Advertisement

HDAC Signaling Networks in Heart Failure

  • Mariya Kronlage
  • Hugo A. Katus
  • Johannes BacksEmail author
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)

Abstract

Histone modifications are mediated by multiple chromatin-modifying enzymes such as histone methyltransferases and demethylases or histone acetyltransferases and histone deacetylases (HDACs). Because of their involvement in heart muscle disease, HDACs have gained a lot of attention over the last 15 years. HDACs are divided into different classes. Among them, class IIa HDACs undergo many posttranslational modification and bind to signaling molecules and other transcriptional regulators. Thereby, class IIa HDACs play a central role in cardiac signaling networks. Understanding the specific signaling events may allow the development of pharmacological approaches other than inhibiting their enzymatic activity. Thus, targeting HDAC signaling may provide more specificity towards disease- and stress-related mechanisms, potentially leading to fewer side effects than global inhibition of HDACs.

Keywords

HDAC Inhibitor Nuclear Export Serum Response Factor Adverse Cardiac Remodel HDAC Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

J.B. was supported by grants from the Deutsche Forschungsgemeinschaft (BA 2258/2-1, SFB 1118), the European Commission (FP7-Health-2010, MEDIA-261409), H.A.K. and J.B. by the DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung—German Centre for Cardiovascular Research) and by the BMBF (German Ministry of Education and Research).

Conflict of Interest

J.B. holds a patent on epigenetic therapies, in particular, disrupting the CaMKII–HDAC4 interaction and gene therapy with HDAC4-NT and the upstream protease.

References

  1. Ago T, Liu T, Zhai P, Chen W, Li H, Molkentin JD, Vatner SF, Sadoshima J (2008) A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133:978–993CrossRefPubMedGoogle Scholar
  2. Backs J, Olson EN (2006) Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98:15–24CrossRefPubMedGoogle Scholar
  3. Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116:1853–1864CrossRefPubMedPubMedCentralGoogle Scholar
  4. Backs J, Backs T, Bezprozvannaya S, McKinsey TA, Olson EN (2008) Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol 28:3437–3445CrossRefPubMedPubMedCentralGoogle Scholar
  5. Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA et al (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 106:2342–2347CrossRefPubMedPubMedCentralGoogle Scholar
  6. Backs J, Worst BC, Lehmann LH, Patrick DM, Jebessa Z, Kreusser MM, Sun Q, Chen L, Heft C, Katus HA et al (2011) Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol 195:403–415CrossRefPubMedPubMedCentralGoogle Scholar
  7. Berdeaux R, Goebel N, Banaszynski L, Takemori H, Wandless T, Shelton GD, Montminy M (2007) SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med 13:597–603CrossRefPubMedGoogle Scholar
  8. Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T (1999) The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J 18:2449–2458CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cardinale JP, Sriramula S, Pariaut R, Guggilam A, Mariappan N, Elks CM, Francis J (2010) HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats. Hypertension 56:437–444CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cavasin MA, Stenmark KR, McKinsey TA (2015) Emerging roles for histone deacetylases in pulmonary hypertension and right ventricular remodeling (2013 Grover Conference series). Pulm Circ 5:63–72CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24:8467–8476CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chang S, Bezprozvannaya S, Li S, Olson EN (2005) An expression screen reveals modulators of class II histone deacetylase phosphorylation. Proc Natl Acad Sci U S A 102:8120–8125CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chang S, Young BD, Li S, Qi X, Richardson JA, Olson EN (2006) Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126:321–334CrossRefPubMedGoogle Scholar
  14. Chang CW, Lee L, Yu D, Dao K, Bossuyt J, Bers DM (2013) Acute beta-adrenergic activation triggers nuclear import of histone deacetylase 5 and delays G(q)-induced transcriptional activation. J Biol Chem 288:192–204CrossRefPubMedGoogle Scholar
  15. Chen HP, Zhao YT, Zhao TC (2015) Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog 20:35–47CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chung E, Yeung F, Leinwand LA (2013) Calcineurin activity is required for cardiac remodelling in pregnancy. Cardiovasc Res 100:402–410CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cook C, Cole G, Asaria P, Jabbour R, Francis DP (2014) The annual global economic burden of heart failure. Int J Cardiol 171:368–376CrossRefPubMedGoogle Scholar
  18. Dai YS, Xu J, Molkentin JD (2005) The DnaJ-related factor Mrj interacts with nuclear factor of activated T cells c3 and mediates transcriptional repression through class II histone deacetylase recruitment. Mol Cell Biol 25:9936–9948CrossRefPubMedPubMedCentralGoogle Scholar
  19. Davis FJ, Gupta M, Camoretti-Mercado B, Schwartz RJ, Gupta MP (2003) Calcium/calmodulin-dependent protein kinase activates serum response factor transcription activity by its dissociation from histone deacetylase, HDAC4. Implications in cardiac muscle gene regulation during hypertrophy. J Biol Chem 278:20047–20058CrossRefPubMedGoogle Scholar
  20. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370:737–749CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dequiedt F, Martin M, Von Blume J, Vertommen D, Lecomte E, Mari N, Heinen MF, Bachmann M, Twizere JC, Huang MC et al (2006) New role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases. Mol Cell Biol 26:7086–7102CrossRefPubMedPubMedCentralGoogle Scholar
  22. Du J, Zhang L, Zhuang S, Qin GJ, Zhao TC (2015) HDAC4 degradation mediates HDAC inhibition-induced protective effects against hypoxia/reoxygenation injury. J Cell Physiol 230:1321–1331CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fischle W, Dequiedt F, Hendzel MJ, Guenther MG, Lazar MA, Voelter W, Verdin E (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9:45–57CrossRefPubMedGoogle Scholar
  24. Gong F, Miller KM (2013) Mammalian DNA repair: HATs and HDACs make their mark through histone acetylation. Mutat Res 750:23–30CrossRefPubMedGoogle Scholar
  25. Greco TM, Yu F, Guise AJ, Cristea IM (2011) Nuclear import of histone deacetylase 5 by requisite nuclear localization signal phosphorylation. Mol Cell Proteomics: MCP 10:M110 004317CrossRefPubMedGoogle Scholar
  26. Grozinger CM, Hassig CA, Schreiber SL (1999) Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci U S A 96:4868–4873CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guo X, Wang SB, Xu H, Ribic A, Mohns EJ, Zhou Y, Zhu X, Biederer T, Crair MC, Chen B (2015) A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nat Commun 6:8005CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gut P, Verdin E (2013) The nexus of chromatin regulation and intermediary metabolism. Nature 502:489–498CrossRefPubMedGoogle Scholar
  29. Ha CH, Kim JY, Zhao J, Wang W, Jhun BS, Wong C, Jin ZG (2010) PKA phosphorylates histone deacetylase 5 and prevents its nuclear export, leading to the inhibition of gene transcription and cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 107:15467–15472CrossRefPubMedPubMedCentralGoogle Scholar
  30. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42CrossRefPubMedPubMedCentralGoogle Scholar
  31. Harrison BC, Roberts CR, Hood DB, Sweeney M, Gould JM, Bush EW, McKinsey TA (2004) The CRM1 nuclear export receptor controls pathological cardiac gene expression. Mol Cell Biol 24:10636–10649CrossRefPubMedPubMedCentralGoogle Scholar
  32. Haworth RS, Roberts NA, Cuello F, Avkiran M (2007) Regulation of protein kinase D activity in adult myocardium: novel counter-regulatory roles for protein kinase Cepsilon and protein kinase A. J Mol Cell Cardiol 43:686–695CrossRefPubMedGoogle Scholar
  33. Haworth RS, Stathopoulou K, Candasamy AJ, Avkiran M (2012) Neurohormonal regulation of cardiac histone deacetylase 5 nuclear localization by phosphorylation-dependent and phosphorylation-independent mechanisms. Circ Res 110:1585–1595CrossRefPubMedGoogle Scholar
  34. Heineke J, Wollert KC, Osinska H, Sargent MA, York AJ, Robbins J, Molkentin JD (2010) Calcineurin protects the heart in a murine model of dilated cardiomyopathy. J Mol Cell Cardiol 48:1080–1087CrossRefPubMedGoogle Scholar
  35. Hohl M, Wagner M, Reil JC, Muller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Bohm M, Backs J et al (2013) HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 123:1359–1370CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hunt SA, American College of Cardiology, American Heart Association Task Force on Practice Guidelines (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 46:e1–e82CrossRefPubMedGoogle Scholar
  37. Kao HY, Downes M, Ordentlich P, Evans RM (2000) Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev 14:55–66PubMedPubMedCentralGoogle Scholar
  38. Karpac J, Jasper H (2011) Metabolic homeostasis: HDACs take center stage. Cell 145:497–499CrossRefPubMedGoogle Scholar
  39. Kee HJ, Sohn IS, Nam KI, Park JE, Qian YR, Yin Z, Ahn Y, Jeong MH, Bang YJ, Kim N et al (2006) Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113:51–59CrossRefPubMedGoogle Scholar
  40. Kirsh O, Seeler JS, Pichler A, Gast A, Muller S, Miska E, Mathieu M, Harel-Bellan A, Kouzarides T, Melchior F et al (2002) The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J 21:2682–2691CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kong Y, Tannous P, Lu G, Berenji K, Rothermel BA, Olson EN, Hill JA (2006) Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113:2579–2588CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kreusser MM, Backs J (2014) Integrated mechanisms of CaMKII-dependent ventricular remodeling. Front Pharmacol 5:36CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kreusser MM, Lehmann LH, Keranov S, Hoting MO, Oehl U, Kohlhaas M, Reil JC, Neumann K, Schneider MD, Hill JA et al (2014) Cardiac CaM Kinase II genes delta and gamma contribute to adverse remodeling but redundantly inhibit calcineurin-induced myocardial hypertrophy. Circulation 130:1262–1273CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, Sambucini S, Bottomley MJ, Lo Surdo P, Carfi A et al (2007) Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci U S A 104:17335–17340CrossRefPubMedPubMedCentralGoogle Scholar
  45. Landry J, Slama JT, Sternglanz R (2000) Role of NAD(+) in the deacetylase activity of the SIR2-like proteins. Biochem Biophys Res Commun 278:685–690CrossRefPubMedGoogle Scholar
  46. Lehmann LH, Rostosky JS, Buss SJ, Kreusser MM, Krebs J, Mier W, Enseleit F, Spiger K, Hardt SE, Wieland T et al (2014a) Essential role of sympathetic endothelin A receptors for adverse cardiac remodeling. Proc Natl Acad Sci U S A 111:13499–13504CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lehmann LH, Worst BC, Stanmore DA, Backs J (2014b) Histone deacetylase signaling in cardioprotection. Cell Mol Life Sci 71:1673–1690CrossRefPubMedGoogle Scholar
  48. Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D et al (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119:1230–1240CrossRefPubMedPubMedCentralGoogle Scholar
  49. Little GH, Bai Y, Williams T, Poizat C (2007) Nuclear calcium/calmodulin-dependent protein kinase IIdelta preferentially transmits signals to histone deacetylase 4 in cardiac cells. J Biol Chem 282:7219–7231CrossRefPubMedGoogle Scholar
  50. Lu J, McKinsey TA, Nicol RL, Olson EN (2000) Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A 97:4070–4075CrossRefPubMedPubMedCentralGoogle Scholar
  51. Martini JS, Raake P, Vinge LE, DeGeorge BR Jr, Chuprun JK, Harris DM, Gao E, Eckhart AD, Pitcher JA, Koch WJ (2008) Uncovering G protein-coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of cardiomyocytes. Proc Natl Acad Sci U S A 105:12457–12462CrossRefPubMedPubMedCentralGoogle Scholar
  52. Matsushima S, Kuroda J, Ago T, Zhai P, Park JY, Xie LH, Tian B, Sadoshima J (2013) Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res 112:651–663CrossRefPubMedGoogle Scholar
  53. McKinsey TA (2007) Derepression of pathological cardiac genes by members of the CaM kinase superfamily. Cardiovasc Res 73:667–677CrossRefPubMedGoogle Scholar
  54. McKinsey TA (2011a) The biology and therapeutic implications of HDACs in the heart. Handb Exp Pharmacol 206:57–78CrossRefPubMedGoogle Scholar
  55. McKinsey TA (2011b) Targeting inflammation in heart failure with histone deacetylase inhibitors. Mol Med 17:434–441CrossRefPubMedPubMedCentralGoogle Scholar
  56. McKinsey TA (2012) Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol 52:303–319CrossRefPubMedGoogle Scholar
  57. McKinsey TA, Olson EN (2004) Dual roles of histone deacetylases in the control of cardiac growth. Novartis Found Symp 259:132–141, discussion 141–135, 163–139CrossRefPubMedGoogle Scholar
  58. McKinsey TA, Zhang CL, Lu J, Olson EN (2000a) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111CrossRefPubMedPubMedCentralGoogle Scholar
  59. McKinsey TA, Zhang CL, Olson EN (2000b) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci U S A 97:14400–14405CrossRefPubMedPubMedCentralGoogle Scholar
  60. McKinsey TA, Zhang CL, Olson EN (2001) Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 21:6312–6321CrossRefPubMedPubMedCentralGoogle Scholar
  61. McMurray JJ, Petrie MC, Murdoch DR, Davie AP (1998) Clinical epidemiology of heart failure: public and private health burden. Eur Heart J 19(Suppl P):P9–P16PubMedGoogle Scholar
  62. Metrich M, Laurent AC, Breckler M, Duquesnes N, Hmitou I, Courillau D, Blondeau JP, Crozatier B, Lezoualc’h F, Morel E (2010) Epac activation induces histone deacetylase nuclear export via a Ras-dependent signalling pathway. Cell Signal 22:1459–1468CrossRefPubMedGoogle Scholar
  63. Mihaylova MM, Vasquez DS, Ravnskjaer K, Denechaud PD, Yu RT, Alvarez JG, Downes M, Evans RM, Montminy M, Shaw RJ (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145:607–621CrossRefPubMedPubMedCentralGoogle Scholar
  64. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228CrossRefPubMedPubMedCentralGoogle Scholar
  65. Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:1790–1802CrossRefPubMedPubMedCentralGoogle Scholar
  66. Mosterd A, Hoes AW (2007) Clinical epidemiology of heart failure. Heart 93:1137–1146CrossRefPubMedPubMedCentralGoogle Scholar
  67. Murray-Thomas T, Cowie MR (2003) Epidemiology and clinical aspects of congestive heart failure. J Renin Angiotensin Aldosterone Syst: JRAAS 4:131–136CrossRefPubMedGoogle Scholar
  68. Ozcan L, Ghorpade DS, Zheng Z, de Souza JC, Chen K, Bessler M, Bagloo M, Schrope B, Pestell R, Tabas I (2016) Hepatocyte DACH1 is increased in obesity via nuclear exclusion of HDAC4 and promotes hepatic insulin resistance. Cell Rep 15:2214–2225CrossRefPubMedPubMedCentralGoogle Scholar
  69. Paroni G, Mizzau M, Henderson C, Del Sal G, Schneider C, Brancolini C (2004) Caspase-dependent regulation of histone deacetylase 4 nuclear-cytoplasmic shuttling promotes apoptosis. Mol Biol Cell 15:2804–2818CrossRefPubMedPubMedCentralGoogle Scholar
  70. Paroni G, Fontanini A, Cernotta N, Foti C, Gupta MP, Yang XJ, Fasino D, Brancolini C (2007) Dephosphorylation and caspase processing generate distinct nuclear pools of histone deacetylase 4. Mol Cell Biol 27:6718–6732CrossRefPubMedPubMedCentralGoogle Scholar
  71. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105:1395–1406CrossRefPubMedPubMedCentralGoogle Scholar
  72. Portbury AL, Ronnebaum SM, Zungu M, Patterson C, Willis MS (2012) Back to your heart: ubiquitin proteasome system-regulated signal transduction. J Mol Cell Cardiol 52:526–537CrossRefPubMedGoogle Scholar
  73. Potthoff MJ, Olson EN, Bassel-Duby R (2007) Skeletal muscle remodeling. Curr Opin Rheumatol 19:542–549CrossRefPubMedGoogle Scholar
  74. Song K, Backs J, McAnally J, Qi X, Gerard RD, Richardson JA, Hill JA, Bassel-Duby R, Olson EN (2006) The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell 125:453–466Google Scholar
  75. Sucharov CC, Dockstader K, Nunley K, McKinsey TA, Bristow M (2011) beta-Adrenergic receptor stimulation and activation of protein kinase A protect against alpha1-adrenergic-mediated phosphorylation of protein kinase D and histone deacetylase 5. J Card Fail 17:592–600CrossRefPubMedPubMedCentralGoogle Scholar
  76. Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA (2004a) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24:8374–8385CrossRefPubMedPubMedCentralGoogle Scholar
  77. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA et al (2004b) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119:555–566CrossRefPubMedGoogle Scholar
  78. Walkinshaw DR, Weist R, Xiao L, Yan K, Kim GW, Yang XJ (2013) Dephosphorylation at a conserved SP motif governs cAMP sensitivity and nuclear localization of class IIa histone deacetylases. J Biol Chem 288:5591–5605CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031CrossRefPubMedPubMedCentralGoogle Scholar
  80. Wang B, Moya N, Niessen S, Hoover H, Mihaylova MM, Shaw RJ, Yates JR 3rd, Fischer WH, Thomas JB, Montminy M (2011) A hormone-dependent module regulating energy balance. Cell 145:596–606CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wang X, Liu J, Zhen J, Zhang C, Wan Q, Liu G, Wei X, Zhang Y, Wang Z, Han H et al (2014) Histone deacetylase 4 selectively contributes to podocyte injury in diabetic nephropathy. Kidney Int 86:712–725CrossRefPubMedGoogle Scholar
  82. Weeks KL, Avkiran M (2015) Roles and post-translational regulation of cardiac class IIa histone deacetylase isoforms. J Physiol 593:1785–1797CrossRefPubMedGoogle Scholar
  83. Weinreuter M, Kreusser MM, Beckendorf J, Schreiter FC, Leuschner F, Lehmann LH, Hofmann KP, Rostosky JS, Diemert N, Xu C et al (2014) CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury. EMBO Mol Med 6:1231–1245CrossRefPubMedPubMedCentralGoogle Scholar
  84. Westenbrink BD, Edwards AG, McCulloch AD, Brown JH (2013) The promise of CaMKII inhibition for heart disease: preventing heart failure and arrhythmias. Expert Opin Ther Targets 17:889–903CrossRefPubMedGoogle Scholar
  85. Xie M, Hill JA (2013) HDAC-dependent ventricular remodeling. Trends Cardiovasc Med 23:229–235CrossRefPubMedPubMedCentralGoogle Scholar
  86. Xie M, Kong Y, Tan W, May H, Battiprolu PK, Pedrozo Z, Wang ZV, Morales C, Luo X, Cho G et al (2014) Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 129:1139–1151CrossRefPubMedPubMedCentralGoogle Scholar
  87. Yang XJ, Seto E (2007) HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 26:5310–5318CrossRefPubMedGoogle Scholar
  88. Zhang Q, Vo N, Goodman RH (2000) Histone binding protein RbAp48 interacts with a complex of CREB binding protein and phosphorylated CREB. Mol Cell Biol 20:4970–4978CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002a) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–488CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zhang CL, McKinsey TA, Olson EN (2002b) Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 22:7302–7312CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, Dybkova N, Chang S, Ling H, Bers DM, Maier LS et al (2007) CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem 282:35078–35087CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mariya Kronlage
    • 1
    • 2
    • 3
  • Hugo A. Katus
    • 1
    • 3
  • Johannes Backs
    • 2
    • 4
    Email author
  1. 1.Department of CardiologyUniversity of HeidelbergHeidelbergGermany
  2. 2.Department of Molecular Cardiology and EpigeneticsUniversity of HeidelbergHeidelbergGermany
  3. 3.DZHK (German Centre for Cardiovascular Research)Heidelberg/MannheimGermany
  4. 4.Department of Molecular Cardiology and EpigeneticsHeidelberg UniversityHeidelbergGermany

Personalised recommendations