DNA Methylation in Heart Failure

  • Justus Stenzig
  • Roger S-Y FooEmail author
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)


Methylation of cytosine residues in DNA is an epigenetic feature that plays an important role in gene transcription regulation. However, it is controversial whether DNA methylation is functionally relevant for the initiation and progression of heart disease. This chapter explains the basic mechanisms and functional consequences of DNA methylation. Its potential role in heart disease and its link to other epigenetic processes are examined and summarized, and opposing results from major studies in the field are discussed. The chapter concludes with an outlook on the field, including possible therapeutic and diagnostic applications.


Embryonic Stem Cell Histone Modification Cytosine Methylation Differential Methylation Cardiac Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Aapola U, Kawasaki K, Scott HS, Ollila J, Vihinen M, Heino M, Shintani A, Minoshima S, Krohn K, Antonarakis SE, Shimizu N, Kudoh J, Peterson P (2000) Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics 65(3):293–298. doi: 10.1006/geno.2000.6168, S0888-7543(00)96168-8 [pii]PubMedCrossRefGoogle Scholar
  2. Ames EG, Lawson MJ, Mackey AJ, Holmes JW (2013) Sequencing of mRNA identifies re-expression of fetal splice variants in cardiac hypertrophy. J Mol Cell Cardiol 62:99–107. doi: 10.1016/j.yjmcc.2013.05.004, S0022-2828(13)00172-7 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  3. Angrisano T, Schiattarella GG, Keller S, Pironti G, Florio E, Magliulo F, Bottino R, Pero R, Lembo F, Avvedimento EV, Esposito G, Trimarco B, Chiariotti L, Perrino C (2014) Epigenetic switch at atp2a2 and myh7 gene promoters in pressure overload-induced heart failure. PLoS One 9(9), e106024. doi: 10.1371/journal.pone.0106024, PONE-D-14-13801 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aravin AA, Hannon GJ, Brennecke J (2007) The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318(5851):761–764. doi:318/5851/761 [pii] 0.1126/science.1146484PubMedCrossRefGoogle Scholar
  5. Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, Sparrow D, Vokonas P, Schwartz J (2010) Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology 21(6):819–828. doi: 10.1097/EDE.0b013e3181f20457 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Backs J, Olson EN (2006) Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98(1):15–24. doi:98/1/15 [pii] 0.1161/01.RES.0000197782.21444.8fPubMedCrossRefGoogle Scholar
  7. Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA (2007) Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293(3):H1883–H1891. doi:00514.2007 [pii] 0.1152/ajpheart.00514.2007PubMedCrossRefGoogle Scholar
  8. Barres R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O’Gorman DJ, Zierath JR (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411. doi:S1550-4131(12)00005-8 [pii] 0.1016/j.cmet.2012.01.001PubMedCrossRefGoogle Scholar
  9. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143(3):470–484. doi:S0092-8674(10)01182-7 [pii] 0.1016/j.cell.2010.10.012PubMedPubMedCentralCrossRefGoogle Scholar
  10. Baubec T, Ivanek R, Lienert F, Schubeler D (2013) Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153(2):480–492. doi:S0092-8674(13)00333-4 [pii] 0.1016/j.cell.2013.03.011PubMedCrossRefGoogle Scholar
  11. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102. doi:324/5923/98 [pii] 0.1126/science.1164680PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21. doi: 10.1101/gad.947102 PubMedCrossRefGoogle Scholar
  13. Borghini A, Cervelli T, Galli A, Andreassi MG (2013) DNA modifications in atherosclerosis: from the past to the future. Atherosclerosis 230(2):202–209. doi:S0021-9150(13)00443-7 [pii] 0.1016/j.atherosclerosis.2013.07.038PubMedCrossRefGoogle Scholar
  14. Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294(5551):2536–2539. doi: 10.1126/science.1065848 [pii]PubMedCrossRefGoogle Scholar
  15. Brinkman AB, Gu H, Bartels SJ, Zhang Y, Matarese F, Simmer F, Marks H, Bock C, Gnirke A, Meissner A, Stunnenberg HG (2012) Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res 22(6):1128–1138. doi: 10.1101/gr, gr.133728.111 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brueckner B, Garcia Boy R, Siedlecki P, Musch T, Kliem HC, Zielenkiewicz P, Suhai S, Wiessler M, Lyko F (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Res 65(14):6305–6311. doi:65/14/6305 [pii]  10.1158/0008-5472.CAN-04-2957 PubMedCrossRefGoogle Scholar
  17. Buck-Koehntop BA, Defossez PA (2013) On how mammalian transcription factors recognize methylated DNA. Epigenetics 8(2):131–137. doi: 10.4161/epi.23632 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Byun HM, Benachour N, Zalko D, Frisardi MC, Colicino E, Takser L, Baccarelli AA (2015) Epigenetic effects of low perinatal doses of flame retardant BDE-47 on mitochondrial and nuclear genes in rat offspring. Toxicology 328:152–159. doi: 10.1016/j.tox.2014.12.019, S0300-483X(14)00258-3 [pii]PubMedCrossRefGoogle Scholar
  19. Castro R, Rivera I, Struys EA, Jansen EE, Ravasco P, Camilo ME, Blom HJ, Jakobs C, Tavares de Almeida I (2003) Increased homocysteine and S-adenosylhomocysteine concentrations and DNA hypomethylation in vascular disease. Clin Chem 49(8):1292–1296PubMedCrossRefGoogle Scholar
  20. Chamberlain AA, Lin M, Lister RL, Maslov AA, Wang Y, Suzuki M, Wu B, Greally JM, Zheng D, Zhou B (2014) DNA methylation is developmentally regulated for genes essential for cardiogenesis. J Am Heart Assoc 3(3), e000976. doi: 10.1161/JAHA.114.000976, jah3551 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chang Y, Sun L, Kokura K, Horton JR, Fukuda M, Espejo A, Izumi V, Koomen JM, Bedford MT, Zhang X, Shinkai Y, Fang J, Cheng X (2011) MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat Commun 2:533. doi: 10.1038/ncomms1549, ncomms1549 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen H, Orozco LD, Wang J, Rau CD, Rubbi L, Ren S, Wang Y, Pellegrini M, Lusis AJ, Vondriska TM (2016) DNA methylation indicates susceptibility to isoproterenol-induced cardiac pathology and is associated with chromatin states. Circ Res 118(5):786–797. doi: 10.1161/CIRCRESAHA.115.305298 PubMedCrossRefGoogle Scholar
  23. Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, Hetzel JA, Kuo F, Kim J, Cokus SJ, Casero D, Bernal M, Huijser P, Clark AT, Kramer U, Merchant SS, Zhang X, Jacobsen SE, Pellegrini M (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466(7304):388–392. doi: 10.1038/nature09147 PubMedPubMedCentralCrossRefGoogle Scholar
  24. de Wit E, de Laat W (2012) A decade of 3C technologies: insights into nuclear organization. Genes Dev 26(1):11–24. doi:26/1/11 [pii]  10.1101/gad.179804.111 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Dorn GW, 2nd, Robbins J, Sugden PH (2003) Phenotyping hypertrophy: eschew obfuscation. Circ Res 92(11):1171–1175. doi: 10.1161/01.RES.0000077012.11088.BC 92/11/1171 [pii]
  26. Doskocil J, Sorm F (1962) Distribution of 5-methylcytosine in pyrimidine sequences of deoxyribonucleic acids. Biochim Biophys Acta 55:953–959PubMedCrossRefGoogle Scholar
  27. Dunn J, Qiu H, Kim S, Jjingo D, Hoffman R, Kim CW, Jang I, Son DJ, Kim D, Pan C, Fan Y, Jordan IK, Jo H (2014) Flow-dependent epigenetic DNA methylation regulates endothelial gene expression and atherosclerosis. J Clin Invest 124(7):3187–3199. doi: 10.1172/JCI74792, 74792 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dzau VJ (2004) Markers of malign across the cardiovascular continuum: interpretation and application. Circulation 109(25 Suppl 1):IV1–IV2. doi: 10.1161/01.CIR.0000133445.78855.aa 109/25_suppl_1/IV-1 [pii]PubMedGoogle Scholar
  29. Esteller M (2008) Epigenetics in cancer. N Engl J Med 358(11):1148–1159. doi:358/11/1148 [pii]  10.1056/NEJMra072067 PubMedCrossRefGoogle Scholar
  30. Fatima N, Schooley JF Jr, Claycomb WC, Flagg TP (2012) Promoter DNA methylation regulates murine SUR1 (Abcc8) and SUR2 (Abcc9) expression in HL-1 cardiomyocytes. PLoS One 7(7), e41533. doi: 10.1371/journal.pone.0041533, PONE-D-11-25259 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  31. Feenstra A, Fewell J, Lueders K, Kuff E (1986) In vitro methylation inhibits the promotor activity of a cloned intracisternal A-particle LTR. Nucleic Acids Res 14(10):4343–4352PubMedPubMedCentralCrossRefGoogle Scholar
  32. Felician G, Collesi C, Lusic M, Martinelli V, Ferro MD, Zentilin L, Zacchigna S, Giacca M (2014) Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ Res 115(7):636–649. doi: 10.1161/CIRCRESAHA.115.304517, CIRCRESAHA.115.304517 [pii]PubMedCrossRefGoogle Scholar
  33. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89(5):1827–1831PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gilsbach R, Preissl S, Gruning BA, Schnick T, Burger L, Benes V, Wurch A, Bonisch U, Gunther S, Backofen R, Fleischmann BK, Schubeler D, Hein L (2014) Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 5:5288. doi: 10.1038/ncomms6288 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gu Y, Liu GH, Plongthongkum N, Benner C, Yi F, Qu J, Suzuki K, Yang J, Zhang W, Li M, Montserrat N, Crespo I, Del Sol A, Esteban CR, Zhang K, Belmonte JC (2013) Global DNA methylation and transcriptional analyses of human ESC-derived cardiomyocytes. Protein Cell. doi: 10.1007/s13238-013-3911-2 Google Scholar
  36. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F (2013) Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23(12):2126–2135. doi: 10.1101/gr.161679.113 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27(3):322–326. doi: 10.1038/85899 PubMedCrossRefGoogle Scholar
  38. Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Kohler D, Wolf NM, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz JH, Dosch A, Mereles D, Hardt S, Backs J, Hoheisel JD, Plass C, Katus HA, Meder B (2013) Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med. doi: 10.1002/emmm.201201553 PubMedPubMedCentralGoogle Scholar
  39. Han P, Li W, Lin CH, Yang J, Shang C, Nurnberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien HC, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HS, Quertermous T, Chang CP (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514(7520):102–106. doi: 10.1038/nature13596 PubMedPubMedCentralCrossRefGoogle Scholar
  40. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307. doi: 10.1126/science.1210944 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105(44):17046–17049. doi: 10.1073/pnas.0806560105 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18(11):6538–6547PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A (2001) Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15(6):710–723. doi: 10.1101/gad.194101 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hirt MN, Werner T, Indenbirken D, Alawi M, Demin P, Kunze AC, Stenzig J, Starbatty J, Hansen A, Fiedler J, Thum T, Eschenhagen T (2015) Deciphering the microRNA signature of pathological cardiac hypertrophy by engineered heart tissue- and sequencing-technology. J Mol Cell Cardiol 81:1–9. doi: 10.1016/j.yjmcc.2015.01.008, S0022-2828(15)00020-6 [pii]PubMedCrossRefGoogle Scholar
  45. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187(4173):226–232PubMedCrossRefGoogle Scholar
  46. Hon GC, Rajagopal N, Shen Y, McCleary DF, Yue F, Dang MD, Ren B (2013) Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45(10):1198–1206. doi: 10.1038/ng.2746 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Inoue S, Oishi M (2005) Effects of methylation of non-CpG sequence in the promoter region on the expression of human synaptotagmin XI (syt11). Gene 348:123–134. doi: 10.1016/j.gene.2004.12.044, S0378-1119(04)00795-4 [pii]PubMedCrossRefGoogle Scholar
  48. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303. doi: 10.1126/science.1210597, science.1210597 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jakovcevski M, Akbarian S (2012) Epigenetic mechanisms in neurological disease. Nat Med 18(8):1194–1204. doi: 10.1038/nm.2828 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Johnson MD, Mueller M, Adamowicz-Brice M, Collins MJ, Gellert P, Maratou K, Srivastava PK, Rotival M, Butt S, Game L, Atanur SS, Silver N, Norsworthy PJ, Langley SR, Petretto E, Pravenec M, Aitman TJ (2014) Genetic analysis of the cardiac methylome at single nucleotide resolution in a model of human cardiovascular disease. PLoS Genet 10(12), e1004813. doi: 10.1371/journal.pgen.1004813, PGENETICS-D-13-03299 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492. doi: 10.1038/nrg3230, nrg3230 [pii]PubMedCrossRefGoogle Scholar
  52. Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, McCarrey J, Cedar H, Razin A (1992) Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev 6(5):705–714PubMedCrossRefGoogle Scholar
  53. Kao YH, Chen YC, Cheng CC, Lee TI, Chen YJ, Chen SA (2010) Tumor necrosis factor-alpha decreases sarcoplasmic reticulum Ca2+-ATPase expressions via the promoter methylation in cardiomyocytes. Crit Care Med 38(1):217–222. doi: 10.1097/CCM.0b013e3181b4a854 PubMedCrossRefGoogle Scholar
  54. Kao YH, Cheng CC, Chen YC, Chung CC, Lee TI, Chen SA, Chen YJ (2011) Hydralazine-induced promoter demethylation enhances sarcoplasmic reticulum Ca2+ -ATPase and calcium homeostasis in cardiac myocytes. Lab Invest 91(9):1291–1297. doi: 10.1038/labinvest.2011.92 PubMedCrossRefGoogle Scholar
  55. Karbassi E, Vondriska TM (2014) How the proteome packages the genome for cardiovascular development. Proteomics 14(19):2115–2126. doi: 10.1002/pmic.201400131 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010a) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290. doi: 10.1038/nature09342 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kim M, Long TI, Arakawa K, Wang R, Yu MC, Laird PW (2010b) DNA methylation as a biomarker for cardiovascular disease risk. PLoS One 5(3), e9692. doi: 10.1371/journal.pone.0009692 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kitamura E, Igarashi J, Morohashi A, Hida N, Oinuma T, Nemoto N, Song F, Ghosh S, Held WA, Yoshida-Noro C, Nagase H (2007) Analysis of tissue-specific differentially methylated regions (TDMs) in humans. Genomics 89(3):326–337. doi: 10.1016/j.ygeno.2006.11.006, S0888-7543(06)00325-9 [pii]PubMedCrossRefGoogle Scholar
  59. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152(3):570–583. doi: 10.1016/j.cell.2013.01.003, S0092-8674(13)00004-4 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  60. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155(1):27–38. doi: 10.1016/j.cell.2013.09.006, S0092-8674(13)01141-0 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502(7472):472–479. doi: 10.1038/nature12750 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res 110(12):1646–1660. doi:110/12/1646 [pii]  10.1161/CIRCRESAHA.111.259754 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kuck D, Singh N, Lyko F, Medina-Franco JL (2010) Novel and selective DNA methyltransferase inhibitors: Docking-based virtual screening and experimental evaluation. Bioorg Med Chem 18(2):822–829. doi: 10.1016/j.bmc.2009.11.050, S0968-0896(09)01068-2 [pii]PubMedCrossRefGoogle Scholar
  64. Lee BH, Yegnasubramanian S, Lin X, Nelson WG (2005) Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem 280(49):40749–40756. doi: 10.1074/jbc.M505593200 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13(14):1192–1200. doi:S0960982203004329 [pii]PubMedCrossRefGoogle Scholar
  66. Leung DC, Dong KB, Maksakova IA, Goyal P, Appanah R, Lee S, Tachibana M, Shinkai Y, Lehnertz B, Mager DL, Rossi F, Lorincz MC (2011) Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. Proc Natl Acad Sci USA 108(14):5718–5723. doi: 10.1073/pnas.1014660108 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK (1996) The progression from hypertension to congestive heart failure. JAMA 275(20):1557–1562PubMedCrossRefGoogle Scholar
  68. Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366(6453):362–365. doi: 10.1038/366362a0 PubMedCrossRefGoogle Scholar
  69. Liao J, Karnik R, Gu H, Ziller MJ, Clement K, Tsankov AM, Akopian V, Gifford CA, Donaghey J, Galonska C, Pop R, Reyon D, Tsai SQ, Mallard W, Joung JK, Rinn JL, Gnirke A, Meissner A (2015) Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat Genet 47(5):469–478. doi: 10.1038/ng.3258 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. doi: 10.1038/nature08514 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73. doi: 10.1038/nature09798 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lowes BD, Gilbert EM, Abraham WT, Minobe WA, Larrabee P, Ferguson D, Wolfel EE, Lindenfeld J, Tsvetkova T, Robertson AD, Quaife RA, Bristow MR (2002) Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med 346(18):1357–1365. doi: 10.1056/NEJMoa012630 346/18/1357 [pii]PubMedCrossRefGoogle Scholar
  73. Malone CS, Miner MD, Doerr JR, Jackson JP, Jacobsen SE, Wall R, Teitell M (2001) CmC(A/T)GG DNA methylation in mature B cell lymphoma gene silencing. Proc Natl Acad Sci USA 98(18):10404–10409. doi: 10.1073/pnas.181206898 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  74. Marti-Carvajal AJ, Sola I, Lathyris D (2015) Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 1, CD006612. doi: 10.1002/14651858.CD006612.pub4 PubMedGoogle Scholar
  75. Mathiyalagan P, Keating ST, Du XJ, El-Osta A (2014) Interplay of chromatin modifications and non-coding RNAs in the heart. Epigenetics 9(1):101–112. doi: 10.4161/epi.26405 PubMedCrossRefGoogle Scholar
  76. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257. doi: 10.1038/nature09165 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Maunakea AK, Chepelev I, Cui K, Zhao K (2013) Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23(11):1256–1269. doi: 10.1038/cr.2013.110 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770. doi: 10.1038/nature07107 PubMedPubMedCentralGoogle Scholar
  79. Meyerson M, Gabriel S, Getz G (2010) Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet 11(10):685–696. doi: 10.1038/nrg2841 PubMedCrossRefGoogle Scholar
  80. Mohammad F, Mondal T, Guseva N, Pandey GK, Kanduri C (2010) Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137(15):2493–2499. doi: 10.1242/dev.048181 PubMedCrossRefGoogle Scholar
  81. Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99(3):371–382PubMedGoogle Scholar
  82. Movassagh M, Choy MK, Goddard M, Bennett MR, Down TA, Foo RS (2010) Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One 5(1), e8564. doi: 10.1371/journal.pone.0008564 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Movassagh M, Choy MK, Knowles DA, Cordeddu L, Haider S, Down T, Siggens L, Vujic A, Simeoni I, Penkett C, Goddard M, Lio P, Bennett MR, Foo RS (2011) Distinct epigenomic features in end-stage failing human hearts. Circulation 124(22):2411–2422. doi: 10.1161/CIRCULATIONAHA.111.040071 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Murakami T, Li X, Gong J, Bhatia U, Traganos F, Darzynkiewicz Z (1995) Induction of apoptosis by 5-azacytidine: drug concentration-dependent differences in cell cycle specificity. Cancer Res 55(14):3093–3098PubMedGoogle Scholar
  85. Muramatsu D, Singh PB, Kimura H, Tachibana M, Shinkai Y (2013) Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1. J Biol Chem 288(35):25285–25296. doi: 10.1074/jbc.M113.470724 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Nag AC (1980) Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28(109):41–61PubMedGoogle Scholar
  87. Nuhrenberg TG, Hammann N, Schnick T, Preissl S, Witten A, Stoll M, Gilsbach R, Neumann FJ, Hein L (2015) Cardiac myocyte de novo DNA methyltransferases 3a/3b are dispensable for cardiac function and remodeling after chronic pressure overload in mice. PLoS One 10(6), e0131019. doi: 10.1371/journal.pone.0131019, PONE-D-15-08258 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  88. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257. doi:S0092-8674(00)81656-6 [pii]PubMedCrossRefGoogle Scholar
  89. Pai AA, Bell JT, Marioni JC, Pritchard JK, Gilad Y (2011) A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues. PLoS Genet 7(2), e1001316. doi: 10.1371/journal.pgen.1001316 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pan X, Chen Z, Huang R, Yao Y, Ma G (2013) Transforming growth factor beta1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts. PLoS One 8(4), e60335. doi: 10.1371/journal.pone.0060335, PONE-D-12-37794 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C (2008) Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 32(2):232–246. doi: 10.1016/j.molcel.2008.08.022, S1097-2765(08)00610-2 [pii]PubMedCrossRefGoogle Scholar
  92. Patterson AJ, Xiao D, Xiong F, Dixon B, Zhang L (2012) Hypoxia-derived oxidative stress mediates epigenetic repression of PKCepsilon gene in foetal rat hearts. Cardiovasc Res 93(2):302–310. doi: 10.1093/cvr/cvr322, cvr322 [pii]PubMedCrossRefGoogle Scholar
  93. Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D, Cerchietti L, Meng FG, Augenlicht LH, Mariadason JM, Hendrich B, Melnick A, Prokhortchouk E, Clarke A, Bird A (2006) Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol 26(1):199–208. doi:26/1/199 [pii]  10.1128/MCB.26.1.199-208.2006 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14(1):9–25PubMedCrossRefGoogle Scholar
  95. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. doi: 10.1016/j.cell.2007.05.022, S0092-8674(07)00659-9 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rose NR, Klose RJ (2014) Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 1839(12):1362–1372. doi: 10.1016/j.bbagrm.2014.02.007, S1874-9399(14)00028-5 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sahara M, Santoro F, Chien KR (2015) Programming and reprogramming a human heart cell. EMBO J 34(6):710–738. doi: 10.15252/embj.201490563 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Sanchez-Freire V, Lee AS, Hu S, Abilez OJ, Liang P, Lan F, Huber BC, Ong SG, Hong WX, Huang M, Wu JC (2014) Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol 64(5):436–448. doi: 10.1016/j.jacc.2014.04.056, S0735-1097(14)02741-7 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  99. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241(1):172–182. doi: 10.1006/dbio.2001.0501, S0012160601905019 [pii]PubMedCrossRefGoogle Scholar
  100. Sarraf SA, Stancheva I (2004) Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 15(4):595–605. doi: 10.1016/j.molcel.2004.06.043, S1097276504004046 [pii]PubMedCrossRefGoogle Scholar
  101. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J, Eden E, Yakhini Z, Ben-Shushan E, Reubinoff BE, Bergman Y, Simon I, Cedar H (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39(2):232–236. doi: 10.1038/ng1950 PubMedCrossRefGoogle Scholar
  102. Schneeberger Y, Stenzig J, Hubner F, Schaefer A, Reichenspurner H, Eschenhagen T (2016) Pharmacokinetics of the experimental non-nucleosidic DNA methyl transferase inhibitor N-phthalyl-l-tryptophan (RG 108) in rats. Basic Clin Pharmacol Toxicol 118(5):327–332. doi: 10.1111/bcpt.12514 PubMedCrossRefGoogle Scholar
  103. Schubeler D (2015) Function and information content of DNA methylation. Nature 517(7534):321–326. doi: 10.1038/nature14192 PubMedCrossRefGoogle Scholar
  104. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433–436. doi: 10.1038/nature11682 PubMedCrossRefGoogle Scholar
  105. Shah SJ, Blair JE, Filippatos GS, Macarie C, Ruzyllo W, Korewicki J, Bubenek-Turconi SI, Ceracchi M, Bianchetti M, Carminati P, Kremastinos D, Grzybowski J, Valentini G, Sabbah HN, Gheorghiade M (2009) Effects of istaroxime on diastolic stiffness in acute heart failure syndromes: results from the Hemodynamic, Echocardiographic, and Neurohormonal Effects of Istaroxime, a Novel Intravenous Inotropic and Lusitropic Agent: a Randomized Controlled Trial in Patients Hospitalized with Heart Failure (HORIZON-HF) trial. Am Heart J 157(6):1035–1041. doi:S0002-8703(09)00163-X [pii]  10.1016/j.ahj.2009.03.007 PubMedCrossRefGoogle Scholar
  106. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912. doi: 10.1038/nature06397 PubMedCrossRefGoogle Scholar
  107. Shen L, Wu H, Diep D, Yamaguchi S, D’Alessio AC, Fung HL, Zhang K, Zhang Y (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153(3):692–706. doi: 10.1016/j.cell.2013.04.002, S0092-8674(13)00401-7 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sim CB, Ziemann M, Kaspi A, Harikrishnan KN, Ooi J, Khurana I, Chang L, Hudson JE, El-Osta A, Porrello ER (2015) Dynamic changes in the cardiac methylome during postnatal development. FASEB J 29(4):1329–1343. doi: 10.1096/fj.14-264093 PubMedCrossRefGoogle Scholar
  109. Singh N, Duenas-Gonzalez A, Lyko F, Medina-Franco JL (2009) Molecular modeling and molecular dynamics studies of hydralazine with human DNA methyltransferase 1. ChemMedChem 4(5):792–799. doi: 10.1002/cmdc.200900017 PubMedCrossRefGoogle Scholar
  110. Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ, Andrews R, Bird AP (2010) Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 37(4):457–468. doi: 10.1016/j.molcel.2010.01.030, S1097-2765(10)00110-3 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  111. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11(8):817–820. doi: 10.1038/nmeth.3035 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Smith ZD, Meissner A (2013) DNA methylation: roles in mammalian development. Nat Rev Genet 14(3):204–220. doi: 10.1038/nrg3354 PubMedCrossRefGoogle Scholar
  113. Smith ZD, Chan MM, Mikkelsen TS, Gu H, Gnirke A, Regev A, Meissner A (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484(7394):339–344. doi: 10.1038/nature10960 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schubeler D (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480(7378):490–495. doi: 10.1038/nature10716 PubMedGoogle Scholar
  115. Stein R, Razin A, Cedar H (1982) In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proc Natl Acad Sci USA 79(11):3418–3422PubMedPubMedCentralCrossRefGoogle Scholar
  116. Stenzig J, Hirt MN, Loser A, Bartholdt LM, Hensel JT, Werner TR, Riemenschneider M, Indenbirken D, Guenther T, Muller C, Hubner N, Stoll M, Eschenhagen T (2016) DNA methylation in an engineered heart tissue model of cardiac hypertrophy: common signatures and effects of DNA methylation inhibitors. Basic Res Cardiol 111(1):9. doi: 10.1007/s00395-015-0528-z [pii]PubMedCrossRefGoogle Scholar
  117. Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123(1):8–13. doi: 10.1002/ijc.23607 PubMedCrossRefGoogle Scholar
  118. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935. doi: 10.1126/science.1170116 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi: 10.1016/j.cell.2006.07.024, S0092-8674(06)00976-7 [pii]PubMedCrossRefGoogle Scholar
  120. The ENCODE (ENCyclopedia Of DNA Elements) Project (2004). Science 306(5696):636–640. doi:306/5696/636 [pii]  10.1126/science.1105136
  121. Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, Kerr AR, Deaton A, Andrews R, James KD, Turner DJ, Illingworth R, Bird A (2010) CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464(7291):1082–1086. doi: 10.1038/nature08924 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116(4):737–750. doi: 10.1161/CIRCRESAHA.116.302521 PubMedCrossRefGoogle Scholar
  123. Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM (2009) A census of human transcription factors: function, expression and evolution. Nat Rev Genet 10(4):252–263. doi: 10.1038/nrg2538 PubMedCrossRefGoogle Scholar
  124. Vardimon L, Kressmann A, Cedar H, Maechler M, Doerfler W (1982) Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc Natl Acad Sci USA 79(4):1073–1077PubMedPubMedCentralCrossRefGoogle Scholar
  125. Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Cross MK, Williams BA, Stamatoyannopoulos JA, Crawford GE, Absher DM, Wold BJ, Myers RM (2013) Dynamic DNA methylation across diverse human cell lines and tissues. Genome Res 23(3):555–567. doi: 10.1101/gr.147942.112 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Venolia L, Gartler SM (1983) Comparison of transformation efficiency of human active and inactive X-chromosomal DNA. Nature 302(5903):82–83PubMedCrossRefGoogle Scholar
  127. Vujic A, Robinson EL, Ito M, Haider S, Ackers-Johnson M, See K, Methner C, Figg N, Brien P, Roderick HL, Skepper J, Ferguson-Smith A, Foo RS (2015) Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. J Mol Cell Cardiol 82:174–183. doi: 10.1016/j.yjmcc.2015.03.007, S0022-2828(15)00081-4 [pii]PubMedCrossRefGoogle Scholar
  128. Waddington CH (1939) An introduction to modern genetics. The Macmillan Company, New YorkGoogle Scholar
  129. Waddington CH (1942) The epigenotype. Endeavour 1:18–20Google Scholar
  130. Warnecke PM, Clark SJ (1999) DNA methylation profile of the mouse skeletal alpha-actin promoter during development and differentiation. Mol Cell Biol 19(1):164–172PubMedPubMedCentralCrossRefGoogle Scholar
  131. Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, Phelan D, Ledwidge MT, McDonald KM, McCann A, Sharaf O, Baugh JA (2014) Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet 23(8):2176–2188. doi: 10.1093/hmg/ddt614 PubMedCrossRefGoogle Scholar
  132. Watson CJ, Horgan S, Neary R, Glezeva N, Tea I, Corrigan N, McDonald K, Ledwidge M, Baugh J (2016) Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis. J Cardiovasc Pharmacol Ther 21(1):127–137. doi: 10.1177/1074248415591698 PubMedCrossRefGoogle Scholar
  133. Wu H, Coskun V, Tao J, Xie W, Ge W, Yoshikawa K, Li E, Zhang Y, Sun YE (2010) Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329(5990):444–448. doi:329/5990/444 [pii]  10.1126/science.1190485 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wyatt GR (1951) Recognition and estimation of 5-methylcytosine in nucleic acids. Biochem J 48(5):581–584PubMedPubMedCentralCrossRefGoogle Scholar
  135. Xiao D, Dasgupta C, Chen M, Zhang K, Buchholz J, Xu Z, Zhang L (2013) Inhibition of DNA methylation reverses norepinephrine-induced cardiac hypertrophy in rats. Cardiovasc Res. doi: 10.1093/cvr/cvt264 Google Scholar
  136. Xie L, Weichel B, Ohm JE, Zhang K (2011) An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver. BMC Syst Biol 5(Suppl 3):S4. doi: 10.1186/1752-0509-5-S3-S4 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Yi BA, Mummery CL, Chien KR (2013) Direct cardiomyocyte reprogramming: a new direction for cardiovascular regenerative medicine. Cold Spring Harb Perspect Med 3(9):a014050. doi:3/9/a014050 [pii]  10.1101/cshperspect.a014050 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340, doi:S0168-9525(97)01181-5 [pii]PubMedCrossRefGoogle Scholar
  139. Zhang L, Lu X, Lu J, Liang H, Dai Q, Xu GL, Luo C, Jiang H, He C (2012) Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nat Chem Biol 8(4):328–330. doi: 10.1038/nchembio.914 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K, Lein ES, Eadie BD, Willhoite AR, Muotri AR, Summers RG, Chun J, Lee KF, Gage FH (2003) Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci USA 100(11):6777–6782. doi: 10.1073/pnas.1131928100 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  141. Ziller MJ, Gu H, Muller F, Donaghey J, Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, Gnirke A, Meissner A (2013) Charting a dynamic DNA methylation landscape of the human genome. Nature 500(7463):477–481. doi: 10.1038/nature12433 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Genome Institute of SingaporeSingaporeSingapore
  2. 2.Department of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
  3. 3.Cardiovascular Research Institute, Centre for Translational Medicine MD6National University of Singapore, National University Health SystemSingaporeSingapore

Personalised recommendations