Skip to main content

Histone Methylation in Heart Development and Cardiovascular Disease

  • Chapter
  • First Online:
Epigenetics in Cardiac Disease

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 1))

Abstract

Cardiovascular development and homeostasis are regulated by a group of core cardiac transcription factors in a coordinated temporal and spatial manner. Histone methylation is an emerging epigenetic mechanism for regulating gene transcription. Interplay among transcription factors and histone lysine modifiers plays important role in cardiovascular development and diseases. Aberrant expression and mutation of the histone lysine modifiers during development and in adult life can cause either embryonic lethality or congenital heart diseases, and influences the response of adult hearts to pathological stresses. In this review, we describe basics of histone methylation, and current body of literature on the role of several common histone methylations and their modifying enzymes in cardiovascular development, congenital and adult heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu-Farha M, Lambert JP, Al-Madhoun AS et al (2008) The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 7(3):560–572

    CAS  PubMed  Google Scholar 

  • Alabert C, Groth A (2012) Chromatin replication and epigenome maintenance. Nat Rev Mol Cell Biol 13(3):153–167

    CAS  PubMed  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aramaki M, Udaka T, Kosaki R et al (2006) Phenotypic spectrum of CHARGE syndrome with CHD7 mutations. J Pediatr 148(3):410–414

    CAS  PubMed  Google Scholar 

  • Bannister AJ, Zegerman P, Partridge JF et al (2001) Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410(6824):120–124

    CAS  PubMed  Google Scholar 

  • Barker DJ (1999) Fetal origins of cardiovascular disease. Ann Med 1:3–6

    Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326

    CAS  PubMed  Google Scholar 

  • Bilodeau S, Kagey MH, Frampton GM et al (2009) SetDB1 contributes to repression of genes encoding developmental regulators and maintenance of ES cell state. Genes Dev 23:2484–2489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Black JC, Whetstine JR (2013) Tipping the lysine methylation balance in disease. Biopolymers 99(2):127–135

    CAS  PubMed  Google Scholar 

  • Bokinni Y (2012) Kabuki syndrome revisited. J Hum Genet 57(4):223–227

    CAS  PubMed  Google Scholar 

  • Brown MA, Sims RJ 3rd, Gottlieb PD et al (2006) Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 5:26

    PubMed  PubMed Central  Google Scholar 

  • Bruneau BG (2013) Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb Perspect Biol 5(3):a008292

    PubMed  PubMed Central  Google Scholar 

  • Caprio C, Baldini A (2014) p53 suppression partially rescues the mutant phenotype in mouse models of DiGeorge syndrome. Proc Natl Acad Sci U S A 111(37):13385–13390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrozza MJ, Li B, Florens L et al (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123:581–592

    CAS  PubMed  Google Scholar 

  • Cattaneo P, Kunderfranco P, Greco C et al. (2014) DOT1L-mediated H3K79me2 modification critically regulates gene expression during cardiomyocyte differentiation. Cell Death Differ. doi:10.1038/cdd.2014.199

  • Delgado-Olguín P, Huang Y, Li X et al (2012) Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet 44(3):343–347

    PubMed  PubMed Central  Google Scholar 

  • Diehl F, Brown MA, van Amerongen MJ et al (2010) Cardiac deletion of Smyd2 is dispensable for mouse heart development. PLoS One 5(3):e9748

    PubMed  PubMed Central  Google Scholar 

  • Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6(8):227

    PubMed  PubMed Central  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104(32):13056–13061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Salas P, Cox SE, Prentice AM et al (2012) Maternal nutritional status, C(1) metabolism and offspring DNA methylation: a review of current evidence in human subjects. Proc Nutr Soc 71(1):154–165

    CAS  PubMed  Google Scholar 

  • Fahed AC, Gelb BD, Seidman JG, Seidman CE (2013) Genetics of congenital heart disease: the glass half empty. Circ Res 112:707–720

    CAS  PubMed  Google Scholar 

  • Fish JE, Yan MS, Matouk CC et al (2010) Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem 285:810–826

    CAS  PubMed  Google Scholar 

  • Fujii T, Tsunesumi S, Yamaguchi K et al (2011) Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One 6(8):e23491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glaser S, Schaft J, Lubitz S et al (2006) Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 133(8):1423–1432

    CAS  PubMed  Google Scholar 

  • Glaser S, Lubitz S, Loveland KL et al (2009) The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2(1):5. doi:10.1186/1756-8935-2-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsworthy M, Absalom NL, Schröter D et al (2013) Mutations in Mll2, an H3K4 methyltransferase, result in insulin resistance and impaired glucose tolerance in mice. PLoS One 8(6):e61870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlieb PD, Pierce SA, Sims RJ et al (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31(1):25–32

    CAS  PubMed  Google Scholar 

  • Guay SP, Brisson D, Lamarche B et al (2014) ADRB3 gene promoter DNA methylation in blood and visceral adipose tissue is associated with metabolic disturbances in men. Epigenomics 6(1):33–43

    CAS  PubMed  Google Scholar 

  • Hamamoto R, Furukawa Y, Morita M et al (2004) SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 6(8):731–740

    CAS  PubMed  Google Scholar 

  • Han P, Hang CT, Yang J, Chang CP (2011) Chromatin remodeling in cardiovascular development and physiology. Circ Res 108(3):378–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • He A, Ma Q, Cao J et al (2012) Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res 110(3):406–415

    CAS  PubMed  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105(44):17046–17049

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358(13):1370–1380

    CAS  PubMed  Google Scholar 

  • Ho JJ, Man HS, Marsden PA (2012) Nitric oxide signaling in hypoxia. J Mol Med (Berl) 90(3):217–231

    CAS  PubMed  Google Scholar 

  • Hu M, Sun XJ, Zhang YL et al (2010) Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling. Proc Natl Acad Sci U S A 107(7):2956–2961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Just S, Meder B, Berger IM et al (2011) The myosin-interacting protein SMYD1 is essential for sarcomere organization. J Cell Sci 124(Pt 18):3127–3136

    CAS  PubMed  Google Scholar 

  • Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153(1):56–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneda R, Takada S, Yamashita Y et al (2009) Genome-wide histone methylation profile for heart failure. Genes Cells 14(1):69–77

    CAS  PubMed  Google Scholar 

  • Kim D, Patel SR, Xiao H, Dressler GR (2009) The role of PTIP in maintaining embryonic stem cell pluripotency. Stem Cells 27(7):1516–1523

    CAS  PubMed  Google Scholar 

  • Klose RJ, Kallin EM, Zhang Y (2006) JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 7(9):715–727

    CAS  PubMed  Google Scholar 

  • Kobayashi J, Yoshida M, Tarui S et al (2014) Directed differentiation of patient-specific induced pluripotent stem cells identifies the transcriptional repression and epigenetic modification of NKX2-5, HAND1, and NOTCH1 in hypoplastic left heart syndrome. PLoS One 9(7):e102796

    PubMed  PubMed Central  Google Scholar 

  • Krauss V (2008) Glimpses of evolution: heterochromatic histone H3K9 methyltransferases left its marks behind. Genetica 133(1):93–106

    CAS  PubMed  Google Scholar 

  • Lachner M, O'Carroll D, Rea S et al (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410(6824):116–120

    CAS  PubMed  Google Scholar 

  • Lai HL, Grachoff M, McGinley AL et al (2012) Maintenance of adult cardiac function requires the chromatin factor Asxl2. J Mol Cell Cardiol 53(5):734–741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Lee JW, Lee SK (2012) UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev Cell 22(1):25–37

    CAS  PubMed  Google Scholar 

  • Lui JC, Chen W, Cheung CS, Baron J (2014) Broad shifts in gene expression during early postnatal life are associated with shifts in histone methylation patterns. PLoS One 9(1):e86957

    PubMed  PubMed Central  Google Scholar 

  • Magklara A, Yen A, Colquitt BM et al (2011) An epigenetic signature for monoallelic olfactory receptor expression. Cell 145:555–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marango J, Shimoyama M, Nishio H et al (2008) The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Blood 111:3145–3154

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCulley DJ, Black BL (2012) Transcription factor pathways and congenital heart disease. Curr Top Dev Biol 100:253–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger E, Wissmann M, Yin N et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    CAS  PubMed  Google Scholar 

  • Mummaneni P, Shord SS (2014) Epigenetics and oncology. Pharmacotherapy. doi:10.1002/phar.1408

  • Nestorov P, Tardat M, Peters AH (2013) H3K9/HP1 and polycomb: two key epigenetic silencing pathways for gene regulation and embryo development. Curr Top Dev Biol 104:243–291

    CAS  PubMed  Google Scholar 

  • Ng SB, Bigham AW, Buckingham KJ et al (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42(9):790–793

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen AT, Zhang Y (2011) The diverse functions of Dot1 and H3K79 methylation. Genes Dev 25(13):1345–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen AT, Xiao B, Neppl RL et al (2011) DOT1L regulates dystrophin expression and is critical for cardiac function. Genes Dev 25(3):263–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nimura K, Ura K, Shiratori H et al (2009) A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature 460(7252):287–291

    CAS  PubMed  Google Scholar 

  • Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313(5795):1922–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Papangeli I, Scambler P (2013) The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1. Wiley Interdiscip Rev Dev Biol 2(3):393–403

    CAS  PubMed  Google Scholar 

  • Park CY, Pierce SA, von Drehle M et al (2010) skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration. Proc Natl Acad Sci U S A 107(48):20750–20755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SR, Kim D, Levitan I, Dressler GR (2007) The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 13(4):580–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pojoga LH, Williams JS, Yao TM et al (2011) Histone demethylase LSD1 deficiency during high-salt diet is associated with enhanced vascular contraction, altered NO-cGMP relaxation pathway, and hypertension. Am J Physiol Heart Circ Physiol 301(5):H1862–H1871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pokholok DK, Harbison CT, Levine S et al (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122(4):517–527

    CAS  PubMed  Google Scholar 

  • Raj A, Rifkin SA, Andersen E, van Oudenaarden A (2010) Variability in gene expression underlies incomplete penetrance. Nature 463:913–918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Randall V, McCue K, Roberts C et al (2009) Great vessel development requires biallelic expression of Chd7 and Tbx1 in pharyngeal ectoderm in mice. J Clin Invest 119(11):3301–3310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen TL, Ma Y, Park CY et al (2015) Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One 10(3):e0121765

    PubMed  PubMed Central  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406(6796):593–599

    CAS  PubMed  Google Scholar 

  • Reddy MA, Villeneuve LM, Wang M et al (2008) Role of the lysine-specific demethylase 1 in the proinflammatory phenotype of vascular smooth muscle cells of diabetic mice. Circ Res 103(6):615–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rozek LS, Dolinoy DC, Sartor MA, Omenn GS (2014) Epigenetics: relevance and implications for public health. Annu Rev Public Health 35:105–122

    PubMed  PubMed Central  Google Scholar 

  • Ruthenburg AJ, Allis CD, Wysocka J (2007) Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark. Mol Cell 25(1):15–30

    CAS  PubMed  Google Scholar 

  • Sheikh F, Raskin A, Chu PH et al (2008) An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J Clin Invest 118(12):3870–3880

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi YG, Tsukada Y (2013) The discovery of histone demethylases. Cold Spring Harb Perspect Biol 5:a017947

    PubMed  PubMed Central  Google Scholar 

  • Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    CAS  PubMed  Google Scholar 

  • Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song HK, Hong SE, Kim T et al (2012) Deep RNA sequencing reveals novel cardiac transcriptomic signatures for physiological and pathological hypertrophy. PLoS One 7(4):e35552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stein AB, Jones TA, Herron TJ et al (2011) Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes. J Clin Invest 121(7):2641–2650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stock JK, Giadrossi S, Casanova M et al (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nat Cell Biol 9(12):1428–1435

    CAS  PubMed  Google Scholar 

  • Strahl B, Allis C (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    CAS  PubMed  Google Scholar 

  • Strobl-Mazzulla PH, Sauka-Spengler T, Bronner-Fraser M (2010) Histone demethylase JmjD2A regulates neural crest specification. Dev Cell 19(3):460–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tingare A, Thienpont B, Roderick HL (2013) Epigenetics in the heart: the role of histone modifications in cardiac remodeling. Biochem Soc Trans 41(3):789–796

    CAS  PubMed  Google Scholar 

  • Tobi EW, Goeman JJ, Monajemi R et al (2014) DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 5:5592. doi:10.1038/ncomms6592

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen M, Mulder KW, Denissov S et al (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131(1):58–69

    CAS  PubMed  Google Scholar 

  • Vincent SD, Buckingham ME (2010) How to make a heart: the origin and regulation of cardiac progenitor cells. Curr Top Dev Biol 90:1–41

    PubMed  Google Scholar 

  • Voelkel T, Andresen C, Unger A et al (2013) Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. Biochim Biophys Acta 1833(4):812–822

    CAS  PubMed  Google Scholar 

  • Voigt P, Tee WW, Reinberg D (2013) A double take on bivalent promoters. Genes Dev 27(12):1318–1338

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13(2):115–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wamstad JA, Alexander JM, Truty RM et al (2012) Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151(1):206–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12(11):949–957

    CAS  PubMed  Google Scholar 

  • Yang M, Gocke CB, Luo X et al (2006) Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol Cell 23:377–387

    CAS  PubMed  Google Scholar 

  • Young LC, Hendzel MJ (2013) The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression. Biochem Cell Biol 91(6):369–377

    CAS  PubMed  Google Scholar 

  • Yuan S, Zaidi S, Brueckner M (2013) Congenital heart disease: emerging themes linking genetics and development. Curr Opin Genet Dev 23(3):352–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi S, Choi M, Wakimoto H et al (2013) De novo mutations in histone-modifying genes in congenital heart disease. Nature 498(7453):220–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QJ, Chen HZ, Wang L et al (2011) The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest 121:2447–2456

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Ping Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, ZP. (2016). Histone Methylation in Heart Development and Cardiovascular Disease. In: Backs, J., McKinsey, T.A. (eds) Epigenetics in Cardiac Disease. Cardiac and Vascular Biology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-41457-7_6

Download citation

Publish with us

Policies and ethics