Advertisement

The Lysine Acetyltransferases in Cardiovascular Disease

  • Nanette H. BishopricEmail author
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)

Abstract

The lysine acetyltransferases (KATs) are enzymes that catalyze the reversible acetylation of lysine residues within histones, transcription factors, and other proteins. These dynamic and signal-responsive enzymes allow a single pool of nuclear DNA to be interpreted in multiple ways, to create many different cell types, and to carry out a broad range of specialized cell functions. KATs play a particularly important role in adapting the long-lived cells of the cardiovascular system to environmental challenges and changing metabolic states. This chapter will provide an overview of the major classes of mammalian KATs: GNAT, p300/CBP, MYST, and the nuclear receptor coactivators, including CLOCK. Several additional KATs that to date have not been structurally analyzed will also be considered. Special attention will be paid to the role of the KATs in human genetic disorders and in processes important to cardiac and vascular biology.

Keywords

Ventricular Septal Defect bHLH Domain Tubulin Acetylation TFIID Complex MYST Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Conflict of Interest

I have no conflict of interest related to the material presented here. I am grateful for the support of the National Heart, Lung and Blood Institute (NIH R01 HL071094) and the Miami Heart Research Institute during the writing of this chapter.

References

  1. Abraham SE, Lobo S, Yaciuk P, Wang HG, Moran E (1993) p300, and p300-associated proteins, are components of TATA-binding protein (TBP) complexes. Oncogene 8:1639–1647PubMedGoogle Scholar
  2. Ait-Si-Ali S, Ramirez S, Barre FX, Dkhissi F, Magnaghi-Jaulin L, Girault JA, Robin P, Knibiehler M, Pritchard LL, Ducommun B, Trouche D, Harel-Bellan A (1998) Histone acetyltransferase activity of CBP is controlled by cycle- dependent kinases and oncoprotein E1A. Nature 396:184–186PubMedCrossRefGoogle Scholar
  3. Alarcon JM, Malleret G, Touzani K, Vronskaya S, Ishii S, Kandel ER, Barco A (2004) Chromatin acetylation, memory, and LTP are impaired in CBP+/− mice: a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron 42(6):947–959. doi: 10.1016/j.neuron.2004.05.021 PubMedCrossRefGoogle Scholar
  4. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794PubMedPubMedCentralCrossRefGoogle Scholar
  5. Allfrey VG, Pogo BG, Littau VC, Gershey EL, Mirsky AE (1968) Histone acetylation in insect chromosomes. Science 159(3812):314–316PubMedCrossRefGoogle Scholar
  6. Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4):633–636. doi:S0092-8674(07)01359-1 [pii]  10.1016/j.cell.2007.10.039.
  7. Amazit L, Pasini L, Szafran AT, Berno V, Wu RC, Mielke M, Jones ED, Mancini MG, Hinojos CA, O’Malley BW, Mancini MA (2007) Regulation of SRC-3 intercompartmental dynamics by estrogen receptor and phosphorylation. Mol Cell Biol 27(19):6913–6932. doi: 10.1128/mcb.01695-06 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anafi RC, Lee Y, Sato TK, Venkataraman A, Ramanathan C, Kavakli IH, Hughes ME, Baggs JE, Growe J, Liu AC, Kim J, Hogenesch JB (2014) Machine learning helps identify CHRONO as a circadian clock component. PLoS Biol 12(4), e1001840. doi: 10.1371/journal.pbio.1001840 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, Takahashi JS (1997) Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89(4):655–667PubMedPubMedCentralCrossRefGoogle Scholar
  10. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, Sauter G, Kallioniemi OP, Trent JM, Meltzer PS (1997) AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277(5328):965–968PubMedCrossRefGoogle Scholar
  11. Arboleda Valerie A, Lee H, Dorrani N, Zadeh N, Willis M, Macmurdo Colleen F, Manning Melanie A, Kwan A, Hudgins L, Barthelemy F, Miceli MC, Quintero-Rivera F, Kantarci S, Strom Samuel P, Deignan Joshua L, Grody Wayne W, Vilain E, Nelson Stanley F (2015) De novo nonsense mutations in KAT6A, a lysine acetyl-transferase gene, cause a syndrome including microcephaly and global developmental delay. Am J Hum Genet 96(3):498–506. doi: 10.1016/j.ajhg.2015.01.017
  12. Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci U S A 106(7):2342–2347. doi: 10.1073/pnas.0813013106 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U, Kundu TK (2004) Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem 279(49):51163–51171PubMedCrossRefGoogle Scholar
  14. Bannister AJ, Miska EA, Gorlich D, Kouzarides T (2000) Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr Biol 10(8):467–470PubMedCrossRefGoogle Scholar
  15. Bartholdi D, Roelfsema JH, Papadia F, Breuning MH, Niedrist D, Hennekam RC, Schinzel A, Peters DJ (2007) Genetic heterogeneity in Rubinstein-Taybi syndrome: delineation of the phenotype of the first patients carrying mutations in EP300. J Med Genet 44(5):327–333. doi:jmg.2006.04s[pii]  10.1136/jmg.2006.046698
  16. Bartsch O, Schmidt S, Richter M, Morlot S, Seemanova E, Wiebe G, Rasi S (2005) DNA sequencing of CREBBP demonstrates mutations in 56% of patients with Rubinstein-Taybi syndrome (RSTS) and in another patient with incomplete RSTS. Hum Genet 117(5):485–493. doi: 10.1007/s00439-005-1331-y PubMedCrossRefGoogle Scholar
  17. Bartsch O, Kress W, Kempf O, Lechno S, Haaf T, Zechner U (2010) Inheritance and variable expression in Rubinstein-Taybi syndrome. Am J Med Genet A 152A(9):2254–2261. doi: 10.1002/ajmg.a.33598 PubMedCrossRefGoogle Scholar
  18. Bedford DC, Kasper LH, Fukuyama T, Brindle PK (2010) Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics 5(1):9–15. doi:10449 [pii]Google Scholar
  19. Bedford DC, Kasper LH, Wang R, Chang Y, Green DR, Brindle PK (2011) Disrupting the CH1 domain structure in the acetyltransferases CBP and p300 results in lean mice with increased metabolic control. Cell Metab 14 (2):219–230. doi:S1550-4131(11)00259-2 [pii]  10.1016/j.cmet.2011.06.010
  20. Bishopric NH, Zeng G-Q, Sato B, Webster KA (1997) Adenovirus E1A inhibits cardiac myocyte-specific gene expression through its amino terminus. J Biol Chem 272:20584–20594PubMedCrossRefGoogle Scholar
  21. Black JC, Choi JE, Lombardo SR, Carey M (2006) A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell 23(6):809–818PubMedCrossRefGoogle Scholar
  22. Blanco-Garcia N, Asensio-Juan E, de la Cruz X, Martinez-Balbas MA (2009) Autoacetylation regulates P/CAF nuclear localization. J Biol Chem 284(3):1343–1352. doi:M806075200 [pii]  10.1074/jbc.M806075200
  23. Blough RI, Petrij F, Dauwerse JG, Milatovich-Cherry A, Weiss L, Saal HM, Rubinstein JH (2000) Variation in microdeletions of the cyclic AMP-responsive element-binding protein gene at chromosome band 16p13.3 in the Rubinstein-Taybi syndrome. Am J Med Genet 90(1):29–34PubMedCrossRefGoogle Scholar
  24. Bondy SC, Roberts S, Morelos BS (1970) Histone-acetylating enzyme of brain. Biochem J 119(4):665–672PubMedPubMedCentralCrossRefGoogle Scholar
  25. Bordoli L, Husser S, Luthi U, Netsch M, Osmani H, Eckner R (2001) Functional analysis of the p300 acetyltransferase domain: the PHD finger of p300 but not of CBP is dispensable for enzymatic activity. Nucleic Acids Res 29(21):4462–4471PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, Crump NT, Hazzalin CA, Liszczak G, Yuan H, Larocca C, Saldanha SA, Abagyan R, Sun Y, Meyers DJ, Marmorstein R, Mahadevan LC, Alani RM, Cole PA (2010) Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol 17(5):471–482. doi:S1074-5521(10)00117-1 [pii]  10.1016/j.chembiol.2010.03.006
  27. Brouillard F, Cremisi CE (2003) Concomitant increase of histone acetyltransferase activity and degradation of p300 during retinoic acid-induced differentiation of F9 cells. J Biol Chem 278(41):39509–39516PubMedCrossRefGoogle Scholar
  28. Brownell JE, Allis CD (1995) An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei. Proc Natl Acad Sci U S A 92(14):6364–6368PubMedPubMedCentralCrossRefGoogle Scholar
  29. Buchberger A, Ragge K, Arnold HH (1994) The myogenin gene is activated during myocyte differentiation by pre-existing, not newly synthesized transcription factor MEF-2. J BiolChem 269:17289–17296Google Scholar
  30. Burke TW, Cook JG, Asano M, Nevins JR (2001) Replication factors MCM2 and ORC1 interact with the histone acetyltransferase HBO1. J Biol Chem 276(18):15397–15408. doi: 10.1074/jbc.M011556200 PubMedCrossRefGoogle Scholar
  31. Campanero MR, Flemington EK (1997) Regulation of E2F through ubiquitin-proteasome-dependent degradation: stabilization by the pRB tumor suppressor protein. Proc Natl Acad Sci U S A 94(6):2221–2226PubMedPubMedCentralCrossRefGoogle Scholar
  32. Campeau PM, Lu JT, Dawson BC, Fokkema IF, Robertson SP, Gibbs RA, Lee BH (2012) The KAT6B-related disorders genitopatellar syndrome and Ohdo/SBBYS syndrome have distinct clinical features reflecting distinct molecular mechanisms. Hum Mutat 33(11):1520–1525. doi: 10.1002/humu.22141 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Castellano S, Milite C, Feoli A, Viviano M, Mai A, Novellino E, Tosco A, Sbardella G (2015) Identification of structural features of 2-alkylidene-1,3-dicarbonyl derivatives that induce inhibition and/or activation of histone acetyltransferases KAT3B/p300 and KAT2B/PCAF. ChemMedChem 10(1):144–157. doi: 10.1002/cmdc.201402371 PubMedCrossRefGoogle Scholar
  34. Chan HM, Narita M, Lowe SW, Livingston DM (2005) The p400 E1A-associated protein is a novel component of the p53 --> p21 senescence pathway. Genes Dev 19(2):196–201. doi: 10.1101/gad.1280205 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L, Privalsky ML, Nakatani Y, Evans RM (1997) Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90(3):569–580PubMedCrossRefGoogle Scholar
  36. Chen SL, Dowhan DH, Hosking BM, Muscat GE (2000) The steroid receptor coactivator, GRIP-1, is necessary for MEF-2C-dependent gene expression and skeletal muscle differentiation. Genes Dev 14(10):1209–1228PubMedPubMedCentralGoogle Scholar
  37. Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S (2010) Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab 298(1):E127–137. doi: 10.1152/ajpendo.00432.2009 PubMedCrossRefGoogle Scholar
  38. Chen Y, Zhao W, Yang JS, Cheng Z, Luo H, Lu Z, Tan M, Gu W, Zhao Y (2012a) Quantitative acetylome analysis reveals the roles of SIRT1 in regulating diverse substrates and cellular pathways. Mol Cell Proteomics 11(10):1048–1062. doi: 10.1074/mcp.M112.019547 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chen Z, Gao B, Zhou X (2012b) Expression patterns of histone acetyltransferases p300 and CBP during murine tooth development. In Vitro Cell Dev Biol Anim 48(1):61–68. doi: 10.1007/s11626-011-9472-x PubMedCrossRefGoogle Scholar
  40. Choi SY, Ryu Y, Kee HJ, Cho SN, Kim GR, Cho JY, Kim HS, Kim IK, Jeong MH (2015) Tubastatin A suppresses renal fibrosis via regulation of epigenetic histone modification and Smad3-dependent fibrotic genes. Vascul Pharmacol. doi: 10.1016/j.vph.2015.04.006 Google Scholar
  41. Chopra AR, Louet JF, Saha P, An J, Demayo F, Xu J, York B, Karpen S, Finegold M, Moore D, Chan L, Newgard CB, O’Malley BW (2008) Absence of the SRC-2 coactivator results in a glycogenopathy resembling Von Gierke’s disease. Science 322(5906):1395–1399. doi: 10.1126/science.1164847 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Christova R, Oelgeschlager T (2002) Association of human TFIID-promoter complexes with silenced mitotic chromatin in vivo. Nat Cell Biol 4(1):79–82. doi: 10.1038/ncb733 PubMedCrossRefGoogle Scholar
  43. Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (1993) Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365(6449):855–859. doi: 10.1038/365855a0 PubMedCrossRefGoogle Scholar
  44. Clayton-Smith J, O’Sullivan J, Daly S, Bhaskar S, Day R, Anderson B, Voss AK, Thomas T, Biesecker LG, Smith P, Fryer A, Chandler KE, Kerr B, Tassabehji M, Lynch SA, Krajewska-Walasek M, McKee S, Smith J, Sweeney E, Mansour S, Mohammed S, Donnai D, Black G (2011) Whole-exome-sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the Say-Barber-Biesecker variant of Ohdo syndrome. Am J Hum Genet 89(5):675–681. doi: 10.1016/j.ajhg.2011.10.008 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Close P, Gillard M, Ladang A, Jiang Z, Papuga J, Hawkes N, Nguyen L, Chapelle JP, Bouillenne F, Svejstrup J, Fillet M, Chariot A (2012) DERP6 (ELP5) and C3ORF75 (ELP6) regulate tumorigenicity and migration of melanoma cells as subunits of Elongator. J Biol Chem 287(39):32535–32545. doi: 10.1074/jbc.M112.402727 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Col E, Caron C, Chable-Bessia C, Legube G, Gazzeri S, Komatsu Y, Yoshida M, Benkirane M, Trouche D, Khochbin S (2005) HIV-1 Tat targets Tip60 to impair the apoptotic cell response to genotoxic stresses. EMBO J 24(14):2634–2645. doi:7600734 [pii]  10.1038/sj.emboj.7600734
  47. Cong SY, Pepers BA, Evert BO, Rubinsztein DC, Roos RA, van Ommen GJ, Dorsman JC (2005) Mutant huntingtin represses CBP, but not p300, by binding and protein degradation. Mol Cell Neurosci 30(1):12–23PubMedCrossRefGoogle Scholar
  48. Cormier-Daire V, Chauvet ML, Lyonnet S, Briard ML, Munnich A, Le Merrer M (2000) Genitopatellar syndrome: a new condition comprising absent patellae, scrotal hypoplasia, renal anomalies, facial dysmorphism, and mental retardation. J Med Genet 37(7):520–524PubMedPubMedCentralCrossRefGoogle Scholar
  49. Coste A, Antal MC, Chan S, Kastner P, Mark M, O’Malley BW, Auwerx J (2006) Absence of the steroid receptor coactivator-3 induces B-cell lymphoma. EMBO J 25(11):2453–2464. doi: 10.1038/sj.emboj.7601106 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Crump NT, Hazzalin CA, Bowers EM, Alani RM, Cole PA, Mahadevan LC (2011) Dynamic acetylation of all lysine-4 trimethylated histone H3 is evolutionarily conserved and mediated by p300/CBP. Proc Natl Acad Sci U S A 108(19):7814–7819. doi: 10.1073/pnas.1100099108 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Curtis AM, Seo SB, Westgate EJ, Rudic RD, Smyth EM, Chakravarti D, FitzGerald GA, McNamara P (2004) Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J Biol Chem 279(8):7091–7097. doi: 10.1074/jbc.M311973200 PubMedCrossRefGoogle Scholar
  52. Dancy BM, Cole PA (2015) Protein lysine acetylation by p300/CBP. Chem Rev 115(6):2419–2452. doi: 10.1021/cr500452k PubMedPubMedCentralCrossRefGoogle Scholar
  53. Day R, Beckett B, Donnai D, Fryer A, Heidenblad M, Howard P, Kerr B, Mansour S, Maye U, McKee S, Mohammed S, Sweeney E, Tassabehji M, de Vries BB, Clayton-Smith J (2008) A clinical and genetic study of the Say/Barber/Biesecker/Young-Simpson type of Ohdo syndrome. Clin Genet 74(5):434–444. doi: 10.1111/j.1399-0004.2008.01087.x PubMedCrossRefGoogle Scholar
  54. Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR, Cross NC, Glass CK, Cleary ML, Gilliland DG (2003) MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3(3):259–271PubMedCrossRefGoogle Scholar
  55. Delbridge LM, Mellor KM, Taylor DJ, Gottlieb RA (2015) Myocardial autophagic energy stress responses-macroautophagy, mitophagy, and glycophagy. Am J Physiol Heart Circ Physiol 308(10):H1194–H1204. doi: 10.1152/ajpheart.00002.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Dikstein R, Ruppert S, Tjian R (1996) TAFII250 is a bipartite protein kinase that phosphorylates the base transcription factor RAP74. Cell 84(5):781–790PubMedCrossRefGoogle Scholar
  57. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125(3):497–508. doi: 10.1016/j.cell.2006.03.033 PubMedCrossRefGoogle Scholar
  58. Eckner R, Yao TP, Oldread E, Livingston DM (1996) Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev 10:2478–2490PubMedCrossRefGoogle Scholar
  59. Emani S, Ramlawi B, Sodha NR, Li J, Bianchi C, Sellke FW (2009) Increased vascular permeability after cardiopulmonary bypass in patients with diabetes is associated with increased expression of vascular endothelial growth factor and hepatocyte growth factor. J Thorac Cardiovasc Surg 138(1):185–191. doi: 10.1016/j.jtcvs.2008.12.024 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Evans DM, Davey Smith G (2015) Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu Rev Genomics Hum Genet. doi: 10.1146/annurev-genom-090314-050016 PubMedGoogle Scholar
  61. Fazzio TG, Huff JT, Panning B (2008) An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 134(1):162–174. doi: 10.1016/j.cell.2008.05.031 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Feng B, Chen S, Chiu J, George B, Chakrabarti S (2008) Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am J Physiol Endocrinol Metab 294:E1119–E1126PubMedCrossRefGoogle Scholar
  63. Fisher JB, Kim MS, Blinka S, Ge ZD, Wan T, Duris C, Christian D, Twaroski K, North P, Auchampach J, Lough J (2012) Stress-induced cell-cycle activation in Tip60 haploinsufficient adult cardiomyocytes. PLoS One 7(2), e31569. doi: 10.1371/journal.pone.0031569 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Fondell JD, Brunel F, Hisatake K, Roeder RG (1996) Unliganded thyroid hormone receptor alpha can target TATA-binding protein for transcriptional repression. Mol Cell Biol 16(1):281–287PubMedPubMedCentralCrossRefGoogle Scholar
  65. Fusco C, Micale L, Augello B, Mandriani B, Pellico MT, De Nittis P, Calcagni A, Monti M, Cozzolino F, Pucci P, Merla G (2014) HDAC6 mediates the acetylation of TRIM50. Cell Signal 26(2):363–369. doi: 10.1016/j.cellsig.2013.11.036 PubMedCrossRefGoogle Scholar
  66. Gajer JM, Furdas SD, Grunder A, Gothwal M, Heinicke U, Keller K, Colland F, Fulda S, Pahl HL, Fichtner I, Sippl W, Jung M (2015) Histone acetyltransferase inhibitors block neuroblastoma cell growth in vivo. Oncogenesis 4, e137. doi: 10.1038/oncsis.2014.51 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gallwitz D (1968) Acetylation of histones by a kinase from rat liver nucle. Biochem Biophys Res Commun 32(2):117–121PubMedCrossRefGoogle Scholar
  68. Garcea RL, Alberts BM (1980) Comparative studies of histone acetylation in nucleosomes, nuclei, and intact cells. Evidence for special factors which modify acetylase action. J Biol Chem 255(23):11454–11463PubMedGoogle Scholar
  69. Gee CT, Koleski EJ, Pomerantz WC (2015) Fragment screening and druggability assessment for the CBP/p300 KIX domain through protein-observed 19F NMR spectroscopy. Angew Chem Int Ed Engl 54(12):3735–3739. doi: 10.1002/anie.201411658 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ghanta S, Grossmann RE, Brenner C (2013) Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications. Crit Rev Biochem Mol Biol 48(6):561–574. doi: 10.3109/10409238.2013.838204 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ghosh SS, Salloum FN, Abbate A, Krieg R, Sica DA, Gehr TW, Kukreja RC (2010) Curcumin prevents cardiac remodeling secondary to chronic renal failure through deactivation of hypertrophic signaling in rats. Am J Physiol Heart Circ Physiol 299(4):H975–984. doi: 10.1152/ajpheart.00154.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Giles RH, Dauwerse JG, Higgins C, Petrij F, Wessels JW, Beverstock GC, Dohner H, Jotterand-Bellomo M, Falkenburg JH, Slater RM, van Ommen GJ, Hagemeijer A, van der Reijden BA, Breuning MH (1997) Detection of CBP rearrangements in acute myelogenous leukemia with t(8;16). Leukemia 11:2087–2096PubMedCrossRefGoogle Scholar
  73. Giles RH, Dauwerse HG, van Ommen GJ, Breuning MH (1998a) Do human chromosomal bands 16p13 and 22q11-13 share ancestral origins? [letter]. Am J Hum Genet 63(4):1240–1242PubMedPubMedCentralCrossRefGoogle Scholar
  74. Giles RH, Peters DJ, Breuning MH (1998b) Conjunction dysfunction: CBP/p300 in human disease. Trends Genet 14:178–183PubMedCrossRefGoogle Scholar
  75. Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14(13):1553–1577PubMedGoogle Scholar
  76. Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, Martinato F, Sardella D, Verrecchia A, Bennett S, Confalonieri S, Cesaroni M, Marchesi F, Gasco M, Scanziani E, Capra M, Mai S, Nuciforo P, Crook T, Lough J, Amati B (2007) Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448(7157):1063–1067. doi: 10.1038/nature06055 PubMedCrossRefGoogle Scholar
  77. Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL (1997) Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11(13):1640–1650PubMedCrossRefGoogle Scholar
  78. Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H, Nakatani Y, Livingston DM (2003) Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300(5617):342–344PubMedCrossRefGoogle Scholar
  79. Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK (2005) Involvement of human MOF in ATM function. Mol Cell Biol 25(12):5292–5305. doi: 10.1128/mcb.25.12.5292-5305.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gupta A, Guerin-Peyrou TG, Sharma GG, Park C, Agarwal M, Ganju RK, Pandita S, Choi K, Sukumar S, Pandita RK, Ludwig T, Pandita TK (2008) The mammalian ortholog of Drosophila MOF that acetylates histone H4 lysine 16 is essential for embryogenesis and oncogenesis. Mol Cell Biol 28(1):397–409. doi: 10.1128/mcb.01045-07 PubMedCrossRefGoogle Scholar
  81. Gustafson CL, Partch CL (2015) Emerging models for the molecular basis of mammalian circadian timing. Biochemistry 54(2):134–149. doi: 10.1021/bi500731f PubMedCrossRefGoogle Scholar
  82. Gusterson R, Brar B, Faulkes D, Giordano A, Chrivia J, Latchman D (2002) The transcriptional co-activators CBP and p300 are activated via phenylephrine through the p42/p44 MAPK cascade. J Biol Chem 277(4):2517–2524PubMedCrossRefGoogle Scholar
  83. Gusterson RJ, Yuan LW, Latchman DS (2004) Distinct serine residues in CBP and p300 are necessary for their activation by phenylephrine. Int J Biochem Cell Biol 36(5):893–899PubMedCrossRefGoogle Scholar
  84. Hamilton MJ, Newbury-Ecob R, Holder-Espinasse M, Yau S, Lillis S, Hurst JA, Clement E, Reardon W, Joss S, Hobson E, Blyth M, Al-Shehhi M, Lynch SA, Suri M (2016) Rubinstein-Taybi Syndrome type 2: report of nine new cases that extend the phenotypic and genotypic spectrum. Clinical Dysmorphology 25(4):135–145Google Scholar
  85. Hasegawa K, Meyers MB, Kitsis RN (1997) Transcriptional coactivator p300 stimulates cell type-specific gene expression in cardiac myocytes. J Biol Chem 272:20049–20054PubMedCrossRefGoogle Scholar
  86. Hateboer G, Kerkhoven RM, Shvarts A, Bernards R, Beijersbergen RL (1996) Degradation of E2F by the ubiquitin-proteasome pathway: regulation by retinoblastoma family proteins and adenovirus transforming proteins. Genes Dev 10(23):2960–2970PubMedCrossRefGoogle Scholar
  87. Hayashi Y, Ohmori S, Ito T, Seo H (1997) A splicing variant of Steroid Receptor Coactivator-1 (SRC-1E): the major isoform of SRC-1 to mediate thyroid hormone action. Biochem Biophys Res Commun 236(1):83–87. doi: 10.1006/bbrc.1997.6911 PubMedCrossRefGoogle Scholar
  88. Hen R, Borrelli E, Chambon P (1985) Repression of the immunoglobulin heavy chain enhancer by the adenovirus-2 E1A products. Science 230:1391–1394PubMedCrossRefGoogle Scholar
  89. Henry RA, Kuo YM, Andrews AJ (2013) Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4. Biochemistry 52(34):5746–5759. doi: 10.1021/bi400684q PubMedPubMedCentralCrossRefGoogle Scholar
  90. Henry RA, Kuo YM, Bhattacharjee V, Yen TJ, Andrews AJ (2015) Changing the selectivity of p300 by acetyl-CoA modulation of histone acetylation. ACS Chem Biol 10(1):146–156. doi: 10.1021/cb500726b PubMedCrossRefGoogle Scholar
  91. Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450(7172):1086–1090. doi: 10.1038/nature06394 PubMedCrossRefGoogle Scholar
  92. Hong H, Kohli K, Garabedian MJ, Stallcup MR (1997) GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol Cell Biol 17(5):2735–2744PubMedPubMedCentralCrossRefGoogle Scholar
  93. Hsieh YJ, Kundu TK, Wang Z, Kovelman R, Roeder RG (1999) The TFIIIC90 subunit of TFIIIC interacts with multiple components of the RNA polymerase III machinery and contains a histone-specific acetyltransferase activity. Mol Cell Biol 19(11):7697–7704PubMedPubMedCentralCrossRefGoogle Scholar
  94. Hu SC, Chrivia J, Ghosh A (1999) Regulation of CBP-mediated transcription by neuronal calcium signaling. Neuron 22:799–808PubMedCrossRefGoogle Scholar
  95. Hu Y, Fisher JB, Koprowski S, McAllister D, Kim MS, Lough J (2009) Homozygous disruption of the Tip60 gene causes early embryonic lethality. Dev Dyn 238(11):2912–2921. doi: 10.1002/dvdy.22110 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ianculescu I, Wu DY, Siegmund KD, Stallcup MR (2012) Selective roles for cAMP response element-binding protein binding protein and p300 protein as coregulators for androgen-regulated gene expression in advanced prostate cancer cells. J Biol Chem 287(6):4000–4013. doi: 10.1074/jbc.M111.300194 PubMedCrossRefGoogle Scholar
  97. Iizuka M, Stillman B (1999) Histone acetyltransferase HBO1 interacts with the ORC1 subunit of the human initiator protein. J Biol Chem 274(33):23027–23034PubMedCrossRefGoogle Scholar
  98. Jacobson RH, Ladurner AG, King DS, Tjian R (2000) Structure and function of a human TAFII250 double bromodomain module. Science 288(5470):1422–1425PubMedCrossRefGoogle Scholar
  99. Jain S, Wei J, Mitrani LR, Bishopric NH (2012) Auto-acetylation stabilizes p300 in cardiac myocytes during acute oxidative stress, promoting STAT3 accumulation and cell survival. Breast Cancer Res Treat 135(1):103–114. doi: 10.1007/s10549-012-2069-6 PubMedCrossRefGoogle Scholar
  100. Jin Q, Yu LR, Wang L, Zhang Z, Kasper LH, Lee JE, Wang C, Brindle PK, Dent SY, Ge K (2011) Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 30(2):249–262. doi: 10.1038/emboj.2010.318 PubMedCrossRefGoogle Scholar
  101. Kalebic N, Sorrentino S, Perlas E, Bolasco G, Martinez C, Heppenstall PA (2013) AlphaTAT1 is the major alpha-tubulin acetyltransferase in mice. Nat Commun 4:1962. doi: 10.1038/ncomms2962 PubMedCrossRefGoogle Scholar
  102. Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68(6):1145–1155PubMedCrossRefGoogle Scholar
  103. Kalkhoven E, Roelfsema JH, Teunissen H, den Boer A, Ariyurek Y, Zantema A, Breuning MH, Hennekam RC, Peters DJ (2003) Loss of CBP acetyltransferase activity by PHD finger mutations in Rubinstein-Taybi syndrome. Hum Mol Genet 12(4):441–450PubMedCrossRefGoogle Scholar
  104. Kamine J, Elangovan B, Subramanian T, Coleman D, Chinnadurai G (1996) Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology 216(2):357–366. doi: 10.1006/viro.1996.0071 PubMedCrossRefGoogle Scholar
  105. Kasper LH, Brindle PK (2006) Mammalian gene expression program resiliency: the roles of multiple coactivator mechanisms in hypoxia-responsive transcription. Cell Cycle 5(2):142–146PubMedCrossRefGoogle Scholar
  106. Kasper LH, Boussouar F, Ney PA, Jackson CW, Rehg J, van Deursen JM, Brindle PK (2002) A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature 419(6908):738–743PubMedCrossRefGoogle Scholar
  107. Kasper LH, Lerach S, Wang J, Wu S, Jeevan T, Brindle PK (2010) CBP/p300 double null cells reveal effect of coactivator level and diversity on CREB transactivation. EMBO J 29(21):3660–3672. doi: 10.1038/emboj.2010.235 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kasper LH, Thomas MC, Zambetti GP, Brindle PK (2011) Double null cells reveal that CBP and p300 are dispensable for p53 targets p21 and Mdm2 but variably required for target genes of other signaling pathways. Cell Cycle 10(2):212–221PubMedPubMedCentralCrossRefGoogle Scholar
  109. Kauppi M, Murphy JM, de Graaf CA, Hyland CD, Greig KT, Metcalf D, Hilton AA, Nicola NA, Kile BT, Hilton DJ, Alexander WS (2008) Point mutation in the gene encoding p300 suppresses thrombocytopenia in Mpl−/− mice. Blood 112(8):3148–3153. doi: 10.1182/blood-2007-10-119677 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kiernan R, Bres V, Ng RW, Coudart MP, El Messaoudi S, Sardet C, Jin DY, Emiliani S, Benkirane M (2003) Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 278(4):2758–2766PubMedCrossRefGoogle Scholar
  111. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS (1997) Positional cloning of the mouse circadian clock gene. Cell 89(4):641–653PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kitabayashi I, Eckner R, Arany Z, Chiu R, Gachelin G, Livingston DM, Yokoyama KK (1995) Phosphorylation of the adenovirus E1A-associated 300 kDa protein in response to retinoic acid and E1A during the differentiation of F9 cells. EMBO J 14:3496–3509PubMedPubMedCentralGoogle Scholar
  113. Kondratov RV, Chernov MV, Kondratova AA, Gorbacheva VY, Gudkov AV, Antoch MP (2003) BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev 17(15):1921–1932. doi: 10.1101/gad.1099503 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, McInerney EM, Mullen TM, Glass CK, Rosenfeld MG (1998) Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279:703–707PubMedCrossRefGoogle Scholar
  115. Kueh AJ, Dixon MP, Voss AK, Thomas T (2011) HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development. Mol Cell Biol 31(4):845–860. doi: 10.1128/mcb.00159-10 PubMedCrossRefGoogle Scholar
  116. Kung AL, Rebel VI, Bronson RT, Ch’ng LE, Sieff CA, Livingston DM, Yao TP (2000) Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev 14(3):272–277PubMedPubMedCentralGoogle Scholar
  117. Kwok RP, Lundblad JR, Chrivia JC, Richards JP, Bachinger HP, Brennan RG, Roberts SG, Green MR, Goodman RH (1994) Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370(6486):223–226. doi: 10.1038/370223a0 PubMedCrossRefGoogle Scholar
  118. Kwok RP, Liu XT, Smith GD (2006) Distribution of co-activators CBP and p300 during mouse oocyte and embryo development. Mol Reprod Dev 73(7):885–894PubMedCrossRefGoogle Scholar
  119. Lavandero S, Chiong M, Rothermel BA, Hill JA (2015) Autophagy in cardiovascular biology. J Clin Invest 125(1):55–64. doi: 10.1172/jci73943 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Lee CW, La Thangue NB (1999) Promoter specificity and stability control of the p53-related protein p73. Oncogene 18:4171–4181PubMedCrossRefGoogle Scholar
  121. Lee TI, Causton HC, Holstege FC, Shen WC, Hannett N, Jennings EG, Winston F, Green MR, Young RA (2000) Redundant roles for the TFIID and SAGA complexes in global transcription [in process citation]. Nature 405(6787):701–704PubMedCrossRefGoogle Scholar
  122. Lee S, Lee B, Lee JW, Lee SK (2009) Retinoid signaling and neurogenin2 function are coupled for the specification of spinal motor neurons through a chromatin modifier CBP. Neuron 62(5):641–654. doi: 10.1016/j.neuron.2009.04.025 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Lee YH, Bedford MT, Stallcup MR (2011) Regulated recruitment of tumor suppressor BRCA1 to the p21 gene by coactivator methylation. Genes Dev 25(2):176–188. doi: 10.1101/gad.1975811 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Levy L, Wei Y, Labalette C, Wu Y, Renard CA, Buendia MA, Neuveut C (2004) Acetylation of beta-catenin by p300 regulates beta-catenin-Tcf4 interaction. Mol Cell Biol 24(8):3404–3414PubMedPubMedCentralCrossRefGoogle Scholar
  125. Li S, Shang Y (2007) Regulation of SRC family coactivators by post-translational modifications. Cell Signal 19(6):1101–1112. doi: 10.1016/j.cellsig.2007.02.002 PubMedCrossRefGoogle Scholar
  126. Li Q, Xiao H, Isobe K (2002) Histone acetyltransferase activities of cAMP-regulated enhancer-binding protein and p300 in tissues of fetal, young, and old mice. J Gerontol A Biol Sci Med Sci 57(3):B93–98PubMedCrossRefGoogle Scholar
  127. Li HJ, Haque Z, Lu Q, Li L, Karas R, Mendelsohn M (2007) Steroid receptor coactivator 3 is a coactivator for myocardin, the regulator of smooth muscle transcription and differentiation. Proc Natl Acad Sci U S A 104(10):4065–4070. doi: 10.1073/pnas.0611639104 PubMedPubMedCentralCrossRefGoogle Scholar
  128. Li C, Liang YY, Feng XH, Tsai SY, Tsai MJ, O’Malley BW (2008) Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover. Mol Cell 31(6):835–849. doi: 10.1016/j.molcel.2008.07.019 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Libby PR (1972) Histone acetylation and hormone action. Early effects of oestradiol-17beta on histone acetylation in rat uterus. Biochem J 130(3):663–669PubMedPubMedCentralCrossRefGoogle Scholar
  130. Lillie JW, Green M, Green MR (1986) An adenovirus E1a protein region required for transformation and transcriptional repression. Cell 46:1043–1051PubMedCrossRefGoogle Scholar
  131. Lin SY, Li TY, Liu Q, Zhang C, Li X, Chen Y, Zhang SM, Lian G, Liu Q, Ruan K, Wang Z, Zhang CS, Chien KY, Wu J, Li Q, Han J, Lin SC (2012) GSK3-TIP60-ULK1 signaling pathway links growth factor deprivation to autophagy. Science 336(6080):477–481. doi: 10.1126/science.1217032 PubMedCrossRefGoogle Scholar
  132. Liu YZ, Chrivia JC, Latchman DS (1998) Nerve growth factor up-regulates the transcriptional activity of CBP through activation of the p42/p44(MAPK) cascade. J Biol Chem 273:32400–32407PubMedCrossRefGoogle Scholar
  133. Liu YZ, Thomas NS, Latchman DS (1999a) CBP associates with the p42/p44 MAPK enzymes and is phosphorylated following NGF treatment. Neuroreport 10:1239–1243PubMedCrossRefGoogle Scholar
  134. Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL (1999b) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19(2):1202–1209PubMedPubMedCentralCrossRefGoogle Scholar
  135. Liu X, Xiao W, Wang XD, Li YF, Han J, Li Y (2013) The p38-interacting protein (p38IP) regulates G2/M progression by promoting alpha-tubulin acetylation via inhibiting ubiquitination-induced degradation of the acetyltransferase GCN5. J Biol Chem 288(51):36648–36661. doi: 10.1074/jbc.M113.486910 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lopez-Atalaya JP, Gervasini C, Mottadelli F, Spena S, Piccione M, Scarano G, Selicorni A, Barco A, Larizza L (2012) Histone acetylation deficits in lymphoblastoid cell lines from patients with Rubinstein-Taybi syndrome. J Med Genet 49(1):66–74. doi: 10.1136/jmedgenet-2011-100354 PubMedCrossRefGoogle Scholar
  137. Louet JF, Coste A, Amazit L, Tannour-Louet M, Wu RC, Tsai SY, Tsai MJ, Auwerx J, O’Malley BW (2006) Oncogenic steroid receptor coactivator-3 is a key regulator of the white adipogenic program. Proc Natl Acad Sci U S A 103(47):17868–17873. doi: 10.1073/pnas.0608711103 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Lu J, McKinsey TA, Nicol RL, Olson EN (2000) Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A 97(8):4070–4075PubMedPubMedCentralCrossRefGoogle Scholar
  139. Lydon JP, O’Malley BW (2011) Minireview: steroid receptor coactivator-3: a multifarious coregulator in mammary gland metastasis. Endocrinology 152(1):19–25. doi: 10.1210/en.2010-1012 PubMedCrossRefGoogle Scholar
  140. Ma K, Chan JK, Zhu G, Wu Z (2005) Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Mol Cell Biol 25(9):3575–3582PubMedPubMedCentralCrossRefGoogle Scholar
  141. Mackeh R, Lorin S, Ratier A, Mejdoubi-Charef N, Baillet A, Bruneel A, Hamai A, Codogno P, Pous C, Perdiz D (2014) Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate alpha-tubulin acetyltransferase-1 (alphaTAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress. J Biol Chem 289(17):11816–11828. doi: 10.1074/jbc.M113.507400 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Mai A, Rotili D, Tarantino D, Nebbioso A, Castellano S, Sbardella G, Tini M, Altucci L (2009) Identification of 4-hydroxyquinolines inhibitors of p300/CBP histone acetyltransferases. Bioorg Med Chem Lett 19(4):1132–1135. doi: 10.1016/j.bmcl.2008.12.097 PubMedCrossRefGoogle Scholar
  143. Makino S, Kaji R, Ando S, Tomizawa M, Yasuno K, Goto S, Matsumoto S, Tabuena MD, Maranon E, Dantes M, Lee LV, Ogasawara K, Tooyama I, Akatsu H, Nishimura M, Tamiya G (2007) Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet 80(3):393–406. doi: 10.1086/512129 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Malik S, Roeder RG (2000) Transcriptional regulation through mediator-like coactivators in yeast and metazoan cells [in process citation]. Trends Biochem Sci 25(6):277–283PubMedCrossRefGoogle Scholar
  145. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, Ivanova G, Omura C, Mo S, Vitaterna MH, Lopez JP, Philipson LH, Bradfield CA, Crosby SD, JeBailey L, Wang X, Takahashi JS, Bass J (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466(7306):627–631. doi: 10.1038/nature09253 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Marcu MG, Jung YJ, Lee S, Chung EJ, Lee MJ, Trepel J, Neckers L (2006) Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem 2(2):169–174PubMedCrossRefGoogle Scholar
  147. Marion RW, Garcia DM, Karasik JB (1993) Apparent dominant transmission of the Rubinstein-Taybi syndrome. Am J Med Genet 46(3):284–287. doi: 10.1002/ajmg.1320460309 PubMedCrossRefGoogle Scholar
  148. Marmorstein R (2001) Structure and function of histone acetyltransferases. Cell Mol Life Sci 58(5–6):693–703PubMedCrossRefGoogle Scholar
  149. Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T (2000) Regulation of E2F1 activity by acetylation. Embo J 19(4):662–671PubMedPubMedCentralCrossRefGoogle Scholar
  150. McKinsey TA, Zhang CL, Olson EN (2001) Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol 21(18):6312–6321PubMedPubMedCentralCrossRefGoogle Scholar
  151. McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA (2001) Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105(7):877–889PubMedCrossRefGoogle Scholar
  152. Milite C, Feoli A, Sasaki K, La Pietra V, Balzano AL, Marinelli L, Mai A, Novellino E, Castellano S, Tosco A, Sbardella G (2015) A novel cell-permeable, selective, and noncompetitive inhibitor of KAT3 histone acetyltransferases from a combined molecular pruning/classical isosterism approach. J Med Chem 58(6):2779–2798. doi: 10.1021/jm5019687 PubMedCrossRefGoogle Scholar
  153. Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18:5099–5107PubMedPubMedCentralCrossRefGoogle Scholar
  154. Miyamoto S, Kawamura T, Morimoto T, Ono K, Wada H, Kawase Y, Matsumori A, Nishio R, Kita T, Hasegawa K (2006) Histone acetyltransferase activity of p300 is required for the promotion of left ventricular remodeling after myocardial infarction in adult mice in vivo. Circulation 113(5):679–690PubMedCrossRefGoogle Scholar
  155. Mizzen CA, Yang XJ, Kokubo T, Brownell JE, Bannister AJ, Owen-Hughes T, Workman J, Wang L, Berger SL, Kouzarides T, Nakatani Y, Allis CD (1996) The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87(7):1261–1270. doi:S0092-8674(00)81821-8 [pii]Google Scholar
  156. Mora PT, Chandrasekaran K, Hoffman JC, McFarland VW (1982) Quantitation of a 55K cellular protein: similar amount and instability in normal and malignant mouse cells, Mol Cell Biol, 2 763–771Google Scholar
  157. Morf J, Rey G, Schneider K, Stratmann M, Fujita J, Naef F, Schibler U (2012) Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338(6105):379–383. doi: 10.1126/science.1217726 PubMedCrossRefGoogle Scholar
  158. Morimoto T, Sunagawa Y, Kawamura T, Takaya T, Wada H, Nagasawa A, Komeda M, Fujita M, Shimatsu A, Kita T, Hasegawa K (2008) The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 118(3):868–878PubMedPubMedCentralGoogle Scholar
  159. Nagarajan P, Ge Z, Sirbu B, Doughty C, Agudelo Garcia PA, Schlederer M, Annunziato AT, Cortez D, Kenner L, Parthun MR (2013) Histone acetyl transferase 1 is essential for mammalian development, genome stability, and the processing of newly synthesized histones H3 and H4. PLoS Genet 9(6), e1003518. doi: 10.1371/journal.pgen.1003518 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Neal KC, Pannuti A, Smith ER, Lucchesi JC (2000) A new human member of the MYST family of histone acetyl transferases with high sequence similarity to Drosophila MOF. Biochim Biophys Acta 1490(1–2):170–174PubMedCrossRefGoogle Scholar
  161. Norris KL, Lee JY, Yao TP (2009) Acetylation goes global: the emergence of acetylation biology. Sci Signal 2(97):pe76. doi: 10.1126/scisignal.297pe76
  162. Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y (1998) Histone-like TAFs within the PCAF histone acetylase complex. Cell 94(1):35–44PubMedCrossRefGoogle Scholar
  163. Oike Y, Takakura N, Hata A, Kaname T, Akizuki M, Yamaguchi Y, Yasue H, Araki K, Yamamura K, Suda T (1999) Mice homozygous for a truncated form of CREB-binding protein exhibit defects in hematopoiesis and vasculo-angiogenesis. Blood 93:2771–2779PubMedGoogle Scholar
  164. Oike T, Komachi M, Ogiwara H, Amornwichet N, Saitoh Y, Torikai K, Kubo N, Nakano T, Kohno T (2014) C646, a selective small molecule inhibitor of histone acetyltransferase p300, radiosensitizes lung cancer cells by enhancing mitotic catastrophe. Radiother Oncol 111(2):222–227. doi: 10.1016/j.radonc.2014.03.015 PubMedCrossRefGoogle Scholar
  165. Okada Y, Yamagata K, Hong K, Wakayama T, Zhang Y (2010) A role for the elongator complex in zygotic paternal genome demethylation. Nature 463(7280):554–558. doi: 10.1038/nature08732 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Olson EN, Backs J, McKinsey TA (2006) Control of cardiac hypertrophy and heart failure by histone acetylation/deacetylation. Novartis Found Symp 274:3–12; discussion 13–19, 152–155, 272–156.Google Scholar
  167. Onate SA, Tsai SY, Tsai MJ, O’Malley BW (1995) Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270(5240):1354–1357PubMedCrossRefGoogle Scholar
  168. O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH (2008) cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 320(5878):949–953. doi: 10.1126/science.1152506 PubMedPubMedCentralCrossRefGoogle Scholar
  169. Oren M, Reich NC, Levine AJ (1982) Regulation of the cellular p53 tumor antigen in teratocarcinoma cells and their differentiated progeny. Mol Cell Biol 2(4):443–449PubMedPubMedCentralCrossRefGoogle Scholar
  170. Ornatsky OI, McDermott JC (1996) MEF2 protein expression, DNA binding specificity and complex composition, and transcriptional activity in muscle and non-muscle cells. J Biol Chem 271(40):24927–24933PubMedCrossRefGoogle Scholar
  171. Pandey R, Muller A, Napoli CA, Selinger DA, Pikaard CS, Richards EJ, Bender J, Mount DW, Jorgensen RA (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30(23):5036–5055PubMedPubMedCentralCrossRefGoogle Scholar
  172. Partanen A, Motoyama J, Hui CC (1999) Developmentally regulated expression of the transcriptional cofactors/histone acetyltransferases CBP and p300 during mouse embryogenesis. Int J Dev Biol 43(6):487–494PubMedGoogle Scholar
  173. Pentz ES, Cordaillat M, Carretero OA, Tucker AE, Sequeira Lopez ML, Gomez RA (2012) Histone acetyl transferases CBP and p300 are necessary for maintenance of renin cell identity and transformation of smooth muscle cells to the renin phenotype. Am J Physiol Heart Circ Physiol 302(12):H2545–2552. doi: 10.1152/ajpheart.00782.2011 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Perrot V, Rechler MM (2005) The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol 19(9):2283–2298PubMedCrossRefGoogle Scholar
  175. Petrij F, Dorsman JC, Dauwerse HG, Giles RH, Peeters T, Hennekam RC, Breuning MH, Peters DJ (2000) Rubinstein-Taybi syndrome caused by a De Novo reciprocal translocation t(2;16)(q36.3;p13.3). Am J Med Genet 92(1):47–52PubMedCrossRefGoogle Scholar
  176. Phan HM, Xu AW, Coco C, Srajer G, Wyszomierski S, Evrard YA, Eckner R, Dent SY (2005) GCN5 and p300 share essential functions during early embryogenesis. Dev Dyn 233(4):1337–1347PubMedCrossRefGoogle Scholar
  177. Phillips DM (1963) The presence of acetyl groups of histones. Biochem J 87:258–263PubMedPubMedCentralCrossRefGoogle Scholar
  178. Pijnappel WW, Esch D, Baltissen MP, Wu G, Mischerikow N, Bergsma AJ, van der Wal E, Han DW, Bruch H, Moritz S, Lijnzaad P, Altelaar AF, Sameith K, Zaehres H, Heck AJ, Holstege FC, Scholer HR, Timmers HT (2013) A central role for TFIID in the pluripotent transcription circuitry. Nature 495(7442):516–519. doi: 10.1038/nature11970 PubMedCrossRefGoogle Scholar
  179. Podobed P, Pyle WG, Ackloo S, Alibhai FJ, Tsimakouridze EV, Ratcliffe WF, Mackay A, Simpson J, Wright DC, Kirby GM, Young ME, Martino TA (2014) The day/night proteome in the murine heart. Am J Physiol Regul Integr Comp Physiol 307(2):R121–137. doi: 10.1152/ajpregu.00011.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Pogo BG, Allfrey VG, Mirsky AE (1966) RNA synthesis and histone acetylation during the course of gene activation in lymphocytes. Proc Natl Acad Sci U S A 55(4):805–812PubMedPubMedCentralCrossRefGoogle Scholar
  181. Pogo BG, Pogo AO, Allfrey VG, Mirsky AE (1968) Changing patterns of histone acetylation and RNA synthesis in regeneration of the liver. Proc Natl Acad Sci U S A 59(4):1337–1344PubMedPubMedCentralCrossRefGoogle Scholar
  182. Poizat C, Puri PL, Bai Y, Kedes L (2005) Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Mol Cell Biol 25(7):2673–2687PubMedPubMedCentralCrossRefGoogle Scholar
  183. Polesskaya A, Duquet A, Naguibneva I, Weise C, Vervisch A, Bengal E, Hucho F, Robin P, Harel-Bellan A (2000) CREB-binding protein/p300 activates MyoD by acetylation. J Biol Chem 275(44):34359–34364PubMedCrossRefGoogle Scholar
  184. Polesskaya A, Naguibneva I, Fritsch L, Duquet A, Ait-Si-Ali S, Robin P, Vervisch A, Pritchard LL, Cole P, Harel-Bellan A (2001) CBP/p300 and muscle differentiation: no HAT, no muscle. Embo J 20(23):6816–6825PubMedPubMedCentralCrossRefGoogle Scholar
  185. Puri P, Sartorelli V, Yang X-J, Hamamori Y, Ogryzko VV, Howard BH, Kedes L, Wang JYJ, Graessmann A, Nakatani Y, Levrero M (1997) Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell 1:35–45PubMedCrossRefGoogle Scholar
  186. Qi C, Zhu Y, Pan J, Yeldandi AV, Rao MS, Maeda N, Subbarao V, Pulikuri S, Hashimoto T, Reddy JK (1999) Mouse steroid receptor coactivator-1 is not essential for peroxisome proliferator-activated receptor alpha-regulated gene expression. Proc Natl Acad Sci U S A 96(4):1585–1590PubMedPubMedCentralCrossRefGoogle Scholar
  187. Qiu Y, Guo M, Huang S, Stein R (2004) Acetylation of the BETA2 transcription factor by p300-associated factor is important in insulin gene expression. J Biol Chem 279(11):9796–9802PubMedCrossRefGoogle Scholar
  188. Ran Q, Pereira-Smith OM (2000) Identification of an alternatively spliced form of the Tat interactive protein (Tip60), Tip60(beta). Gene 258(1–2):141–146PubMedCrossRefGoogle Scholar
  189. Reiter R, Wellstein A, Riegel AT (2001) An isoform of the coactivator AIB1 that increases hormone and growth factor sensitivity is overexpressed in breast cancer. J Biol Chem 276(43):39736–39741. doi: 10.1074/jbc.M104744200 PubMedCrossRefGoogle Scholar
  190. Ren J, Taegtmeyer H (2015) Too much or not enough of a good thing – the Janus faces of autophagy in cardiac fuel and protein homeostasis. J Mol Cell Cardiol 84:223–226. doi: 10.1016/j.yjmcc.2015.03.001 PubMedCrossRefGoogle Scholar
  191. Richards J, Diaz AN, Gumz ML (2014) Clock genes in hypertension: novel insights from rodent models. Blood Press Monit 19(5):249–254. doi: 10.1097/mbp.0000000000000060 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Roden DM (2015) Cardiovascular pharmacogenomics: current status and future directions. J Hum Genet. doi: 10.1038/jhg.2015.78 PubMedPubMedCentralGoogle Scholar
  193. Roelfsema JH, White SJ, Ariyurek Y, Bartholdi D, Niedrist D, Papadia F, Bacino CA, den Dunnen JT, van Ommen GJ, Breuning MH, Hennekam RC, Peters DJ (2005) Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations in both the CBP and EP300 genes cause disease. Am J Hum Genet 76(4):572–580PubMedPubMedCentralCrossRefGoogle Scholar
  194. Roth JF, Shikama N, Henzen C, Desbaillets I, Lutz W, Marino S, Wittwer J, Schorle H, Gassmann M, Eckner R (2003) Differential role of p300 and CBP acetyltransferase during myogenesis: p300 acts upstream of MyoD and Myf5. EMBO J 22(19):5186–5196PubMedPubMedCentralCrossRefGoogle Scholar
  195. Samuelson AV, Narita M, Chan HM, Jin J, de Stanchina E, McCurrach ME, Narita M, Fuchs M, Livingston DM, Lowe SW (2005) p400 is required for E1A to promote apoptosis. J Biol Chem 280(23):21915–21923. doi: 10.1074/jbc.M414564200 PubMedCrossRefGoogle Scholar
  196. Sanchez-Molina S, Oliva JL, Garcia-Vargas S, Valls E, Rojas JM, Martinez-Balbas MA (2006) The histone acetyltransferases CBP/p300 are degraded in NIH 3T3 cells by activation of Ras signalling pathway. Biochem J 398(2):215–224PubMedPubMedCentralCrossRefGoogle Scholar
  197. Sartorelli V, Huang J, Hamamori Y, Kedes L (1997) Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 17(2):1010–1026PubMedPubMedCentralCrossRefGoogle Scholar
  198. Sartorelli V, Puri PL, Hamamori Y, Ogryzko V, Chung G, Nakatani Y, Wang JY, Kedes L (1999) Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell 4(5):725–734PubMedCrossRefGoogle Scholar
  199. Schroder EA, Burgess DE, Zhang X, Lefta M, Smith JL, Patwardhan A, Bartos DC, Elayi CS, Esser KA, Delisle BP (2015) The cardiomyocyte molecular clock regulates the circadian expression of Kcnh2 and contributes to ventricular repolarization. Heart Rhythm 12(6):1306–1314. doi: 10.1016/j.hrthm.2015.02.019 PubMedPubMedCentralCrossRefGoogle Scholar
  200. Sharma M, Zarnegar M, Li X, Lim B, Sun Z (2000) Androgen receptor interacts with a novel MYST protein, HBO1. J Biol Chem 275(45):35200–35208. doi: 10.1074/jbc.M004838200 PubMedCrossRefGoogle Scholar
  201. Sharma S, Liu J, Wei J, Yuan H, Zhang T, Bishopric NH (2012) Repression of miR-142 by p300 and MAPK is required for survival signalling via gp130 during adaptive hypertrophy. EMBO Mol Med 4(7):617–632. doi: 10.1002/emmm.201200234 PubMedPubMedCentralCrossRefGoogle Scholar
  202. Shehadeh LA, Sharma S, Pessanha M, Wei J, Liu J, Yuan H, Rodrigues CO, Scherr M, Tsinoremas NF, Bishopric NH (2013) MicroRNA-20a constrains p300-driven myocardial angiogenic transcription by direct targeting of p300. PLoS One 8(11), e79133. doi: 10.1371/journal.pone.0079133 PubMedPubMedCentralCrossRefGoogle Scholar
  203. Sheridan AM, Force T, Yoon HJ, O’Leary E, Choukroun G, Taheri MR, Bonventre JV (2001) PLIP, a novel splice variant of Tip60, interacts with group IV cytosolic phospholipase A(2), induces apoptosis, and potentiates prostaglandin production. Mol Cell Biol 21(14):4470–4481. doi: 10.1128/mcb.21.14.4470-4481.2001 PubMedPubMedCentralCrossRefGoogle Scholar
  204. Shikama N, Lutz W, Kretzschmar R, Sauter N, Roth JF, Marino S, Wittwer J, Scheidweiler A, Eckner R (2003) Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J 22(19):5175–5185PubMedPubMedCentralCrossRefGoogle Scholar
  205. Shukla PC, Singh KK, Quan A, Al-Omran M, Teoh H, Lovren F, Cao L, Rovira II, Pan Y, Brezden-Masley C, Yanagawa B, Gupta A, Deng CX, Coles JG, Leong-Poi H, Stanford WL, Parker TG, Schneider MD, Finkel T, Verma S (2011) BRCA1 is an essential regulator of heart function and survival following myocardial infarction. Nat Commun 2:593. doi: 10.1038/ncomms1601 PubMedPubMedCentralCrossRefGoogle Scholar
  206. Simpson CL, Lemmens R, Miskiewicz K, Broom WJ, Hansen VK, van Vught PW, Landers JE, Sapp P, Van Den Bosch L, Knight J, Neale BM, Turner MR, Veldink JH, Ophoff RA, Tripathi VB, Beleza A, Shah MN, Proitsi P, Van Hoecke A, Carmeliet P, Horvitz HR, Leigh PN, Shaw CE, van den Berg LH, Sham PC, Powell JF, Verstreken P, Brown RH Jr, Robberecht W, Al-Chalabi A (2009) Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration. Hum Mol Genet 18(3):472–481. doi: 10.1093/hmg/ddn375 PubMedCrossRefGoogle Scholar
  207. Smith ER, Cayrou C, Huang R, Lane WS, Cote J, Lucchesi JC (2005) A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25(21):9175–9188. doi: 10.1128/mcb.25.21.9175-9188.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  208. Solomon BD, Bodian DL, Khromykh A, Mora GG, Lanpher BC, Iyer RK, Baveja R, Vockley JG, Niederhuber JE (2015) Expanding the phenotypic spectrum in EP300-related Rubinstein-Taybi syndrome. Am J Med Genet A 167A(5):1111–1116. doi: 10.1002/ajmg.a.36883 PubMedCrossRefGoogle Scholar
  209. Spallotta F, Cencioni C, Straino S, Sbardella G, Castellano S, Capogrossi MC, Martelli F, Gaetano C (2013) Enhancement of lysine acetylation accelerates wound repair. Commun Integr Biol 6(5), e25466. doi: 10.4161/cib.25466 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Spena S, Milani D, Rusconi D, Negri G, Colapietro P, Elcioglu N, Bedeschi F, Pilotta A, Spaccini L, Ficcadenti A, Magnani C, Scarano G, Selicorni A, Larizza L, Gervasini C (2014) Insights into genotype-phenotype correlations from CREBBP point mutation screening in a cohort of 46 Rubinstein-Taybi syndrome patients. Clin Genet. doi: 10.1111/cge.12537 Google Scholar
  211. Spin JM, Quertermous T, Tsao PS (2010) Chromatin remodeling pathways in smooth muscle cell differentiation, and evidence for an integral role for p300. PLoS One 5(12), e14301. doi: 10.1371/journal.pone.0014301 PubMedPubMedCentralCrossRefGoogle Scholar
  212. Steeves TD, King DP, Zhao Y, Sangoram AM, Du F, Bowcock AM, Moore RY, Takahashi JS (1999) Molecular cloning and characterization of the human CLOCK gene: expression in the suprachiasmatic nuclei. Genomics 57(2):189–200. doi: 10.1006/geno.1998.5675 PubMedCrossRefGoogle Scholar
  213. Stein RW, Corrigan M, Yaciuk P, Whelan J, Moran E (1990) Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol 64(9):4421–4427PubMedPubMedCentralGoogle Scholar
  214. Stevens CA, Bhakta MG (1995) Cardiac abnormalities in the Rubinstein-Taybi syndrome. Am J Med Genet 59:346–348PubMedCrossRefGoogle Scholar
  215. Stiehl DP, Fath DM, Liang D, Jiang Y, Sang N (2007) Histone deacetylase inhibitors synergize p300 autoacetylation that regulates its transactivation activity and complex formation. Cancer Res 67(5):2256–2264PubMedPubMedCentralCrossRefGoogle Scholar
  216. Struhl K, Moqtaderi Z (1998) The TAFs in the HAT. Cell 94(1):1–4PubMedCrossRefGoogle Scholar
  217. Sun Y, Jiang X, Price BD (2010) Tip60: connecting chromatin to DNA damage signaling. Cell Cycle 9(5):930–936PubMedPubMedCentralCrossRefGoogle Scholar
  218. Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, McMahon SB (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell 24(6):841–851. doi:S1097-2765(06)00821-5 [pii]  10.1016/j.molcel.2006.11.026
  219. Takaya T, Kawamura T, Morimoto T, Ono K, Kita T, Shimatsu A, Hasegawa K (2008) Identification of p300-targeted acetylated residues in GATA4 during hypertrophic responses in cardiac myocytes. J Biol Chem 283(15):9828–9835. doi: 10.1074/jbc.M707391200 PubMedCrossRefGoogle Scholar
  220. Takeshita A, Cardona GR, Koibuchi N, Suen CS, Chin WW (1997) TRAM-1, a novel 160-kDa thyroid hormone receptor activator molecule, exhibits distinct properties from steroid receptor coactivator-1. J Biol Chem 272(44):27629–27634PubMedCrossRefGoogle Scholar
  221. Tamkun JW, Deuring R, Scott MP, Kissinger M, Pattatucci AM, Kaufman TC, Kennison JA (1992) brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Cell 68(3):561–572PubMedCrossRefGoogle Scholar
  222. Tanaka Y, Naruse I, Maekawa T, Masuya H, Shiroishi T, Ishii S (1997) Abnormal skeletal patterning in embryos lacking single Cbp allele: a partial similarity with Rubenstein-Taybi syndrome. Proc Natl Acad Sci U S A 94:10215–10220PubMedPubMedCentralCrossRefGoogle Scholar
  223. Tanaka Y, Naruse I, Hongo T, Xu M, Nakahata T, Maekawa T, Ishii S (2000) Extensive brain hemorrhage and embryonic lethality in a mouse null mutant of CREB-binding protein. Mech Dev 95(1–2):133–145PubMedCrossRefGoogle Scholar
  224. Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24(6):827–839. doi: 10.1016/j.molcel.2006.11.021 PubMedCrossRefGoogle Scholar
  225. Tang Y, Holbert MA, Wurtele H, Meeth K, Rocha W, Gharib M, Jiang E, Thibault P, Verreault A, Cole PA, Marmorstein R (2008) Fungal Rtt109 histone acetyltransferase is an unexpected structural homolog of metazoan p300/CBP. Nat Struct Mol Biol 15(9):998. doi:nsmb0908-998d [pii]  10.1038/nsmb0908-998d
  226. Tang J, Cho NW, Cui G, Manion EM, Shanbhag NM, Botuyan MV, Mer G, Greenberg RA (2013) Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat Struct Mol Biol. doi: 10.1038/nsmb.2499 CrossRefGoogle Scholar
  227. Tham E, Lindstrand A, Santani A, Malmgren H, Nesbitt A, Dubbs HA, Zackai EH, Parker MJ, Millan F, Rosenbaum K, Wilson GN, Nordgren A (2015) Dominant mutations in KAT6A cause intellectual disability with recognizable syndromic features. Am J Hum Genet (1537–6605 (Electronic)). doi:D-NLM: PMC4375419 [available on 09/05/15] EDAT- 2015/03/03 06:00 MHDA- 2015/05/13 06:00 CRDT- 2015/03/03 06:00 PMCR- 2015/09/05 00:00 PHST- 2014/10/24 [received] PHST- 2015/01/20 [accepted] PHST- 2015/02/26 [aheadofprint] AID - S0002-9297(15)00024-5 [pii] AID -  10.1016/j.ajhg.2015.01.016 [doi] PST - ppublish
  228. Thomas T, Dixon MP, Kueh AJ, Voss AK (2008) Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture. Mol Cell Biol 28(16):5093–5105. doi: 10.1128/mcb.02202-07 PubMedPubMedCentralCrossRefGoogle Scholar
  229. Thompson PR, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder RG, Wong J, Levrero M, Sartorelli V, Cotter RJ, Cole PA (2004) Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol 11(4):308–315PubMedCrossRefGoogle Scholar
  230. Treier M, Staszewski LM, Bohmann D (1994) Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78(5):787–798PubMedCrossRefGoogle Scholar
  231. Troke PJ, Kindle KB, Collins HM, Heery DM (2006) MOZ fusion proteins in acute myeloid leukaemia. Biochem Soc Symp 73:23–39CrossRefGoogle Scholar
  232. Uttarkar S, Dukare S, Bopp B, Goblirsch M, Jose J, Klempnauer KH (2015) Naphthol AS-E phosphate inhibits the activity of the transcription factor Myb by blocking the interaction with the KIX domain of the coactivator p300. Mol Cancer Ther 14(6):1276–1285. doi: 10.1158/1535-7163.mct-14-0662 PubMedCrossRefGoogle Scholar
  233. Vanyai HK, Thomas T, Voss AK (2015) Mesodermal expression of Moz is necessary for cardiac septum development. Dev Biol. doi: 10.1016/j.ydbio.2015.04.011 PubMedGoogle Scholar
  234. Varshavsky A (1997) The ubiquitin system. Trends Biochem Sci 22(10):383–387PubMedCrossRefGoogle Scholar
  235. Vega RB, Harrison BC, Meadows E, Roberts CR, Papst PJ, Olson EN, McKinsey TA (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24(19):8374–8385PubMedPubMedCentralCrossRefGoogle Scholar
  236. Verdin E, Ott M (2015) 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol 16(4):258–264. doi: 10.1038/nrm3931 PubMedCrossRefGoogle Scholar
  237. Viosca J, Lopez-Atalaya JP, Olivares R, Eckner R, Barco A (2010) Syndromic features and mild cognitive impairment in mice with genetic reduction on p300 activity: differential contribution of p300 and CBP to Rubinstein-Taybi syndrome etiology. Neurobiol Dis 37(1):186–194. doi: 10.1016/j.nbd.2009.10.001 PubMedCrossRefGoogle Scholar
  238. Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264(5159):719–725PubMedPubMedCentralCrossRefGoogle Scholar
  239. Vo NK, Goodman RH (2001) CBP and p300 in transcriptional regulation. J Biol Chem 276(17):13505–13508PubMedCrossRefGoogle Scholar
  240. Voegel JJ, Heine MJ, Zechel C, Chambon P, Gronemeyer H (1996) TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J 15(14):3667–3675PubMedPubMedCentralGoogle Scholar
  241. Voss AK, Collin C, Dixon MP, Thomas T (2009). Moz and retinoic acid coordinately regulate H3K9 acetylation, Hox gene expression, and segment identity. Dev. Cell 17, 674–686.Google Scholar
  242. Voss AK, Vanyai HK, Collin C, Dixon MP, McLennan TJ, Sheikh BN, Scambler P, Thomas T (2012) MOZ regulates the Tbx1 locus, and Moz mutation partially phenocopies DiGeorge syndrome. Dev Cell 23(3):652–663. doi: 10.1016/j.devcel.2012.07.010 PubMedPubMedCentralCrossRefGoogle Scholar
  243. Wadhawan S, Runz H, Burchard J (2015) The genome as pharmacopeia: association of genetic dose with phenotypic response. Biochem Pharmacol 94(4):229–240. doi: 10.1016/j.bcp.2015.02.005 PubMedCrossRefGoogle Scholar
  244. Wagner GR, Hirschey MD (2014) Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol Cell 54(1):5–16. doi: 10.1016/j.molcel.2014.03.027 PubMedPubMedCentralCrossRefGoogle Scholar
  245. Wang L, Dent SY (2014) Functions of SAGA in development and disease. Epigenomics 6(3):329–339. doi: 10.2217/epi.14.22 PubMedPubMedCentralCrossRefGoogle Scholar
  246. Wang D, Thompson P, Cole PA, Cotter RJ (2005a) Structural analysis of a highly acetylated protein using a curved-field reflectron mass spectrometer. Proteomics 5(9):2288–2296PubMedCrossRefGoogle Scholar
  247. Wang R, Cherukuri P, Luo J (2005b) Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. J Biol Chem 280(12):11528–11534PubMedCrossRefGoogle Scholar
  248. Wang Z, Qi C, Krones A, Woodring P, Zhu X, Reddy JK, Evans RM, Rosenfeld MG, Hunter T (2006) Critical roles of the p160 transcriptional coactivators p/CIP and SRC-1 in energy balance. Cell Metab 3(2):111–122. doi: 10.1016/j.cmet.2006.01.002 PubMedCrossRefGoogle Scholar
  249. Wang YL, Faiola F, Xu M, Pan S, Martinez E (2008a) Human ATAC is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem 283(49):33808–33815. doi: 10.1074/jbc.M806936200 PubMedPubMedCentralCrossRefGoogle Scholar
  250. Wang L, Tang Y, Cole PA, Marmorstein R (2008b) Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 18(6):741–747. doi:S0959-440X(08)00128-0 [pii]  10.1016/j.sbi.2008.09.004
  251. Wang C, George B, Chen S, Feng B, Li X, Chakrabarti S (2012) Genotoxic stress and activation of novel DNA repair enzymes in human endothelial cells and in the retinas and kidneys of streptozotocin diabetic rats. Diabetes Metab Res Rev 28(4):329–337. doi: 10.1002/dmrr.2279 PubMedCrossRefGoogle Scholar
  252. Wang W, Bian K, Vallabhaneni S, Zhang B, Wu RC, O’Malley BW, Long W (2014) ERK3 promotes endothelial cell functions by upregulating SRC-3/SP1-mediated VEGFR2 expression. J Cell Physiol 229(10):1529–1537. doi: 10.1002/jcp.24596 PubMedPubMedCentralCrossRefGoogle Scholar
  253. Wang Y, Wang Y, Luo M, Wu H, Kong L, Xin Y, Cui W, Zhao Y, Wang J, Liang G, Miao L, Cai L (2015) Novel curcumin analog C66 prevents diabetic nephropathy via JNK pathway with the involvement of p300/CBP-mediated histone acetylation. Biochim Biophys Acta 1852(1):34–46. doi: 10.1016/j.bbadis.2014.11.006 PubMedCrossRefGoogle Scholar
  254. Weeks KL, Avkiran M (2015) Roles and post-translational regulation of cardiac class IIa histone deacetylase isoforms. J Physiol 593(8):1785–1797. doi: 10.1113/jphysiol.2014.282442 PubMedCrossRefGoogle Scholar
  255. Wei JQ, Shehadeh LA, Mitrani JM, Pessanha M, Slepak TI, Webster KA, Bishopric NH (2008) Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118(9):934–946PubMedPubMedCentralCrossRefGoogle Scholar
  256. Wincent J, Luthman A, van Belzen M, van der Lans C, Albert J, Nordgren A, Anderlid BM (2016) CREBBP and EP300 mutational spectrum and clinical presentations in a cohort of Swedish patients with Rubinstein-Taybi syndrome Mol Genet Genomic Med 4(1):39–45. doi:  10.1002/mgg3.177
  257. Woods SA, Robinson HB, Kohler LJ, Agamanolis D, Sterbenz G, Khalifa M (2014) Exome sequencing identifies a novel EP300 frame shift mutation in a patient with features that overlap Cornelia de Lange syndrome. Am J Med Genet A 164A(1):251–258. doi: 10.1002/ajmg.a.36237 PubMedCrossRefGoogle Scholar
  258. Wu RC, Feng Q, Lonard DM, O’Malley BW (2007) SRC-3 coactivator functional lifetime is regulated by a phospho-dependent ubiquitin time clock. Cell 129(6):1125–1140. doi: 10.1016/j.cell.2007.04.039 PubMedCrossRefGoogle Scholar
  259. Xenaki G, Ontikatze T, Rajendran R, Stratford IJ, Dive C, Krstic-Demonacos M, Demonacos C (2008) PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. Oncogene 27(44):5785–5796. doi: 10.1038/onc.2008.192 PubMedPubMedCentralCrossRefGoogle Scholar
  260. Xiao H, Hasegawa T, Isobe K (2000) p300 collaborates with Sp1 and Sp3 in p21(waf1/cip1) promoter activation induced by histone deacetylase inhibitor. J Biol Chem 275(2):1371–1376PubMedCrossRefGoogle Scholar
  261. Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai MJ, O’Malley BW (1998) Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 279(5358):1922–1925PubMedCrossRefGoogle Scholar
  262. Xu W, Edmondson DG, Evrard YA, Wakamiya M, Behringer RR, Roth SY (2000a) Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development. Nat Genet 26(2):229–232. doi: 10.1038/79973 PubMedCrossRefGoogle Scholar
  263. Xu J, Liao L, Ning G, Yoshida-Komiya H, Deng C, O’Malley BW (2000b) The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci U S A 97:6379–6384PubMedPubMedCentralCrossRefGoogle Scholar
  264. Xu Y, Sun Y, Jiang X, Ayrapetov MK, Moskwa P, Yang S, Weinstock DM, Price BD (2010) The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. J Cell Biol 191(1):31–43. doi: 10.1083/jcb.201001160 PubMedPubMedCentralCrossRefGoogle Scholar
  265. Xu H, Gustafson CL, Sammons PJ, Khan SK, Parsley NC, Ramanathan C, Lee HW, Liu AC, Partch CL (2015) Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus. Nat Struct Mol Biol 22(6):476–484. doi: 10.1038/nsmb.3018 PubMedPubMedCentralCrossRefGoogle Scholar
  266. Yamada T, Kawano H, Sekine K, Matsumoto T, Fukuda T, Azuma Y, Itaka K, Chung UI, Chambon P, Nakamura K, Kato S, Kawaguchi H (2004) SRC-1 is necessary for skeletal responses to sex hormones in both males and females. J Bone Miner Res 19(9):1452–1461. doi: 10.1359/jbmr.040515 PubMedCrossRefGoogle Scholar
  267. Yamauchi T, Oike Y, Kamon J, Waki H, Komeda K, Tsuchida A, Date Y, Li MX, Miki H, Akanuma Y, Nagai R, Kimura S, Saheki T, Nakazato M, Naitoh T, Yamamura K, Kadowaki T (2002) Increased insulin sensitivity despite lipodystrophy in Crebbp heterozygous mice. Nat Genet 30(2):221–226. doi: 10.1038/ng829 PubMedCrossRefGoogle Scholar
  268. Yang XJ (2004) The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res 32(3):959–976. doi: 10.1093/nar/gkh252 PubMedPubMedCentralCrossRefGoogle Scholar
  269. Yang X, Yu W, Shi L, Sun L, Liang J, Yi X, Li Q, Zhang Y, Yang F, Han X, Zhang D, Yang J, Yao Z, Shang Y (2011) HAT4, a Golgi apparatus-anchored B-type histone acetyltransferase, acetylates free histone H4 and facilitates chromatin assembly. Mol Cell 44(1):39–50. doi: 10.1016/j.molcel.2011.07.032 PubMedCrossRefGoogle Scholar
  270. Yao TP, Oh SP, Fuchs M, Zhou ND, Ch'ng LE, Newsome D, Bronson RT, Li E, Livingston DM, Eckner R (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93:361–372PubMedCrossRefGoogle Scholar
  271. York B, Yu C, Sagen JV, Liu Z, Nikolai BC, Wu RC, Finegold M, Xu J, O’Malley BW (2010) Reprogramming the posttranslational code of SRC-3 confers a switch in mammalian systems biology. Proc Natl Acad Sci U S A 107(24):11122–11127. doi: 10.1073/pnas.1005262107 PubMedPubMedCentralCrossRefGoogle Scholar
  272. Youn HD, Liu JO (2000) Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity 13(1):85–94PubMedCrossRefGoogle Scholar
  273. Young ME, Brewer RA, Peliciari-Garcia RA, Collins HE, He L, Birky TL, Peden BW, Thompson EG, Ammons BJ, Bray MS, Chatham JC, Wende AR, Yang Q, Chow CW, Martino TA, Gamble KL (2014) Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms 29(4):257–276. doi: 10.1177/0748730414543141 PubMedPubMedCentralCrossRefGoogle Scholar
  274. Yu C, York B, Wang S, Feng Q, Xu J, O’Malley BW (2007) An essential function of the SRC-3 coactivator in suppression of cytokine mRNA translation and inflammatory response. Mol Cell 25(5):765–778. doi: 10.1016/j.molcel.2007.01.025 PubMedPubMedCentralCrossRefGoogle Scholar
  275. Yuan CX, Ito M, Fondell JD, Fu ZY, Roeder RG (1998) The TRAP220 component of a thyroid hormone receptor- associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc Natl Acad Sci U S A 95(14):7939–7944PubMedPubMedCentralCrossRefGoogle Scholar
  276. Yuan ZL, Guan YJ, Chatterjee D, Chin YE (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307(5707):269–273PubMedCrossRefGoogle Scholar
  277. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J, Overton JD, Romano-Adesman A, Bjornson RD, Breitbart RE, Brown KK, Carriero NJ, Cheung YH, Deanfield J, DePalma S, Fakhro KA, Glessner J, Hakonarson H, Italia MJ, Kaltman JR, Kaski J, Kim R, Kline JK, Lee T, Leipzig J, Lopez A, Mane SM, Mitchell LE, Newburger JW, Parfenov M, Pe'er I, Porter G, Roberts AE, Sachidanandam R, Sanders SJ, Seiden HS, State MW, Subramanian S, Tikhonova IR, Wang W, Warburton D, White PS, Williams IA, Zhao H, Seidman JG, Brueckner M, Chung WK, Gelb BD, Goldmuntz E, Seidman CE, Lifton RP (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498(7453):220–223. doi: 10.1038/nature12141, nature12141 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  278. Zhang K, Faiola F, Martinez E (2005) Six lysine residues on c-Myc are direct substrates for acetylation by p300. Biochem Biophys Res Commun 336(1):274–280PubMedCrossRefGoogle Scholar
  279. Zhang Y, Zhang H, Liang J, Yu W, Shang Y (2007) SIP, a novel ankyrin repeat containing protein, sequesters steroid receptor coactivators in the cytoplasm. EMBO J 26(11):2645–2657. doi: 10.1038/sj.emboj.7601710 PubMedPubMedCentralCrossRefGoogle Scholar
  280. Zhang X, Gibson ME, Li ZL, Zhu XY, Jordan KL, Lerman A, Lerman LO (2015) Autophagy portends the level of cardiac hypertrophy in experimental hypertensive swine model. Am J Hypertens 29:81–89. doi: 10.1093/ajh/hpv057 PubMedCrossRefGoogle Scholar
  281. Zhao X, Sternsdorf T, Bolger TA, Evans RM, Yao TP (2005) Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications. Mol Cell Biol 25(19):8456–8464PubMedPubMedCentralCrossRefGoogle Scholar
  282. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004. doi: 10.1126/science.1179689 PubMedPubMedCentralCrossRefGoogle Scholar
  283. Zhao X, Cho H, Yu RT, Atkins AR, Downes M, Evans RM (2014) Nuclear receptors rock around the clock. EMBO Rep 15(5):518–528. doi: 10.1002/embr.201338271 PubMedPubMedCentralCrossRefGoogle Scholar
  284. Zhou XY, Shibusawa N, Naik K, Porras D, Temple K, Ou H, Kaihara K, Roe MW, Brady MJ, Wondisford FE (2004) Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat Med 10(6):633–637. doi: 10.1038/nm1050 PubMedCrossRefGoogle Scholar
  285. Zimmermann N, Acosta AM, Kohlhase J, Bartsch O (2007) Confirmation of EP300 gene mutations as a rare cause of Rubinstein-Taybi syndrome. Eur J Hum Genet 15:837–842PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Miami Miller School of MedicineMiamiUSA

Personalised recommendations