Skip to main content

Spacecraft Microbiology

  • Chapter
  • First Online:
The Immune System in Space: Are we prepared?

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

  • 576 Accesses

Abstract

The immune system is one of the most affected systems of the human body during spaceflights. The microbial environment of a spacecraft consists of numerous microorganisms, many of them pathogenic, as well as species with biodestructive properties. Biological contaminants may affect life support systems and hardware and cause material damage. During spaceflight conditions, enhanced microbial proliferation, increased virulence, and increased resistance to antibiotics were observed. The combination of a complex immune dysfunction with an altered endogenous microbial flora and particularly resistant and virulent bacteria can be considered as a significant risk for serious infections during long-term space missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ball JR, Evans CH (2001) Safe passage: Astronaut care for exploration missions. National Academy Press, Washington, DC

    Google Scholar 

  • Bolshakova O, Ullrich O (2012) Mikrobiologie an Bord von Raumfahrzeugen. Flugmedizin Tropenmedizin Reisemedizin 19(5):222–226

    Article  Google Scholar 

  • Bouloc P, D‘Ari R (1991) Escherichia coli metabolism in space (CNES). Erasmus Experiment Archive. ESA

    Google Scholar 

  • Brown LR, Fromme WJ, Handler SF, Wheatcroft MG, Johnston DA (1976) Effect of Skylab missions on clinical and microbiologic aspects of oral health. J Am Dent Assoc 93(2):357–363

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Xu X, Chen J, Zhou X, Cheng L, Li M, Li J, Wang R, Jia W, Li YQ (2014) Effects of simulated microgravity on Streptococcus mutans physiology and biofilm structure. FEMS Microbiol Lett 359(1):94–101. doi:10.1111/1574-6968.12573

    Article  CAS  PubMed  Google Scholar 

  • Crabbe A, Schurr MJ, Monsieurs P, Morici L, Schurr J, Wilson JW, Ott CM, Tsaprailis G, Pierson DL, Stefanyshyn-Piper H, Nickerson CA (2011) Transcriptional and proteomic responses of Pseudomonas aeruginosa PAO1 to spaceflight conditions involve Hfq regulation and reveal a role for oxygen. Appl Environ Microbiol 77(4):1221–1230. doi:10.1128/AEM.01582-10

    Article  CAS  PubMed  Google Scholar 

  • Decelle JG, Taylor GR (1976) Autoflora in the upper respiratory tract of Apollo astronauts. Appl Environ Microbiol 32(5):659–665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda T, Fukuda K, Takahashi A, Ohnishi T, Nakano T, Sato M, Gunge N (2000) Analysis of deletion mutations of the rpsL gene in the yeast Saccharomyces cerevisiae detected after long-term flight on the Russian space station Mir. Mutat Res 470(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • Gu JD, Roman M, Esselman T, Mitchell R (1998) The role of microbial biofilms in deterioration of space station candidate materials. Int Biodeter Biodegr 41(1):25–33

    Article  CAS  Google Scholar 

  • Harada K (2001) Microflora investigation experiment. Uchu Seibutsu Kagaku 15 Suppl:S190

    Google Scholar 

  • Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74(1):121–156. doi:10.1128/MMBR.00016-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilyin VK (2005) Microbiological status of cosmonauts during orbital spaceflights on Salyut and Mir orbital stations. Acta Astronaut 56(9–12):839–850

    Article  CAS  PubMed  Google Scholar 

  • Juergensmeyer MA, Juergensmeyer EA, Guikema JA (1999) Long-term exposure to spaceflight conditions affects bacterial response to antibiotics. Microgravity Sci Technol 12(1):41–47

    CAS  PubMed  Google Scholar 

  • Klaus DM, Howard HN (2006) Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol 24(3):131–136

    Article  CAS  PubMed  Google Scholar 

  • La Duc MT, Kern R, Venkateswaran K (2004) Microbial monitoring of spacecraft and associated environments. Microb Ecol 47(2):150–158. doi:10.1007/s00248-003-1012-0

    Article  PubMed  Google Scholar 

  • Lapchine L, Moatti N, Gasset G, Richoilley G, Templier J, Tixador R (1986) Antibiotic activity in space. Drugs Exp Clin Res 12(12):933–938

    CAS  PubMed  Google Scholar 

  • Lencner AA, Lencner CP, Mikelsaar ME, Tjuri ME, Toom MA, Valjaots ME, Silov VM, Liz’ko NN, Legenkov VI, Reznikov IM (1984) The quantitative composition of the intestinal lactoflora before and after space flights of different lengths. Nahrung 28(6–7):607–613

    Article  CAS  PubMed  Google Scholar 

  • Leys NM, Hendrickx L, De Boever P, Baatout S, Mergeay M (2004) Space flight effects on bacterial physiology. J Biol Regul Homeost Agents 18(2):193–199

    CAS  PubMed  Google Scholar 

  • Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    Article  CAS  PubMed  Google Scholar 

  • Makimura K, Satoh K, Sugita T, Yamazaki T (2011) Fungal biota in manned space environment and impact on human health. Nihon Eiseigaku Zasshi 66(1):77–82

    Article  PubMed  Google Scholar 

  • Mermel LA (2012) Infection prevention and control during prolonged human space travel. Clin Infect Dis 56(1):123–130

    Google Scholar 

  • Nefedov YG, Shilov VM, Konstantinova IV, Zaloguyev SN (1971) Microbiological and immunological aspects of extended manned space flights. Life Sci Space Res 9:11–16

    CAS  PubMed  Google Scholar 

  • Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL (2000) Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun 68(6):3147–3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicogossian AE, Gaiser KK (1992) The space life sciences strategy for the 21st century. Acta Astronaut 26(6):459–465

    Article  CAS  PubMed  Google Scholar 

  • Novikova N (2004) Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microb Ecol 47(2):127–132. doi:10.1007/s00248-003-1055-2

    Article  CAS  PubMed  Google Scholar 

  • Novikova N, De Boever P, Poddubko S, Deshevaya E, Polikarpov N, Rakova N, Coninx I, Mergeay M (2006) Survey of environmental biocontamination on board the International Space Station. Res Microbiol 157(1):5–12. doi:10.1016/j.resmic.2005.07.010

    Article  PubMed  Google Scholar 

  • Ott CM, Bruce RJ, Pierson DL (2004) Microbial characterization of free floating condensate aboard the Mir space station. Microb Ecol 47(2):133–136. doi:10.1007/s00248-003-1038-3

    Article  CAS  PubMed  Google Scholar 

  • Pierson DL (2001) Microbial contamination of spacecraft. Gravit Space Biol Bull 14(2):1–6

    CAS  PubMed  Google Scholar 

  • Pierson DL, Stowe RP, Phillips TM, Lugg DJ, Mehta SK (2005) Epstein-Barr virus shedding by astronauts during space flight. Brain Behav Immun 19(3):235–242. doi:10.1016/j.bbi.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig JA, Abogunde O, Thomas K, Lawal A, Nguyen YU, Sodipe A, Jejelowo O (2010) Spaceflight and modeled microgravity effects on microbial growth and virulence. Appl Microbiol Biotechnol 85(4):885–891. doi:10.1007/s00253-009-2237-8

    Article  CAS  PubMed  Google Scholar 

  • Sonnenfeld G (2002) The immune system in space and microgravity. Med Sci Sports Exerc 34(12):2021–2027. doi:10.1249/01.MSS.0000039073.04569.B5

    Article  CAS  PubMed  Google Scholar 

  • Su L, Chang D, Liu C (2013) The development of space microbiology in the future: the value and significance of space microbiology research. Future Microbiol 8(1):5–8. doi:10.2217/fmb.12.127

    Article  PubMed  Google Scholar 

  • Taylor PW, Sommer AP (2005) Towards rational treatment of bacterial infections during extended space travel. Int J Antimicrob Agents 26(3):183–187. doi:10.1016/j.ijantimicag.2005.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tixador R, Richoilley G, Gasset G, Planel H, Moatti N, Lapchine L, Enjalbert L, Raffin J, Bost R, Zaloguev SN, Bragina MP, Moroz AF, Antsiferova NG, Kirilova FM (1985) Preliminary results of Cytos 2 experiment. Acta Astronaut 12(2):131–134

    Article  CAS  PubMed  Google Scholar 

  • Tixador R, Gasset G, Eche B, Moatti N, Lapchine L, Woldringh C, Toorop P, Moatti JP, Delmotte F, Tap G (1992) Studies on penetration of antibiotic in bacterial cells in space conditions. Erasmus Experiment Archive. ESA

    Google Scholar 

  • Ullrich O, Paulsen K (2011) Funktion des Immunsystems in Schwerelosigkeit – Von Astronauten für die Erde lernen. Flug Reisemedizin (18):118–122

    Google Scholar 

  • Ullrich O, Thiel C (2012) Gravitational Force: Triggered Stress in Cells of the Immune System. In: Chouker A (ed) Stress Challenges and Immunity in Space. Springer, Berlin/Heidelberg, pp 187–202. doi:10.1007/978-3-642-22272-6_14

    Chapter  Google Scholar 

  • Van den Ende H, Van den Briel W (1997) Changes in dividing Chlamydomonas monoica cells caused by microgravity (ALGAE 3). Erasmus Experiment Archive. ESA

    Google Scholar 

  • Van Houdt R, Mijnendonckx K, Leys N (2012) Microbial contamination monitoring and control during human space missions. Planet Space Sci 60(1):115–120. doi:10.1016/j.pss.2011.09.001

    Article  Google Scholar 

  • Viktorov AN, Novikova ND, Deshevaia EA (1992) The cabin microflora of manned space vehicles and the problem of the biological destruction of the construction materials used in them. Aviakosm Ekolog Med 26(3):41–48

    CAS  PubMed  Google Scholar 

  • Viktorov AN, Novikova ND, Deshevaia EA, Bragina MP, Shnyreva AV, Sizova TP, D’Iakov Iu T (1998) Residential colonization of orbital complex “Mir” environment by penicillium chrysogenum and problem of ecological safety in long-term space flight. Aviakosm Ekolog Med 32(5):57–62

    CAS  PubMed  Google Scholar 

  • Wilson JW, Ott CM, Honer zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci U S A 104(41):16299–16304. doi:10.1073/pnas.0707155104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatrice Astrid Lauber .

Additional information

This work is based on the article

Olga Bolshakova and Oliver Ullrich (2012) Mikrobiologie an Bord von Raumfahrzeugen. Flugmedizin · Tropenmedizin · Reisemedizin 19 (5):222–226

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lauber, B.A., Bolshakova, O., Ullrich, O. (2016). Spacecraft Microbiology. In: The Immune System in Space: Are we prepared?. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-41466-9_6

Download citation

Publish with us

Policies and ethics