Skip to main content

Transferability of Fracture Toughness with Constraint

  • Conference paper
  • First Online:
  • 1491 Accesses

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Constraint approaches to transferability of fracture toughness are examined. The different constraint parameters are defined and discussed. Special attention is given to the actual trends to use the plastic constraint in the Material Failure Master Curve (MFMC) and the Material Transition Temperature Master Curve (MTTMC).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chechulin, B.B.: Influence of specimen size on the characteristic mechanical value of plastic fracture (in Russian). Zhur. Tekh. Fiz. 24, 1093–1100 (1954)

    Google Scholar 

  2. Mouwakeh, M., Pluvinage, G., Masri, S.: Failure of water pipes containing surface cracks using limit analysis notions. Res. J. Aleppo. Univ. Eng. Sci. Ser. 63 (2011)

    Google Scholar 

  3. Henry, B.S., Luxmore, A.R.: The stress triaxiality constraint and the Q-value as a ductile fracture parameter. Eng. Fract. Mech. 57, 375–390 (1997)

    Article  Google Scholar 

  4. Ruggieri, C., Gao, X., Dodds, R.H.: Transferability of elastic–plastic fracture toughness using the Weibull stress approach: significance of parameter calibration. Eng. Fract. Mech. 67, 101–117 (2000)

    Google Scholar 

  5. Hadj Meliani, M., Matvienko, Y.G., Pluvinage, G.: Two-parameter fracture criterion (Kρ, χ-Tef,c) based on notch fracture mechanics. Inter. J. Fract. 167, 173–182 (2011)

    Google Scholar 

  6. Williams, M.L.: On the stress distribution at the base of stationary Crack. ASME J. Appl. Mech. 24, 109–114 (1957)

    MathSciNet  MATH  Google Scholar 

  7. Larsson, S.G., Carlsson, A.J.: Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic–plastic materials. J., Mech. Phys. Solids 1(21), 263–277 (1973)

    Google Scholar 

  8. Hutchinson, J.W.: Singular behavior at the end of a tensile crack in a hardening material. J. Mech. Phys. Solids 16, 13–31 (1968)

    Article  MATH  Google Scholar 

  9. O’Dowd, N.P., Shih, C.F.: Family of crack-tip fields characterized by a triaxiality parameter: Part I—Structure of fields. J. Mech. Phys. Solids 39, 989–1015 (1991)

    Article  Google Scholar 

  10. Yang, B., Ravichandar, K.: Evaluation of T stress by stress difference method. Eng. Fract. Mech. 64, 589–605 (2001)

    Article  Google Scholar 

  11. Dodds, R., Ruggieri, C., Koppenhefer, K.: 3D Constraint effects on models for transferrability of cleavage fracture toughness. ASTM 1321, 179–197 (1997)

    Google Scholar 

  12. O’Dowd, N.P., Shih, C.F.: Family of crack-tip fields characterized by a triaxiality parameter: Part II—Fracture applications. J. Mech. Phys. Solids 40, 939–963 (1992)

    Article  Google Scholar 

  13. Rice, J.R., Tracey, D.M.: on the ductile enlargement of voids in triaxial stress fiet. J. Mech. Phys. Solids 26, 163–186 (1969)

    Article  Google Scholar 

  14. Kaechele, L.E., Tetelman, A.S.: A statistical investigation of microcrack formation. Acta Metall. 17, 463–475 (1969)

    Article  Google Scholar 

  15. Akourri, O., Elayachi, I., Pluvinage, G.: Stress triaxiality as fracture toughness transferability parameter for notched specimens. Int. Rev. Mech. Eng. (I.RE.M.E.) 1(6) (2007)

    Google Scholar 

  16. Eisele, U., Roos, E.: Evaluation of different fracture-mechanical J-integral initiation values with regard to their usability in the safety assessment of components. Nucl. Eng. Des. 130, 237–247 (1990)

    Google Scholar 

  17. Dlouhy, I., Holzmann, M., Chlup, Z.: Fracture resistance of cast ferritic C Mn steel for container of spent nuclear fuel in transferability of fracture mechanical characteristics. Edito Dlouhy, NATO Sciences Series, pp. 47–64 (2001)

    Google Scholar 

  18. Wallin, K.: Quantifying T-stress controlled constraint by the master curve transition temperature T0. Eng. Frac. Mech. 68, 303–328 (2001)

    Article  Google Scholar 

  19. Wallin, K.: Structural integrity assessment aspects of the Master Curve methodology. Eng. Fract. Mech. 77, 285–292 (2010)

    Article  Google Scholar 

  20. Hohe, J., Hebel, 1, Friedmann, V., Siegele, D.: Probabilistic failure assessment of ferritic steels using the master curve approach including constraint effects. Eng. Fract. Mech. 74, 1274–1292 (2007)

    Google Scholar 

  21. Coseru, A., Capelle, J., Pluvinage, G.: On the use of charpy transition temperature as reference temperature for the choice of a pipe steel. Eng. Fail. Anal. 37, 110–119 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Pluvinage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Pluvinage, G., Capelle, J., Hadj Meliani, M. (2017). Transferability of Fracture Toughness with Constraint. In: Boukharouba, T., Pluvinage, G., Azouaoui, K. (eds) Applied Mechanics, Behavior of Materials, and Engineering Systems. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-41468-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41468-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41467-6

  • Online ISBN: 978-3-319-41468-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics