Skip to main content

Fatigue and Notch Mechanics

  • Conference paper
  • First Online:
Applied Mechanics, Behavior of Materials, and Engineering Systems

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

Linear Elastic Notch Mechanics (LENM) extends the concepts of the well known Linear Elastic Fracture Mechanics (LEFM) to notches having root radius different from zero and arbitrary notch opening angle. LENM is based on fundamental analytical results and definitions introduced by Williams [43] and Gross and Mendelson [17]. From the experimental point of view, it has been applied for the first time by Haibach [18] on pure phenomenological basis to analyse the fatigue strength of welded joints using the strain gauge technique. Subsequently, LENM was developed thanks to the progressively increasing use of the Finite Element Method (FEM). Nowadays, NM has been formalised and applied to structural strength assessment of components. Different application techniques exist, but the theoretical frame remains unchanged [6, 8, 12, 20, 21, 23, 24, 28, 31, 37, 38, 42]. The present paper, after recalling the classic notch fatigue design criterion and the LEFM, aims at illustrating the link between Notch Mechanics and those classic approaches. In particular the aim is two-fold: on one side the use of Notch Mechanics in notch fatigue design will be illustrated, on the other side it will be shown how it can be used to better analyse and explain in deep the fundamentals of the classic approaches mentioned previously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atzori, B.: Fracture mechanics or notch sensitivity in fatigue design. In: Proceedings of the AIAS National Conference, Bergamo, Italy, (in Italian) (1985)

    Google Scholar 

  2. Atzori, B.: Machine Design, Cortina ed. (in Italian) (1999)

    Google Scholar 

  3. Atzori, B., Haibach, E.: Local strains at the toe of fillet welds and relationship with the fatigue life. In: VII AIAS National Congress, Cagliari (Italy), (in Italian) (1979)

    Google Scholar 

  4. Atzori, B., Lazzarin, P.: Analysis of some problems related to the FE-based assessment of fatigue strength. La Metallurgia Italiana 10, 37–44 (2001). (in Italian)

    Google Scholar 

  5. Atzori, B., Lazzarin, P.: Notch sensitivity and defect sensitivity under fatigue loading: two sides of the same medal. Int. J. Fract. 107, L3–L8 (2001)

    Article  Google Scholar 

  6. Atzori, B., Meneghetti, G.: Fatigue strength of fillet welded structural steels: finite elements, strain gauges and reality. Int. J. Fatigue 23, 713–721 (2001)

    Article  Google Scholar 

  7. Atzori, B., Meneghetti, G.: Static strength of notched and cracked components. In: Proceedings of the 5th International Conference New Trends in Fatigue and Fracture 5 NTFF5, Bari (Italy) (2005)

    Google Scholar 

  8. Atzori, B., Lazzarin, P., Tovo, R.: Stress field parameters to predict fatigue strength of notched components. J. Strain. Anal. Eng. 34, 1–17 (1999)

    Article  Google Scholar 

  9. Atzori, B., Lazzarin, P., Meneghetti, G.: Fracture Mechanics and Notch Sensitivity. Fatigue Fract. Eng. Mater. Struct. 26, 257–267 (2003)

    Article  Google Scholar 

  10. Atzori, B., Lazzarin, P., Meneghetti, G.: A unified treatment of the mode I fatigue limit of components containing notches or defects. Int. J. Fract. 133, 61–87 (2005)

    Article  MATH  Google Scholar 

  11. Berto, F., Lazzarin, P.: Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Mater. Sci. Eng. R Rep. 75, 1–48 (2014)

    Article  Google Scholar 

  12. Boukharouba, T., Tamine, T., Nui, L., Chehimi, C., Pluvinage, G.: The use of notch stress intensity factor as a fatigue crack initiation parameter. Eng. Fract. Mech. 52, 503–512 (1995)

    Article  Google Scholar 

  13. Ciavarella, M., Meneghetti, G.: On fatigue limit in the presence of notches: classical vs. recent unified formulations. Int. J. Fatigue 26, 289–298 (2004)

    Article  Google Scholar 

  14. Dowling, N.E.: Mechanical Behavior of Materials. Pearson Prentice Hall, Englewood Cliffs (2007)

    Google Scholar 

  15. El Haddad, M.H., Topper, T.H., Smith, K.N.: Prediction of non-propagating cracks. Eng. Fract. Mech. 11, 573–584 (1979)

    Article  Google Scholar 

  16. Glinka, G., Newport, A.: Universal features of elastic notch-tip stress fields. Int. J. Fatigue 9, 143–150 (1987)

    Article  Google Scholar 

  17. Gross, R., Mendelson, A.: Plane elastostatic analysis of V-notched plates. Int. J. Fract. Mech. 8, 267–327 (1972)

    Article  Google Scholar 

  18. Haibach, E.: Die Schwingfestigkeit von Schweissverdindungen aus der Sicht einer örtlichen Beanspruchungsmessung, Laboratorium für Betriebsfestigkeit, Darmstadt, Bericht N° FB-77 (1968)

    Google Scholar 

  19. Harkegard, G.: An effective stress intensity factor and the determination of the notched fatigue limit. In: Backlund, J., Blom, A.F., Beevers, C.J. (eds.) Fatigue Thresholds: Fundamentals and Engineering Applications, vol. 2, pp. 867–879. Chameleon Press Ltd., London (1981)

    Google Scholar 

  20. Lazzarin, P., Tovo, R.: A unified approach to the evaluation of linear elastic stress fields in the neighborhood of cracks and notches. Int. J. Fracture 78, 3–19 (1996)

    Article  Google Scholar 

  21. Lazzarin, P., Tovo, R.: A notch intensity factor approach to the stress analysis of welds. Fatigue Fract. Eng. Mater. Struct. 21, 1089–1104 (1998)

    Article  Google Scholar 

  22. Lazzarin, P., Zambardi, R.: A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches. Int. J. Fract. 112, 275–298 (2001)

    Article  Google Scholar 

  23. Lazzarin, P., Tovo, R., Meneghetti, G.: Fatigue crack initiation and propagation phases near notches in metals with low notch sensitivity. Int. J. Fatigue 19, 647–657 (1997)

    Article  Google Scholar 

  24. Livieri, P., Lazzarin, P.: Fatigue strength of steel and aluminium welded joints based on generalised stress intensity factors and local strain energy values. Int. J. Fract. 133, 247–278 (2005)

    Article  Google Scholar 

  25. Lukas, P., Klesnil, M.: Fatigue limit of notched bodies. Mater. Sci. Eng. 34, 61–66 (1978)

    Article  Google Scholar 

  26. Lukas, P., Kunz, L., Weiss, B., Stickler, R.: Non-damaging notches in fatigue. Fatigue Fract. Eng. Mater. Struct. 9, 195–204 (1986)

    Article  Google Scholar 

  27. Meneghetti, G.: Analysis of the fatigue strength of a stainless steel based on the energy dissipation. Int. J. Fatigue 29, 81–94 (2007)

    Article  Google Scholar 

  28. Meneghetti, G., Lazzarin, P.: Significance of the elastic peak stress evaluated by FE analyses at the point of singularity of sharp V-notched components. Fatigue Fract. Eng. Mater. Struct. 30, 95–106 (2007)

    Article  Google Scholar 

  29. Meneghetti, G., Ricotta, M., Atzori, B.: A synthesis of the push-pull fatigue behaviour of plain and notched stainless steel specimens by using the specific heat loss. Fatigue Fract. Eng. Mater. Struct. 36, 1306–1322 (2013)

    Article  Google Scholar 

  30. Meneghetti, G., Ricotta, M., Masaggia, S., Atzori, B.: Comparison of the low- and high-cycle fatigue behaviour of ferritic, pearlitic, isothermed and austempered ductile irons. Fatigue Fract. Eng. Mater. Struct. 36, 913–929 (2013)

    Article  Google Scholar 

  31. Murakami, Y., Endo, M.: Effects of defects, inclusions and inhomogeneities on fatigue strength. Int. J. Fatigue 19, 163–182 (1994)

    Article  Google Scholar 

  32. Neuber, H.: Theory of Notch Stresses, 2nd edn. Springer, Berlin (1958)

    Google Scholar 

  33. Peterson, R.E.: Notch sensitivity. In: Sines, G., Waisman, J.L. (eds.) Metal Fatigue. MacGraw-Hill, New York (1959)

    Google Scholar 

  34. Radaj, D.: State-of-the-art review on the local strain energy density concept and its relation to the J-integral and peak stress method. Fatigue Fract. Eng. Mater. Struct. 38, 2–28 (2015)

    Article  Google Scholar 

  35. Radaj, D., Vormwald, M.: Advanced Methods of Fatigue Assessment. Springer, Berlin (2013)

    Google Scholar 

  36. Radaj, D., Sonsino, C.M., Fricke, W.: Fatigue Assessment of Welded Joints by Local Approaches, 2nd edn. Woodhead Publishing, Cambridge (2006)

    Google Scholar 

  37. Tanaka, K.: Engineering formulae for fatigue strength reduction due to crack-like notches. Int. J. Fract. 22, R39–R45 (1983)

    Article  Google Scholar 

  38. Taylor, D.: Geometrical effects in fatigue: a unifying theoretical model. Int. J. Fatigue 21, 413–420 (1999)

    Article  Google Scholar 

  39. Ting, J.C., Lawrence, F.V.: A crack closure model for predicting the threshold stresses of notches. Fatigue Fract. Eng. Mater. Struct. 16, 93–114 (1993)

    Article  Google Scholar 

  40. Usami, S.: Short crack fatigue properties and component life estimation. In: Tanaka, T., Jono, M., Komai K. (eds.) Current Research on Fatigue Cracks, pp. 119–147. Elsevier (1987)

    Google Scholar 

  41. Verreman, Y., Bailon, J.: Fatigue of V-notched members: short crack behaviour and endurance limit. Eng. Fract. Mech. 28, 773–783 (1987)

    Article  Google Scholar 

  42. Verreman, Y., Nie, B.: Early development of fatigue cracking at manual fillet welds. Fatigue Fract. Eng. Mater. Struct. 19, 669–681 (1996)

    Article  Google Scholar 

  43. Williams, M.L.: Stress singularities resulting from various boundary conditions in angular corners of plates in extension. J. Appl. Mech. 19, 526–528 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Atzori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Atzori, B., Meneghetti, G., Ricotta, M. (2017). Fatigue and Notch Mechanics. In: Boukharouba, T., Pluvinage, G., Azouaoui, K. (eds) Applied Mechanics, Behavior of Materials, and Engineering Systems. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-41468-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41468-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41467-6

  • Online ISBN: 978-3-319-41468-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics