal C, Roura S, Soler-Botija C, Bayes-Genis A. Cardiac Tissue Engineering and the Bioartificial Heart. RevspCardiol. 2013;66(5):391–9.

    Google Scholar 

  54. Galvez-Monton C, Prat-Vidal C, Roura S, Soler-Botija C, Bayes-Genis A. Update: innovation in cardiology (IV). Cardiac tissue engineering and the bioartificial heart. Rev Esp Cardiol (Engl Ed). 2013;66(5):391–9.

    Google Scholar 

  55. Gandaglia A, Huerta-Cantillo R, Comisso M, Danesin R, Ghezzo F, Naso F, Gastaldello A, Schittullo E, Buratto E, Spina M, Gerosa G, Dettin M. Cardiomyocytes in vitro adhesion is actively influenced by biomimetic synthetic peptides for cardiac tissue engineering. Tissue Eng Part A. 2012;18(7–8):725–36.

    Article  CAS  PubMed  Google Scholar 

  56. Gawronska-Kozak B, Manuel JA, Prpic V. Ear mesenchymal stem cells (EMSC) can differentiate into spontaneously contracting muscle cells. J Cell Biochem. 2007;102(1):122–35.

    Article  CAS  PubMed  Google Scholar 

  57. Georgiadis V, Knight RA, Jayasinghe SN, Stephanou A. Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integr Biol (Camb). 2014;6(2):111–26.

    Google Scholar 

  58. Govoni M, Muscari C, Guarnieri C, Giordano E. Mechanostimulation protocols for cardiac tissue engineering. Biomed Res Int. 2013;2013:918640.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Guillemette MD, Park H, Hsiao JC, Jain SR, Larson BL, Langer R, Freed LE. Combined technologies for microfabricating elastomeric cardiac tissue engineering scaffolds. Macromol Biosci. 2010;10(11):1330–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo XM, Wang CY, Tian XC, Yang X. Engineering cardiac tissue from embryonic stem cells. Methods Enzymol. 2006;420:316–38.

    Article  CAS  PubMed  Google Scholar 

  61. Guo XM, Zhao YS, Chang HX, Wang CY, Ll E, Zhang XA, Duan CM, Dong LZ, Jiang H, Li J, Song Y, Yang XJ. Creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation. 2006;113(18):2229–37.

    Article  PubMed  Google Scholar 

  62. Haag M, Van LS, Schroder SE, Freymann U, Ringe J, Tschope C, Sittinger M. Endomyocardial biopsy derived adherent proliferating cells—a potential cell source for cardiac tissue engineering. J Cell Biochem. 2010;109(3):564–75.

    CAS  PubMed  Google Scholar 

  63. Haraguchi Y, Shimizu T, Matsuura K, Sekine H, Tanaka N, Tadakuma K, Yamato M, Kaneko M, Okano T. Cell sheet technology for cardiac tissue engineering. Methods Mol Biol. 2014;1181:139–55.

    Article  PubMed  CAS  Google Scholar 

  64. Haraguchi Y, Shimizu T, Yamato M, Okano T. Regenerative therapies using cell sheet-based tissue engineering for cardiac disease. Cardiol Res Pract. 2011;2011:845170.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Haverich A. Cardiac tissue engineering. Eur J Cardiothorac Surg. 2008;34(2):227–8.

    Article  PubMed  Google Scholar 

  66. He W, Ye L, Li S, Liu H, Wu B, Wang Q, Fu X, Han W, Chen Z. Construction of vascularized cardiac tissue from genetically modified mouse embryonic stem cells. J Heart Lung Transplant. 2012;31(2):204–12.

    Article  PubMed  Google Scholar 

  67. Hecker L, Birla RK. Engineering the heart piece by piece: state of the art in cardiac tissue engineering. Regen Med. 2007;2(2):125–44.

    Article  CAS  PubMed  Google Scholar 

  68. Hidalgo-Bastida LA, Barry JJ, Everitt NM, Rose FR, Buttery LD, Hall IP, Claycomb WC, Shakesheff KM. Cell adhesion and mechanical properties of a flexible scaffold for cardiac tissue engineering. Acta Biomater. 2007;3(4):457–62.

    Article  CAS  PubMed  Google Scholar 

  69. Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art. Circ Res. 2014;114(2):354–67.

    Article  CAS  PubMed  Google Scholar 

  70. Huang YC, Khait L, Birla RK. Contractile three-dimensional bioengineered heart muscle for myocardial regeneration 4. J Biomed Mater Res A. 2007;80:719–31.

    Article  PubMed  CAS  Google Scholar 

  71. Iyer RK, Chiu LL, Radisic M. Microfabricated poly(ethylene glycol) templates enable rapid screening of triculture conditions for cardiac tissue engineering. J Biomed Mater Res A. 2009;89(3):616–31.

    Article  PubMed  CAS  Google Scholar 

  72. Iyer RK, Chiu LL, Vunjak-Novakovic G, Radisic M. Biofabrication enables efficient interrogation and optimization of sequential culture of endothelial cells, fibroblasts and cardiomyocytes for formation of vascular cords in cardiac tissue engineering. Biofabrication. 2012;4(3):035002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Iyer RK, Radisic M, Cannizzaro C, Vunjak-Novakovic G. Synthetic oxygen carriers in cardiac tissue engineering. Artif Cells Blood Substit Immobil Biotechnol. 2007;35(1):135–48.

    Article  CAS  PubMed  Google Scholar 

  74. Jawad H, Boccaccini AR, Ali NN, Harding SE. Assessment of cellular toxicity of TiO2 nanoparticles for cardiac tissue engineering applications. Nanotoxicology. 2011;5(3):372–80.

    Article  CAS  PubMed  Google Scholar 

  75. Jean A, Engelmayr Jr GC. Finite element analysis of an accordion-like honeycomb scaffold for cardiac tissue engineering. J Biomech. 2010;43(15):3035–43.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. J Biomed Mater Res A. 2011;99(3):376–85.

    Article  PubMed  CAS  Google Scholar 

  77. Kai D, Prabhakaran MP, Jin G, Ramakrishna S. Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater. 2011;98(2):379–86.

    Article  PubMed  CAS  Google Scholar 

  78. Kapur NK. A clinical commentary on the articles “strategies for tissue engineering cardiac constructs to affect functional repair following myocardial infarction” and “stem cell-based cardiac tissue engineering” : repairing, reprogramming, and renewing: the promise of myocardial cytotherapeutics. J Cardiovasc Transl Res. 2011;4(5):603–4.

    Article  PubMed  Google Scholar 

  79. Karam JP, Muscari C, Sindji L, Bastiat G, Bonafe F, Venier-Julienne MC, Montero-Menei NC. Pharmacologically active microcarriers associated with thermosensitive hydrogel as a growth factor releasing biomimetic 3D scaffold for cardiac tissue-engineering. J Contr Release. 2014;192:82–94.

    Article  CAS  Google Scholar 

  80. Khait L, Birla RK. Changes in gene expression during the formation of bioengineered heart muscle 52. Artif Organs. 2009;33(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  81. Khait L, Hecker L, Radnoti D, Birla RK. Micro-perfusion for cardiac tissue engineering: development of a bench-top system for the culture of primary cardiac cells. Ann Biomed Eng. 2008;36(5):713–25.

    Article  PubMed  Google Scholar 

  82. Kofidis T, Akhyari P, Boublik J, Theodorou P, Martin U, Ruhparwar A, Fischer S, Eschenhagen T, Kubis HP, Kraft T, Leyh R, Haverich A. In vitro engineering of heart muscle: artificial myocardial tissue. J Thoracic Cardiovasc Surg. 2002;124(1):63–9.

    Article  CAS  Google Scholar 

  83. Kofidis T, Akhyari P, Wachsmann B, Boublik J, Mueller-Stahl K, Leyh R, Fischer S, Haverich A. A novel bioartificial myocardial tissue and its prospective use in cardiac surgery. Eur J Cardiothorac Surg. 2002;22(2):238–43.

    Article  PubMed  Google Scholar 

  84. Kofidis T, Akhyari P, Wachsmann B, Mueller-Stahl K, Boublik J, Ruhparwar A, Mertsching H, Balsam L, Robbins R, Haverich A. Clinically established hemostatic scaffold (tissue fleece) as biomatrix in tissue- and organ-engineering research. Tissue Eng. 2003;9(3):517–23.

    Article  CAS  PubMed  Google Scholar 

  85. Le HA, Paul A, Xu L, Prakash S, Shum-Tim D. Recent advancements in tissue engineering for stem cell-based cardiac therapies. Ther Deliv. 2013;4(4):503–16.

    Article  CAS  Google Scholar 

  86. Leor J, Aboulafia-Etzion S, Dar A, Shapiro L, Barbash IM, Battler A, Granot Y, Cohen S. Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation. 2000;102(19:Suppl 3):61.

    Google Scholar 

  87. Leung BM, Sefton MV. A modular approach to cardiac tissue engineering. Tissue Eng Part A. 2010;16(10):3207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM. Survival and function of bioengineered cardiac grafts. Circulation. 1999;100(19:Suppl):9.

    Google Scholar 

  89. Li RK, Yau TM, Weisel RD, Mickle DA, Sakai T, Choi A, Jia ZQ. Construction of a bioengineered cardiac graft. J Thoracic Cardiovasc Surg. 2000;119(2):368–75.

    Article  CAS  Google Scholar 

  90. Liau B, Zhang D, Bursac N. Functional cardiac tissue engineering. Regen Med. 2012;7(2):187–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lim SY, Sivakumaran P, Crombie DE, Dusting GJ, Pebay A, Dilley RJ. Trichostatin A enhances differentiation of human induced pluripotent stem cells to cardiogenic cells for cardiac tissue engineering. Stem Cells Transl Med. 2013;2(9):715–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Macadangdang J, Lee HJ, Carson D, Jiao A, Fugate J, Pabon L, Regnier M, Murry C, Kim DH. Capillary force lithography for cardiac tissue engineering. J Vis Exp. 2014. doi:10.3791/50039.

    PubMed  PubMed Central  Google Scholar 

  93. Macfelda K, Kapeller B, Wilbacher I, Losert UM. Behavior of cardiomyocytes and skeletal muscle cells on different extracellular matrix components–relevance for cardiac tissue engineering. Artif Organs. 2007;31(1):4–12.

    Google Scholar 

  94. Macfelda K, Kapeller B, Wilbacher I, Losert UM. Behavior of cardiomyocytes and skeletal muscle cells on different extracellular matrix components–relevance for cardiac tissue engineering. Artif Organs. 2007;31(1):4–12.

    Article  CAS  PubMed  Google Scholar 

  95. Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, Hauch KD, Laflamme MA, Murry CE, Ratner BD. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci USA. 2010;107(34):15211–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maidhof R, Marsano A, Lee EJ, Vunjak-Novakovic G. Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol Prog. 2010;26(2):565–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mann BK, West JL. Tissue engineering in the cardiovascular system: progress toward a tissue engineered heart. Anat Rec. 2001;263(4):367–71.

    Article  CAS  PubMed  Google Scholar 

  98. Marsano A, Maidhof R, Tandon N, Gao J, Wang Y, Vunjak-Novakovic G. Engineering of functional contractile cardiac tissues cultured in a perfusion system. In: Conference proceedings: annual: international-3; 2008.

    Google Scholar 

  99. Martinez EC, Kofidis T. Adult stem cells for cardiac tissue engineering. J Mol Cell Cardiol. 2011;50(2):312–9.

    Article  CAS  PubMed  Google Scholar 

  100. Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G. Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules. 2014;15(2):635–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Martins AM, Vunjak-Novakovic G, Reis RL. The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem Cell Rev. 2014;10(2):177–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Matsuura K, Masuda S, Shimizu T. Cell sheet-based cardiac tissue engineering. Anat Rec (Hoboken). 2014;297(1):65–72.

    Google Scholar 

  103. Morritt AN, Bortolotto SK, Dilley RJ, Han X, Kompa AR, McCombe D, Wright CE, Itescu S, Angus JA, Morrison WA. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation. 2007;115(3):353–60.

    Google Scholar 

  104. Morritt AN, Bortolotto SK, Dilley RJ, Han X, Kompa AR, McCombe D, Wright CE, Itescu S, Angus JA, Morrison WA. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation. 2007;115(3):353–60.

    Article  PubMed  Google Scholar 

  105. Moura RM, de Queiroz AA. Dendronized polyaniline nanotubes for cardiac tissue engineering. Artif Organs. 2011;35(5):471–7.

    Article  CAS  PubMed  Google Scholar 

  106. Naito H, Melnychenko I, Didie M, Schneiderbanger K, Schubert P, Rosenkranz S, Eschenhagen T, Zimmermann WH. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation. 2006;114(1:Suppl):8.

    Google Scholar 

  107. Naito H, Takewa Y, Mizuno T, Ohya S, Nakayama Y, Tatsumi E, Kitamura S, Takano H, Taniguchi S, Taenaka Y. Three-dimensional cardiac tissue engineering using a thermoresponsive artificial extracellular matrix. ASAIO J. 2004;50(4):344–8.

    Google Scholar 

  108. Naito H, Takewa Y, Mizuno T, Ohya S, Nakayama Y, Tatsumi E, Kitamura S, Takano H, Taniguchi S, Taenaka Y. Three-dimensional cardiac tissue engineering using a thermoresponsive artificial extracellular matrix. ASAIO J. 2004;50(4):344–8.

    Article  CAS  PubMed  Google Scholar 

  109. Nunes SS, Song H, Chiang CK, Radisic M. Stem cell-based cardiac tissue engineering. J Cardiovasc Transl Res. 2011;4(5):592–602.

    Article  PubMed  Google Scholar 

  110. Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials. 1995;16(4):297–303.

    Article  CAS  PubMed  Google Scholar 

  111. Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res. 1993;27(10):1243–51.

    Article  CAS  PubMed  Google Scholar 

  112. Ozawa T, Mickle DA, Weisel RD, Koyama N, Ozawa S, Li RK. Optimal biomaterial for creation of autologous cardiac grafts. Circulation. 2002;106(12:Suppl 1):82.

    Google Scholar 

  113. Ozawa T, Mickle DA, Weisel RD, Koyama N, Wong H, Ozawa S, Li RK. Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. J Thorac Cardiovasc Surg. 2002;124(6):1157–64.

    Article  PubMed  Google Scholar 

  114. Papadaki M. Cardiac muscle tissue engineering. IEEE Eng Med Biol Mag. 2003;22(3):153–4.

    Article  PubMed  Google Scholar 

  115. Papadaki M, Bursac N, Langer R, Merok J, Vunjak-Novakovic G, Freed LE. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am J Physiol Heart Circ Physiol. 2001;280(1):H168–78.

    CAS  PubMed  Google Scholar 

  116. Park H, Radisic M, Lim JO, Chang BH, Vunjak-Novakovic G. A novel composite scaffold for cardiac tissue engineering. Vitro Cell Dev Biol Anim. 2005;41(7):188–96.

    Google Scholar 

  117. Park H, Radisic M, Lim JO, Chang BH, Vunjak-Novakovic G. A novel composite scaffold for cardiac tissue engineering. In Vitro Cell Dev Biol Anim. 2005;41(7):188–96.

    Article  CAS  PubMed  Google Scholar 

  118. Parrag IC, Zandstra PW, Woodhouse KA. Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering. Biotechnol Bioeng. 2012;109(3):813–22.

    Article  CAS  PubMed  Google Scholar 

  119. Patra C, Boccaccini AR, Engel FB. Vascularisation for cardiac tissue engineering: the extracellular matrix. Thromb Haemost. 2014;113(1):532–47.

    Google Scholar 

  120. Patra C, Ricciardi F, Engel FB. The functional properties of nephronectin: an adhesion molecule for cardiac tissue engineering. Biomaterials. 2012;33(17):4327–35.

    Article  CAS  PubMed  Google Scholar 

  121. Patra C, Talukdar S, Novoyatleva T, Velagala SR, Muhlfeld C, Kundu B, Kundu SC, Engel FB. Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials. 2012;33(9):2673–80.

    Article  CAS  PubMed  Google Scholar 

  122. Pok S, Myers JD, Madihally SV, Jacot JG. A multilayered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater. 2013;9(3):5630–42.

    Article  CAS  PubMed  Google Scholar 

  123. Prabhakaran MP, Kai D, Ghasemi-Mobarakeh L, Ramakrishna S. Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed Mater. 2011;6(5):055001.

    Article  PubMed  CAS  Google Scholar 

  124. Prabhakaran MP, Nair AS, Kai D, Ramakrishna S. Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering. Biopolymers. 2012;97(7):529–38.

    Article  CAS  PubMed  Google Scholar 

  125. Qazi TH, Rai R, Dippold D, Roether JE, Schubert DW, Rosellini E, Barbani N, Boccaccini AR. Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications. Acta Biomater. 2014;10(6):2434–45.

    Article  CAS  PubMed  Google Scholar 

  126. Radisic M, Euloth M, Yang L, Langer R, Freed LE, Vunjak-Novakovic G. High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnol Bioeng. 2003;82(4):403–14.

    Article  CAS  PubMed  Google Scholar 

  127. Radisic M, Marsano A, Maidhof R, Wang Y, Vunjak-Novakovic G. Cardiac tissue engineering using perfusion bioreactor systems. Nat Protoc. 2008;3(4):719–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Radisic M, Park H, Chen F, Salazar-Lazzaro JE, Wang Y, Dennis R, Langer R, Freed LE, Vunjak-Novakovic G. Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng. 2006;12(8):2077–91.

    Google Scholar 

  129. Radisic M, Park H, Chen F, Salazar-Lazzaro JE, Wang Y, Dennis R, Langer R, Freed LE, Vunjak-Novakovic G. Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds. Tissue Eng. 2006;12(8):2077–91.

    Article  CAS  PubMed  Google Scholar 

  130. Radisic M, Park H, Gerecht S, Cannizzaro C, Langer R, Vunjak-Novakovic G. Biomimetic approach to cardiac tissue engineering. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rahimi M, Mohseni-Kouchesfehani H, Zarnani AH, Mobini S, Nikoo S, Kazemnejad S. Evaluation of menstrual blood stem cells seeded in biocompatible Bombyx mori silk fibroin scaffold for cardiac tissue engineering. J Biomater Appl. 2014;29(2):199–208.

    Article  CAS  PubMed  Google Scholar 

  132. Rao C, Barratt H, Prodromakis T, Terracciano CM. Tissue engineering techniques in cardiac repair and disease modelling. Curr Pharm Des. 2014;20(12):2048–56.

    Article  CAS  PubMed  Google Scholar 

  133. Ravichandran R, Seitz V, Reddy VJ, Sridhar R, Sundarrajan S, Mukherjee S, Wintermantel E, Ramakrishna S. Mimicking native extracellular matrix with phytic acid-crosslinked protein nanofibers for cardiac tissue engineering. Macromol Biosci. 2013;13(3):366–75.

    Article  CAS  PubMed  Google Scholar 

  134. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Sridhar R, Ramakrishna S. Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology. 2012;23(38):385102.

    Article  PubMed  CAS  Google Scholar 

  135. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Sridhar R, Ramakrishna S. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for cardiac tissue engineering. Int J Cardiol. 2012;167:1461–8.

    Google Scholar 

  136. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Sridhar R, Ramakrishna S. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering. Int J Cardiol. 2013;167(4):1461–8.

    Article  PubMed  Google Scholar 

  137. Reddy CS, Venugopal JR, Ramakrishna S, Zussman E. Polycaprolactone/oligomer compound scaffolds for cardiac tissue engineering. J Biomed Mater Res A. 2014;102(10):3713–25.

    Article  PubMed  CAS  Google Scholar 

  138. Rim JS, Mynatt RL, Gawronska-Kozak B. Mesenchymal stem cells from the outer ear: a novel adult stem cell model system for the study of adipogenesis. FASEB J. 2005;19(9):1205–7.

    CAS  PubMed  Google Scholar 

  139. Rosellini E, Cristallini C, Barbani N, Vozzi G, Giusti P. Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. J Biomed Mater Res A. 2009;91(2):447–53.

    Article  PubMed  CAS  Google Scholar 

  140. Sakai T, Li RK, Weisel RD, Mickle DA, Kim ET, Jia ZQ, Yau TM. The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. J Thorac Cardiovasc Surg. 2001;121(5):932–42.

    Article  CAS  PubMed  Google Scholar 

  141. Sapir Y, Polyak B, Cohen S. Cardiac tissue engineering in magnetically actuated scaffolds. Nanotechnology. 2014;25(1):014009.

    Article  PubMed  CAS  Google Scholar 

  142. Seif-Naraghi SB, Salvatore MA, Schup-Magoffin PJ, Hu DP, Christman KL. Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng Part A. 2010;16(6):2017–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Senel Ayaz HG, Perets A, Ayaz H, Gilroy KD, Govindaraj M, Brookstein D, Lelkes PI. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering. Biomaterials. 2014;35(30):8540–52.

    Article  CAS  PubMed  Google Scholar 

  144. Shachar M, Benishti N, Cohen S. Effects of mechanical stimulation induced by compression and medium perfusion on cardiac tissue engineering. Biotechnol Prog. 2012;28(6):1551–9.

    Article  CAS  PubMed  Google Scholar 

  145. Shachar M, Cohen S. Cardiac tissue engineering, ex-vivo: design principles in biomaterials and bioreactors. Heart Fail Rev. 2003;8(3):271–6.

    Article  CAS  PubMed  Google Scholar 

  146. Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S. The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater. 2011;7(1):152–62.

    Article  CAS  PubMed  Google Scholar 

  147. Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials. 1997;18(8):583–90.

    Article  CAS  PubMed  Google Scholar 

  148. Shevach M, Fleischer S, Shapira A, Dvir T. Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering. Nano Lett. 2014;14(10):5792–6.

    Article  CAS  PubMed  Google Scholar 

  149. Shimizu T, Yamato M, Akutsu T, Shibata T, Isoi Y, Kikuchi A, Umezu M, Okano T. Electrically communicating three-dimensional cardiac tissue mimic fabricated by layered cultured cardiomyocyte sheets. J Biomed Mater Res. 2002;60(1):110–7.

    Article  CAS  PubMed  Google Scholar 

  150. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res. 2002;90(3), e40.

    Article  CAS  PubMed  Google Scholar 

  151. Shimizu T, Yamato M, Kikuchi A, Okano T. Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng. 2001;7(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  152. Shimizu T, Yamato M, Kikuchi A, Okano T. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials. 2003;24(13):2309–16.

    Article  CAS  PubMed  Google Scholar 

  153. Singelyn JM, DeQuach JA, Seif-Naraghi SB, Littlefield RB, Schup-Magoffin PJ, Christman KL. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering. Biomaterials. 2009;30(29):5409–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Soler-Botija C, Bago JR, Bayes-Genis A. A bird's-eye view of cell therapy and tissue engineering for cardiac regeneration. Ann NY Acad Sci. 2012;1254:57–65.

    Article  CAS  PubMed  Google Scholar 

  155. Stamm C, Steinhoff G. Cardiac tissue engineering. Herz. 2002;27(5):445–52.

    Article  PubMed  Google Scholar 

  156. Stevens KR, Pabon L, Muskheli V, Murry CE. Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A. 2009;15(6):1211–22.

    Article  CAS  PubMed  Google Scholar 

  157. Strange G, Brizard C, Karl TR, Neethling L. An evaluation of Admedus’ tissue engineering process-treated (ADAPT) bovine pericardium patch (CardioCel) for the repair of cardiac and vascular defects. Expert Rev Med Devices. 2014;12:135–41.

    Article  PubMed  CAS  Google Scholar 

  158. Tallawi M, Zebrowski D, Rai R, Roether J, Schubert D, El FM, Engel F, Aifantis K, Boccaccini AR. Poly(glycerol sebacate)/poly(butylene succinate-dilinoleate) (PGS/PBS-DLA) fibrous scaffolds for cardiac tissue engineering. Tissue Eng Part C Methods. 2015;21(6):585–96.

    Google Scholar 

  159. Tandon N, Cannizzaro C, Chao PH, Maidhof R, Marsano A, Au HT, Radisic M, Vunjak-Novakovic G. Electrical stimulation systems for cardiac tissue engineering. Nat Protoc. 2009;4(2):155–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tandon N, Cannizzaro C, Figallo E, Voldman J, Vunjak-Novakovic G. Characterization of electrical stimulation electrodes for cardiac tissue engineering. Conf Proc IEEE Eng Med Biol Soc. 2006;1:845–8.

    PubMed  Google Scholar 

  161. Tandon N, Marsano A, Cannizzaro C, Voldman J, Vunjak-Novakovic G. Design of electrical stimulation bioreactors for cardiac tissue engineering. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:3594–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Tandon N, Marsano A, Maidhof R, Wan L, Park H, Vunjak-Novakovic G. Optimization of electrical stimulation parameters for cardiac tissue engineering. J Tissue Eng Regen Med. 2011;5(6):e115–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Taylor DA, Sampaio LC, Gobin A. Building new hearts: a review of trends in cardiac tissue engineering. Am J Transplant. 2014;14(11):2448–59.

    Article  CAS  PubMed  Google Scholar 

  164. Tee R, Lokmic Z, Morrison WA, Dilley RJ. Strategies in cardiac tissue engineering. ANZ J Surg. 2010;80(10):683–93.

    Article  PubMed  Google Scholar 

  165. Thomson KS, Korte FS, Giachelli CM, Ratner BD, Regnier M, Scatena M. Prevascularized microtemplated fibrin scaffolds for cardiac tissue engineering applications. Tissue Eng Part A. 2013;19(7-8):967–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Tobita K, Liu LJ, Janczewski AM, Tinney JP, Nonemaker JM, Augustine S, Stolz DB, Shroff SG, Keller BB. Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol. 2006;291(4):H1829–37.

    Article  CAS  PubMed  Google Scholar 

  167. Tran N, Li Y, Bertrand S, Bangratz S, Carteaux JP, Stoltz JF, Villemot JP. Autologous cell transplantation and cardiac tissue engineering: potential applications in heart failure. Biorheology. 2003;40(1-3):411–5.

    PubMed  Google Scholar 

  168. van Luyn MJ, Tio RA, van Seijen XJ, Plantinga JA, de Leij LF, DeJongste MJ, van Wachem PB. Cardiac tissue engineering: characteristics of in unison contracting two- and three-dimensional neonatal rat ventricle cell (co)-cultures. Biomaterials. 2002;23(24):4793–801.

    Article  PubMed  Google Scholar 

  169. Vunjak-Novakovic G, Tandon N, Godier A, Maidhof R, Marsano A, Martens TP, Radisic M. Challenges in cardiac tissue engineering. Tissue Eng Part B Rev. 2010;16(2):169–87.

    Article  PubMed  Google Scholar 

  170. Wang B, Wang G, To F, Butler JR, Claude A, McLaughlin RM, Williams LN, de Jongh Curry AL, Liao J. Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations. Langmuir. 2013;29(35):11109–17.

    Article  CAS  PubMed  Google Scholar 

  171. Wang F, Guan J. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv Drug Deliv Rev. 2010;62(7-8):784–97.

    Article  CAS  PubMed  Google Scholar 

  172. Wang H, Zhou J, Liu Z, Wang C. Injectable cardiac tissue engineering for the treatment of myocardial infarction. J Cell Mol Med. 2010;14(5):1044–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Wei HJ, Chen CH, Lee WY, Chiu I, Hwang SM, Lin WW, Huang CC, Yeh YC, Chang Y, Sung HW. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair 9. Biomaterials. 2008;29(26):3547–56.

    Article  CAS  PubMed  Google Scholar 

  174. Wei HJ, Chen SC, Chang Y, Hwang SM, Lin WW, Lai PH, Chiang HK, Hsu LF, Yang HH, Sung HW. Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model 11. Biomaterials. 2006;27(31):5409–19.

    Article  CAS  PubMed  Google Scholar 

  175. Williams C, Budina E, Stoppel WL, Sullivan KE, Emani S, Emani SM, Black LD, III. Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering. Acta Biomater. 2014;14:84–95.

    Google Scholar 

  176. Ye KY, Black III LD. Strategies for tissue engineering cardiac constructs to affect functional repair following myocardial infarction. J Cardiovasc Transl Res. 2011;4(5):575–91.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, Hubbell JA, Turina M. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardio-Thorac Surg. 2000;17(5):587–91.

    Google Scholar 

  178. Yeo Y, Burdick JA, Highley CB, Marini R, Langer R, Kohane DS. Peritoneal application of chitosan and UV-cross-linkable chitosan. J Biomed Mater Res Part. 2006;A78(4):668–75.

    Article  CAS  Google Scholar 

  179. Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC, Tan LP. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 2010;6(6):2028–34.

    Article  CAS  PubMed  Google Scholar 

  180. Yoshida M, Oh H. Stem cell engineering for cardiac tissue regeneration. Cardiology. 2010;115(3):191–3.

    Article  PubMed  Google Scholar 

  181. Yu J, Lee AR, Lin WH, Lin CW, Wu YK, Tsai WB. Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng Part A. 2014;20(13-14):1896–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yuan YK, Sullivan KE, Black LD. Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering. J Vis Exp. 2011. doi:10.3791/3251.

    Google Scholar 

  183. Zammaretti P, Jaconi M. Cardiac tissue engineering: regeneration of the wounded heart. Curr Opin Biotechnol. 2004;15(5):430–4.

    Google Scholar 

  184. Zammaretti P, Jaconi M. Cardiac tissue engineering: regeneration of the wounded heart. Curr Opin Biotechnol. 2004;15(5):430–4.

    Article  CAS  PubMed  Google Scholar 

  185. Zhao Y, Feric NT, Thavandiran N, Nunes SS, Radisic M. The role of tissue engineering and biomaterials in cardiac regenerative medicine. Can J Cardiol. 2014;30(11):1307–22.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Zimmermann WH, Cesnjevar R. Cardiac tissue engineering: implications for pediatric heart surgery. Pediatr Cardiol. 2009;30(5):716–23.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zimmermann WH, Didie M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation. 2002;106(12:Suppl 1):7.

    Google Scholar 

  188. Zimmermann WH, Eschenhagen T. Cardiac tissue engineering for replacement therapy. Heart Fail Rev. 2003;8(3):259–69.

    Article  CAS  PubMed  Google Scholar 

  189. Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng. 2000;68(1):106–14.

    Article  CAS  PubMed  Google Scholar 

  190. Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med. 2006;12(4):452–8.

    Article  CAS  PubMed  Google Scholar 

  191. Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T. Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 2002;90(2):223–30.

    Article  CAS  PubMed  Google Scholar 

  192. Zimmermann WH, Tiburcy M, Eschenhagen T. Cardiac tissue engineering: a clinical perspective. Future Cardiol. 2007;3(4):435–45.

    Article  CAS  PubMed  Google Scholar 

  193. Patel NM, Tao ZW, Mohamed MA, Hogan MK, Gutierrez L, Birla RK. Engineering 3D bio-artificial heart muscle: the acellular ventricular extracellular matrix model. ASAIO J. 2015;61(1):61–70. doi:10.1097/MAT.0000000000000158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Birla RK, Borschel GH, Dennis RG, Brown DL. Myocardial engineering in vivo: formation and characterization of contractile, vascularized three-dimensional cardiac tissue. Tissue Eng. 2005;11(5-6):803–13.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Birla, R. (2016). Heart Muscle Tissue Engineering. In: Tissue Engineering for the Heart. Learning Materials in Biosciences, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-41504-8_5

Download citation

Publish with us

Policies and ethics