Skip to main content

Biomechanics of Myocardial Ischemia and Infarction

  • Chapter
  • First Online:
Biomechanics: Trends in Modeling and Simulation

Abstract

Each year, over seven million people suffer a myocardial infarction (heart attack). For those who survive the initial event, the mechanical properties of the scar tissue that gradually replaces the damaged muscle are a critical determinant of many life-threatening sequelae, such as infarct rupture and the development of heart failure. Thus, understanding the mechanics of healing infarct scar, its interaction with the rest of the heart, and the resulting changes in heart function are critical to devising effective therapies. Computational models play an essential role in understanding these potentially complex interactions. The first section of this chapter reviews the structure and mechanical properties of the normal heart and the methods used to study those properties. The second section discusses the structure and mechanical properties of healing post-infarction scar. The remaining sections review landmark analytical and computational models that provided insight into the functional consequences of myocardial infarction and potential therapies. Finally, we briefly consider emerging models of wound healing in the infarct region and growth and remodeling in the surviving myocardium that are beginning to predict the long-term effects of infarction and post-infarction therapies. In the future, multi-scale models that capture such remodeling in addition to the beat-to-beat mechanics of the heart hold great promise for designing novel therapies, not only for myocardial infarction but also for a wide range of cardiac pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bell, R.M., Mocanu, M.M., Yellon, D.M.: Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J. Mol. Cell Cardiol. 50, 940–950 (2011)

    Article  Google Scholar 

  • Bogaert, J., Maes, A., Van de Werf, F., Bosmans, H., Herregods, M.C., Nuyts, J., Desmet, W., Mortelmans, L., Marchal, G., Rademakers, F.E.: Functional recovery of subepicardial myocardial tissue in transmural myocardial infarction after successful reperfusion: an important contribution to the improvement of regional and global left ventricular function. Circulation 99, 36–43 (1999)

    Article  Google Scholar 

  • Bogen, D.K., Rabinowitz, S.A., Needleman, A., McMahon, T.A., Abelmann, W.H.: An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ. Res. 47, 728–741 (1980)

    Article  Google Scholar 

  • Bovendeerd, P.H., Arts, T., Delhaas, T., Huyghe, J.M., van Campen, D.H., Reneman, R.S.: Regional wall mechanics in the ischemic left ventricle: numerical modeling and dog experiments. Am. J. Physiol. 270, H398–H410 (1996)

    Google Scholar 

  • Buckberg, G., Hoffman, J.I.E., Mahajan, A., Saleh, S., Coghlan, C.: Cardiac mechanics revisited: the relationship of cardiac architecture to ventricular function. Circulation 118, 2571–2587 (2008)

    Article  Google Scholar 

  • Burkhoff, D., Tyberg, J.V.: Why does pulmonary venous pressure rise after onset of LV dysfunction: a theoretical analysis. Am. J. Physiol. 265, H1819–H1828 (1993)

    Google Scholar 

  • Canty, E.G., Starborg, T., Lu, Y., Humphries, S.M., Holmes, D.F., Meadows, R.S., Huffman, A., O’Toole, E.T., Kadler, K.E.: Actin filaments are required for fibripositor-mediated collagen fibril alignment in tendon. J. Biol. Chem. 281, 38592–38598 (2006)

    Article  Google Scholar 

  • Caulfield, J.B., Borg, T.K.: The collagen network of the heart. Lab. Invest. 40, 364–372 (1979)

    Google Scholar 

  • Clarke, S.A., Ghanta, R.K., Ailawadi, G., Holmes, J.W.: Cardiac restraint and support following myocardial infarction. In: Franz, T. (ed.) Cardiovascular and cardiac therapeutic devices, pp. 169–206. Springer, Berlin (2014)

    Google Scholar 

  • Clarke, S.A., Goodman, N.C., Ailawadi, G., Holmes, J.W.: Effect of scar compaction on the therapeutic efficacy of anisotropic reinforcement following myocardial infarction in the dog. J. Cardiovasc. Transl. Res. 8, 353–361 (2015)

    Article  Google Scholar 

  • Cohn, J.N., Johnson, G., Ziesche, S., Cobb, F., Francis, G., Tristani, F., Smith, R., Dunkman, W.B., Loeb, H., Wong, M., Bhat, G., Goldman, S., Fletcher, R.D., Doherty, J., Hughes, C.V., Carson, P., Cintron, G., Shabetai, R., Haakenson, C.: A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N. Engl. J. Med. 325, 303–310 (1991)

    Article  Google Scholar 

  • Connelly, C., Vogel, W.M., Hernandez, Y.M., Apstein, C.S.: Movement of necrotic wavefront after coronary artery occlusion in rabbit. Am. J. Physiol. 243, H682–H690 (1982)

    Google Scholar 

  • Costa, K.D., Takayama, Y., McCulloch, A.D., Covell, J.W.: Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am. J. Physiol. 276, H595–H607 (1999)

    Google Scholar 

  • Costa, K.D., Holmes, J.W., McCulloch, A.D.: Modeling cardiac mechanical properties in three dimensions. Phil. Trans. R. Soc. Lond. A 359, 1233–1250 (2001)

    Article  MATH  Google Scholar 

  • Criscione, J.C., Lorenzen-Schmidt, I., Humphrey, J.D., Hunter, W.C.: Mechanical contribution of endocardium during finite extension and torsion experiments on papillary muscles. Ann. Biomed. Eng. 27, 123–130 (1999)

    Article  Google Scholar 

  • Demer, L.L., Yin, F.C.P.: Passive biaxial mechanical properties of isolated canine myocardium. J. Physiol. 339, 615–630 (1983)

    Article  Google Scholar 

  • Dokos, S., Smaill, B.H., Young, A.A., LeGrice, I.J.: Shear properties of passive ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol. 283, H2650–H2659 (2002)

    Article  Google Scholar 

  • Fomovsky, G.M., Holmes, J.W.: Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am. J. Physiol. Heart Circ. Physiol. 298, H221–H228 (2010)

    Article  Google Scholar 

  • Fomovsky, G.M., Thomopoulos, S., Holmes, J.W.: Contribution of extracellular matrix to the mechanical properties of the heart. J. Mol. Cell Cardiol. 48, 490–496 (2010)

    Article  Google Scholar 

  • Fomovsky, G.M., Macadangdang, J.R., Ailawadi, G., Holmes, J.W.: Model-based design of mechanical therapies for myocardial infarction. J. Cardiovasc. Transl. Res. 4, 82–91 (2011)

    Google Scholar 

  • Fomovsky, G.M., Clark, S.A., Parker, K.M., Ailawadi, G., Holmes, J.W.: Anisotropic reinforcement of acute anteroapical infarcts improves pump function. Circ. Heart Fail. 5, 515–522 (2012a)

    Article  Google Scholar 

  • Fomovsky, G.M., Rouillard, A.D., Holmes, J.W.: Regional mechanics determine collagen fiber structure in healing myocardial infarcts. J. Mol. Cell Cardiol. 52, 1083–1090 (2012b)

    Article  Google Scholar 

  • Frangogiannis, N.G.: The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 11, 255–265 (2014)

    Article  Google Scholar 

  • Fujimoto, K.L., Tobita, K., Merryman, W.D., Guan, J., Momoi, N., Stolz, D.B., Sacks, M.S., Keller, B.B., Wagner, W.R.: An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J. Am. Coll. Cardiol. 49, 2292–2300 (2007)

    Article  Google Scholar 

  • Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive material properties of intact ventricular myocardium determined from a cylindrical model. J. Biomech. Eng. 113, 42–55 (1991)

    Article  Google Scholar 

  • Gupta, K.B., Ratcliffe, M.B., Fallert, M.A., Edmunds Jr., L.H., Bogen, D.K.: Changes in passive mechanical stiffness of myocardial tissue with aneurysm formation. Circulation 89, 2315–2326 (1994)

    Article  Google Scholar 

  • Herz, S.L., Ingrassia, C.M., Homma, S., Costa, K.D., Holmes, J.W.: Parameterization of left ventricular wall motion for detection of regional ischemia. Ann. Biomed. Eng. 33, 912–919 (2005)

    Article  Google Scholar 

  • Herz, S.L., Hasegawa, T., Makaryus, A.N., Parker, K.M., Homma, S., Wang, J., Holmes, J.W.: Quantitative three-dimensional wall motion analysis predicts ischemic region size and location. Ann. Biomed. Eng. 38, 1367–1376 (2010)

    Article  Google Scholar 

  • Ho, S.Y., Anderson, R.H., Sánchez-Quintana, D.: Atrial structure and fibres: morphologic bases of atrial conduction. Cardiovasc. Res. 54, 325–336 (2002)

    Article  Google Scholar 

  • Holmes, J.W., Covell, J.W.: Collagen fiber orientation in myocardial scar tissue. Cardiovasc. Pathobiol. 1, 15–22 (1996)

    Google Scholar 

  • Holmes, J.W., Yamashita, H., Waldman, L.K., Covell, J.W.: Scar remodeling and transmural deformation after infarction in the pig. Circulation 90, 411–420 (1994)

    Article  Google Scholar 

  • Holmes, J.W., Nuñez, J.A., Covell, J.W.: Functional implications of myocardial scar structure. Am. J. Physiol. Heart Circ. Physiol. 272, H2123–H2130 (1997)

    Google Scholar 

  • Holmes, J.W., Hünlich, M., Hasenfuss, G.: Energetics of the Frank–Starling effect in rabbit myocardium: economy and efficiency depend on muscle length. Am. J. Physiol. 283, H324–H330 (2002)

    Google Scholar 

  • Holmes, J.W., Borg, T.K., Covell, J.W.: Structure and mechanics of healing myocardial infarcts. Annu. Rev. Biomed. Eng. 27, 223–253 (2005)

    Article  Google Scholar 

  • Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Phil. Trans. R. Soc. Lond. A 367, 3445–3475 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Humphrey, J.D., Strumpf, R.K., Yin, F.C.P.: Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 112, 333–339 (1990a)

    Article  Google Scholar 

  • Humphrey, J.D., Strumpf, R.K., Yin, F.C.P.: Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J. Biomech. Eng. 112, 340–346 (1990b)

    Article  Google Scholar 

  • Humphrey, J.D., Barazotto, R.L., Hunter, W.C.: Finite extension and torsion of papillary muscles: a theoretical framework. J. Biomech. 25, 541–547 (1992)

    Article  Google Scholar 

  • Janz, R.F., Waldron, R.J.: Predicted effect of chronic apical aneurysms on the passive stiffness of the human left ventricle. Circ. Res. 42, 255–263 (1978)

    Article  Google Scholar 

  • Jin, F.-Y., Han, H.-C., Berger, J., Dai, Q., Lindsey, M.L.: Combining experimental and mathematical modeling to reveal mechanisms of macrophage-dependent left ventricular remodeling. BMC Syst. Biol. 5, 60 (2011)

    Article  Google Scholar 

  • Jugdutt, B.I., Amy, R.W.M.: Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J. Am. Coll. Cardiol. 7, 91–102 (1986)

    Article  Google Scholar 

  • Kelsey, R., Botello, M., Millard, B., Zimmerman, J.: An online heart simulator for augmenting first-year medical and dental education. Proc. AMIA Symp. 370–374 (2002)

    Google Scholar 

  • Kerckhoffs, R.C.P., Neal, M.L., Gu, Q., Bassingthwaighte, J.B., Omens, J.H., McCulloch, A.D.: Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann. Biomed. Eng. 35, 1–18 (2007)

    Article  Google Scholar 

  • Kidambi, A., Mather, A.N., Swoboda, P., Motwani, M., Fairbairn, T.A., Greenwood, J.P., Plein, S.: Relationship between myocardial edema and regional myocardial function after reperfused acute myocardial infarction: an MR imaging study. Radiology 267, 701–708 (2013)

    Article  Google Scholar 

  • Kramer, C.M., Rogers, W.J., Theobald, T.M., Power, T.P., Geskin, G., Reichek, N.: Dissociation between changes in intramyocardial function and left ventricular volumes in the eight weeks after first anterior myocardial infarction. J. Am. Coll. Cardiol. 30, 1625–1632 (1997)

    Article  Google Scholar 

  • Lee, J., Smith, N.P.: The multi-scale modelling of coronary blood flow. Ann. Biomed. Eng. 40, 2399–2413 (2012)

    Article  Google Scholar 

  • Lee, E.J., Holmes, J.W., Costa, K.D.: Remodeling of engineered tissue anisotropy in response to altered loading conditions. Ann. Biomed. Eng. 36, 1322–1334 (2008)

    Article  Google Scholar 

  • LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, B., Hunter, P.J., Gavin, J.B.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269, 571–582 (1995)

    Google Scholar 

  • LeGrice, I.J., Hunter, P.J., Young, A., Smaill, B.H.: The architecture of the heart: a data-based model. Phil. Trans. R. Soc. Lond. A 359, 1217–1232 (2001)

    Article  MATH  Google Scholar 

  • Lindsey, M.L., Zamilpa, R.: Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc. Ther. 30, 31–41 (2012)

    Article  Google Scholar 

  • Maughan, W.L., Shoukas, A.A., Sagawa, K., Weisfeldt, M.L.: Instantaneous pressure-volume relationship of the canine right ventricle. Circ. Res. 44, 309–15 (1979)

    Google Scholar 

  • Maurer, M.S., Sackner-Bernstein, J.D., El-Khoury Rumbarger, L., Yushak, M., King, D.L., Burkhoff, D.: Mechanisms underlying improvements in ejection fraction with carvedilol in heart failure. Circ. Heart Fail. 2, 189–196 (2009)

    Google Scholar 

  • May-Newman, K., Omens, J.H., Pavelec, R.S., McCulloch, A.D.: Three-dimensional transmural mechanical interaction between the coronary vasculature and passive myocardium in the dog. Circ. Res. 74, 1166–1178 (1994)

    Article  Google Scholar 

  • Mazhari, R., McCulloch, A.D.: Integrative models for understanding the structural basis of regional mechanical dysfunction in ischemic myocardium. Ann. Biomed. Eng. 28, 979–990 (2000)

    Article  Google Scholar 

  • Mazhari, R., Omens, J.H., Covell, J.W., McCulloch, A.D.: Structural basis of regional dysfunction in acutely ischemic myocardium. Cardiovasc. Res. 47, 284–293 (2000)

    Article  Google Scholar 

  • McCallum, J.B.: On the muscular architecture and growth of the ventricles of the heart. Johns Hopkins Hospital Reports. 9, 307–335 (1900)

    Google Scholar 

  • McCormick, R.J., Musch, T.I., Bergman, B.C., Thomas, D.P.: Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am. J. Physiol. 266, H354–H359 (1994)

    Google Scholar 

  • McCulloch, A.D., Smaill, B.H., Hunter, P.J.: Left ventricular epicardial deformation in isolated arrested dog heart. Am. J. Physiol. 252, H233–H241 (1987)

    Google Scholar 

  • McCulloch, A.D., Smaill, B.H., Hunter, P.J.: Regional left ventricular epicardial deformation in the passive dog heart. Circ. Res. 64, 721–733 (1989)

    Article  Google Scholar 

  • Morita, M., Eckert, C.E., Matsuzaki, K., Noma, M., Ryan, L.P., Burdick, J.A., Jackson, B.M., Gorman, J.H., Sacks, M.S., Gorman, R.C.: Modification of infarct material properties limits adverse ventricular remodeling. Ann. Thorac Surg. 92, 617–624 (2011)

    Article  Google Scholar 

  • Moyer, C.B., Norton, P.T., Ferguson, J.D., Holmes, J.W.: Changes in global and regional mechanics due to atrial fibrillation: insights from a coupled finite-element and circulation model. Ann. Biomed. Eng. 43, 1600–1613 (2015)

    Article  Google Scholar 

  • Nash, M.P., Hunter, P.J.: Computational mechanics of the heart. J. Elasticity 61, 113–141 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Novak, V.P., Yin, F.C.P., Humphrey, J.D.: Regional mechanical properties of passive myocardium. J. Biomech. Eng. 27, 403–412 (1994)

    Article  Google Scholar 

  • Omens, J.H., Miller, T.R., Covell, J.W.: Relationship between passive tissue strain and collagen uncoiling during healing of infarcted myocardium. Cardiovasc. Res. 33, 351–358 (1997)

    Article  Google Scholar 

  • Richardson, W.J., Clark, S.A., Holmes, J.W.: Physiological implications of myocardial scar structure. Compr. Physiol. 5, 1877–1909 (2015)

    Article  Google Scholar 

  • Rivlin, R.S., Saunders, D.W.: Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Phil. Trans. R. Soc. Lond. A 243, 251–288 (1951)

    Google Scholar 

  • Rouillard, A.D., Holmes, J.W.: Mechanical regulation of fibroblast migration and collagen remodelling in healing myocardial infarcts. J. Physiol. 590, 4585–4602 (2012)

    Article  Google Scholar 

  • Rushmer, R.F., Crystal, D.K., Wagner, C.: The functional anatomy of ventricular contraction. Circ. Res. 1, 162–170 (1953)

    Google Scholar 

  • Sagawa, K., Maughan, L., Suga, H., Sunagawa, K.: Cardiac contraction and the pressure-volume relationship. Oxford University Press, New York (1988)

    Google Scholar 

  • Santamore, W.P., Burkhoff, D.: Hemodynamic consequences of ventricular interaction as assessed by model analysis. Am. J. Physiol. 260, H146–57 (1991)

    Google Scholar 

  • Schmid, H., Nash, M.P., Young, A.A., Hunter, P.J.: Myocardial material parameter estimation - a comparative study for simple shear. J. Biomech. Eng. 128, 742–750 (2006)

    Article  Google Scholar 

  • Schmid, H., O’Callaghan, P., Nash, M.P., Lin, W., LeGrice, I.J., Smaill, B.H., Young, A.A., Hunter, P.J.: Myocardial material parameter estimation: a non-homogeneous finite element study from simple shear tests. Biomech. Model. Mechanobiol. 7, 161–173 (2008)

    Article  Google Scholar 

  • Sommer, G., Haspinger, D.C., Andrä, M., Sacherer, M., Viertler, C., Regitnig, P., Holzapfel, G.A.: Quantification of shear deformations and corresponding stresses in the biaxially tested human myocardium. Ann. Biomed. Eng. 43, 2334–2348 (2015)

    Article  Google Scholar 

  • Streeter, D.D.: Gross morphology and fiber geometry of the heart. In: Berne, R.M. (ed.) Handbook of physiology: the cardiovascular system, pp. 61–112. Williams & Wilkins, Baltimore (1979)

    Google Scholar 

  • Streeter, D.D., Hanna, W.T.: Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and wall geometry. Circ. Res. 33, 639–655 (1973a)

    Article  Google Scholar 

  • Streeter, D.D., Hanna, W.T.: Engineering mechanics for successive states in canine left ventricular myocardium. II. Fiber angle and sarcomere length. Circ. Res. 33, 656–664 (1973b)

    Article  Google Scholar 

  • Suga, H., Sagawa, K.: Instantaneous pressure-volume relationships and their ratio in the excised, supported canine left ventricle. Circ. Res. 35, 117–126 (1974)

    Article  Google Scholar 

  • Suga, H., Sagawa, K., Shoukas, A.A.: Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32, 314–322 (1973)

    Article  Google Scholar 

  • Sunagawa, K., Maughan, W.L., Sagawa, K.: Effect of regional ischemia on the left ventricular end-systolic pressure-volume relationship of isolated canine hearts. Circ. Res. 52, 170–178 (1983)

    Article  Google Scholar 

  • Tennant, R., Wiggers, C.J.: The effect of coronary occlusion on myocardial contraction. Am. J. Physiol. 112, 351–361 (1935)

    Google Scholar 

  • Theroux, P., Ross, J., Franklin, D., Covell, J.W., Bloor, C.M., Sasayama, S.: Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circ. Res. 40, 158–165 (1977)

    Article  Google Scholar 

  • Torrent-Guasp, F.: On morphology and cardiac function. 4th communication. Rev. Española Cardiol. 20, 2–13 (1967)

    Google Scholar 

  • Tyberg, J.V., Forrester, J.S., Wyatt, H.L., Goldner, S.J., Parmley, W.W., Swan, H.J.: An analysis of segmental ischemic dysfunction utilizing the pressure-length loop. Circulation 49, 748–754 (1974)

    Article  Google Scholar 

  • Usyk, T., Mazhari, R., McCulloch, A.D.: Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elasticity 61, 143–164 (2000)

    Article  MATH  Google Scholar 

  • Villareal, F.J., Lew, W.Y., Waldman, L.K., Covell, J.W.: Transmural myocardial deformation in the ischemic canine left ventricle. Circ. Res. 68, 368–381 (1991)

    Article  Google Scholar 

  • Vivaldi, M.T., Eyre, D.R., Kloner, R.A., Schoen, F.J.: Effects of methylprednisolone on collagen biosynthesis in healing acute myocardial infarction. Am. J. Cardiol. 60, 424–425 (1987)

    Article  Google Scholar 

  • Walker, J.C., Ratcliffe, M.B., Zhang, P., Wallace, A.W., Fata, B., Hsu, E.W., Saloner, D., Guccione, J.M.: MRI-based finite-element analysis of left ventricular aneurysm. Am. J. Physiol. Heart Circ. Physiol. 289, H692–H700 (2005)

    Article  Google Scholar 

  • Wall, S.T., Walker, J.C., Healy, K.E., Ratcliffe, M.B., Guccione, J.M.: Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation 114, 2627–2635 (2006)

    Article  Google Scholar 

  • Wall, S.T., Guccione, J.M., Ratcliffe, M.B., Sundnes, J.S.: Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injured left ventricle: a finite element model study. Am. J. Physiol. Heart Circ. Physiol. 302, H206–H214 (2012)

    Article  Google Scholar 

  • West, J.B.: Best and Taylor’s physiological basis of medical practice, 11th edn. Williams and Wilkins, Baltimore (1985)

    Google Scholar 

  • Westerhof, N., Bosman, F., De Vries, C.J., Noordergraaf, A.: Analog studies of the human systemic arterial tree. J. Biomech. 2, 121–143 (1969)

    Article  Google Scholar 

  • White, H.D., Chew, D.P.: Acute myocardial infarction. Lancet 372, 570–584 (2008)

    Article  Google Scholar 

  • Whittaker, P., Boughner, D.R., Kloner, R.A.: Analysis of healing after myocardial infarction using polarized light microscopy. Am. J. Pathol. 134, 879–893 (1989)

    Google Scholar 

  • Yin, F.C.P., Strumpf, R.K., Chew, P.H., Zeger, S.L.: Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20, 577–589 (1987)

    Article  Google Scholar 

  • Zhao, J., Butters, T.D., Zhang, H., Pullan, A.J., LeGrice, I.J., Sands, G.B., Smaill, B.H.: An image-based model of atrial muscular architecture: effects of structural anisotropy on electrical activation. Circ. Arrhythm. Electrophysiol. 5, 361–370 (2012)

    Article  Google Scholar 

  • Zimmerman, S.D., Thomas, D.P., Velleman, S.G., Li, X., Hansen, T.R., McCormick, R.J.: Time course of collagen and decorin changes in rat cardiac and skeletal muscle post-MI. Am. J. Physiol. Heart Circ. Physiol. 281, H1816–H1822 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Holmes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Witzenburg, C.M., Holmes, J.W. (2017). Biomechanics of Myocardial Ischemia and Infarction. In: Holzapfel, G., Ogden, R. (eds) Biomechanics: Trends in Modeling and Simulation. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-41475-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41475-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41473-7

  • Online ISBN: 978-3-319-41475-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics