Advertisement

Epigenetic Regulations in Cardiac Development

  • Mei XinEmail author
  • Kunhua SongEmail author
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)

Abstract

Abnormalities in heart development lead to congenital heart disease affecting ~1 % of newborns. Severe congenital heart disease can cause heart dysfunction at very early development stages, whereas mild heart defects may trigger heart dysfunction until adulthood. The adult mammalian heart has very limited regenerative capacity. Designing therapeutic strategies for congenital heart disease is likely dependent on understanding the mechanisms of heart development. Heart development is orchestrated by complicated biological processes, including signal transduction, transcriptional regulation, and epigenetic regulation. In this chapter, we review the current processes of epigenetic modifications during heart development.

Keywords

Embryonic Stem Cell Congenital Heart Defect Heart Development Cardiac Development Congenital Heart Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Andrew Riching for critical reading. X.M. was supported by NIH (R01HL132211). K.S was supported by NIH (R01HL133230), American Heart Association (13SDG17400031), and Boettcher Foundation.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449:731–734PubMedCrossRefGoogle Scholar
  2. Alby C, Bessieres B, Bieth E, Attie-Bitach T, Fermont L, Citony I, Razavi F, Vekemans M, Escande F, Manouvrier S et al (2013) Contiguous gene deletion of TBX5 and TBX3 leads to a varible phenotype with combined features of Holt-Oram and ulnar-mammary syndromes. Am J Med Genet A 161A:1797–1802PubMedCrossRefGoogle Scholar
  3. Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12:377–389PubMedCrossRefGoogle Scholar
  4. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395PubMedPubMedCentralCrossRefGoogle Scholar
  5. Biben C, Harvey RP (1997) Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev 11:1357–1369PubMedCrossRefGoogle Scholar
  6. Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729PubMedGoogle Scholar
  7. Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, Blanpain C (2008) Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell 3:69–84PubMedCrossRefGoogle Scholar
  8. Bondue A, Blanpain C (2010) Mesp1: a key regulator of cardiovascular lineage commitment. Circ Res 107:1414–1427PubMedCrossRefGoogle Scholar
  9. Brown DD, Martz SN, Binder O, Goetz SC, Price BM, Smith JC, Conlon FL (2005) Tbx5 and Tbx20 act synergistically to control vertebrate heart morphogenesis. Development 132:553–563PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE et al (2001) A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106:709–721PubMedCrossRefGoogle Scholar
  11. Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A, Randazzo F, Metzger D, Chambon P, Crabtree G et al (2000) A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6:1287–1295PubMedCrossRefGoogle Scholar
  12. Burgold T, Voituron N, Caganova M, Tripathi PP, Menuet C, Tusi BK, Spreafico F, Bévengut M, Gestreau C, Buontempo S et al (2012) The H3K27 demethylase JMJD3 is required for maintenance of the embryonic respiratory neuronal network, neonatal breathing, and survival. Cell Rep 2:1244–1258PubMedCrossRefGoogle Scholar
  13. Chakraborty S, Yutzey KE (2012) Tbx20 regulation of cardiac cell proliferation and lineage specialization during embryonic and fetal development in vivo. Dev Biol 363:234–246PubMedCrossRefGoogle Scholar
  14. Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA, Bertone P, Silva JC, Zernicka-Goetz M et al (2014) Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507:104–108PubMedPubMedCentralCrossRefGoogle Scholar
  15. Charron F, Paradis P, Bronchain O, Nemer G, Nemer M (1999) Cooperative interaction between GATA-4 and GATA-6 regulates myocardial gene expression. Mol Cell Biol 19:4355–4365PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen JN, Fishman MC (1996) Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122:3809–3816PubMedGoogle Scholar
  17. Christensen J, Agger K, Cloos PA, Pasini D, Rose S, Sennels L, Rappsilber J, Hansen KH, Salcini AE, Helin K (2007) RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128:1063–1076PubMedCrossRefGoogle Scholar
  18. Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF et al (2006) Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res 98:1555–1563PubMedCrossRefGoogle Scholar
  19. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304PubMedCrossRefGoogle Scholar
  20. Cleaver OB, Patterson KD, Krieg PA (1996) Overexpression of the tinman-related genes XNkx-2.5 and XNkx-2.3 in Xenopus embryos results in myocardial hyperplasia. Development 122:3549–3556PubMedGoogle Scholar
  21. Cserjesi P, Brown D, Lyons GE, Olson EN (1995) Expression of the novel basic helix-loop-helix gene eHAND in neural crest derivatives and extraembryonic membranes during mouse development. Dev Biol 170:664–678PubMedCrossRefGoogle Scholar
  22. Dawlaty MM, Breiling A, Le T, Barrasa MI, Raddatz G, Gao Q, Powell BE, Cheng AW, Faull KF, Lyko F et al (2014) Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell 29:102–111PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dodou E, Verzi MP, Anderson JP, Xu SM, Black BL (2004) Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131:3931–3942PubMedCrossRefGoogle Scholar
  24. Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C (1982) Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res 10:2709–2721PubMedPubMedCentralCrossRefGoogle Scholar
  25. Flavell SW, Cowan CW, Kim TK, Greer PL, Lin Y, Paradis S, Griffith EC, Hu LS, Chen C, Greenberg ME (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311:1008–1012PubMedCrossRefGoogle Scholar
  26. Fodor BD, Kubicek S, Yonezawa M, O’Sullivan RJ, Sengupta R, Perez-Burgos L, Opravil S, Mechtler K, Schotta G, Jenuwein T (2006) Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev 20:1557–1562PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gajewski K, Kim Y, Choi CY, Schulz RA (1998) Combinatorial control of Drosophila mef2 gene expression in cardiac and somatic muscle cell lineages. Dev Genes Evol 208:382–392PubMedCrossRefGoogle Scholar
  28. Garcia-Martinez V, Schoenwolf GC (1993) Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol 159:706–719PubMedCrossRefGoogle Scholar
  29. Garry DJ, Olson EN (2006) A common progenitor at the heart of development. Cell 127:1101–1104PubMedCrossRefGoogle Scholar
  30. Garg V, Kathiriya IS, Barnes R, Schluterman MK, King IN, Butler CA, Rothrock CR, Eapen RS, Hirayama-Yamada K, Joo K et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447PubMedCrossRefGoogle Scholar
  31. Ghosh TK, Packham EA, Bonser AJ, Robinson TE, Cross SJ, Brook JD (2001) Characterization of the TBX5 binding site and analysis of mutations that cause Holt-Oram syndrome. Hum Mol Genet 10:1983–1994PubMedCrossRefGoogle Scholar
  32. Glaser S, Schaft J, Lubitz S, Vintersten K, van der Hoeven F, Tufteland KR, Aasland R, Anastassiadis K, Ang SL, Stewart AF (2006) Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 133:1423–1432PubMedCrossRefGoogle Scholar
  33. Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514PubMedCrossRefGoogle Scholar
  34. Granados-Riveron JT, Ghosh TK, Pope M, Bu’Lock F, Thornborough C, Eason J, Kirk EP, Fatkin D, Feneley MP, Harvey RP et al (2010) Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Hum Mol Genet 19:4007–4016PubMedCrossRefGoogle Scholar
  35. Green MR (2005) Eukaryotic transcription activation: right on target. Mol Cell 18:399–402PubMedCrossRefGoogle Scholar
  36. Gossett LA, Kelvin DJ, Sternberg EA, Olson EN (1989) A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol 9:5022–5033PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN et al (2002) Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 31:25–32PubMedGoogle Scholar
  38. Harvey RP (1996) NK-2 homeobox genes and heart development. Dev Biol 178:203–216PubMedCrossRefGoogle Scholar
  39. He A, Kong SW, Ma Q, Pu WT (2011) Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci USA 108:5632–5637PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I (2001) Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28:276–280PubMedCrossRefGoogle Scholar
  41. Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463:474–484PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci USA 104:18439–18444PubMedPubMedCentralCrossRefGoogle Scholar
  43. Inagawa M, Nakajima K, Makino T, Ogawa S, Kojima M, Ito S, Ikenishi A, Hayashi T, Schwartz RJ, Nakamura K et al (2013) Histone H3 lysine 9 methyltransferases, G9a and GLP are essential for cardiac morphogenesis. Mech Dev 130:519–531PubMedCrossRefGoogle Scholar
  44. Jiang Y, Drysdale TA, Evans T (1999) A role for GATA-4/5/6 in the regulation of Nkx2.5 expression with implications for patterning of the precardiac field. Dev Biol 216:57–71PubMedCrossRefGoogle Scholar
  45. Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O, Castro ML, Butler TL, Hyun C, Guo G, Otway R et al (2007) Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet 81:280–291PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kitajima S, Takagi A, Inoue T, Saga Y (2000) MesP1 and MesP2 are essential for the development of cardiac mesoderm. Development 127:3215–3226PubMedGoogle Scholar
  47. Klaus A, Saga Y, Taketo MM, Tzahor E, Birchmeier W (2007) Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci USA 104:18531–18536PubMedPubMedCentralCrossRefGoogle Scholar
  48. Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8:307–318PubMedCrossRefGoogle Scholar
  49. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479PubMedPubMedCentralCrossRefGoogle Scholar
  50. Komuro I, Izumo S (1993) Csx: a murine homeobox-containing gene specifically expressed in the developing heart. Proc Natl Acad Sci USA 90:8145–8149PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11:1048–1060PubMedCrossRefGoogle Scholar
  52. Kwon C, Arnold J, Hsiao EC, Taketo MM, Conklin BR, Srivastava D (2007) Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proc Natl Acad Sci USA 104:10894–10899PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kwon C, Qian L, Cheng P, Nigam V, Arnold J, Srivastava D (2009) A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11:951–957PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I, Canaani E et al (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449:689–694PubMedCrossRefGoogle Scholar
  55. Lee S, Lee JW, Lee SK (2012) UTX, a histone H3-lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program. Dev Cell 22:25–37PubMedCrossRefGoogle Scholar
  56. Lepore JJ, Mericko PA, Cheng L, Lu MM, Morrisey EE, Parmacek MS (2006) GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for cardiovascular morphogenesis. J Clin Invest 116:929–939PubMedPubMedCentralCrossRefGoogle Scholar
  57. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926PubMedCrossRefGoogle Scholar
  58. Lien CL, Wu C, Mercer B, Webb R, Richardson JA, Olson EN (1999) Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer. Development 126:75–84PubMedGoogle Scholar
  59. Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lin Q, Lu J, Yanagisawa H, Webb R, Lyons GE, Richardson JA, Olson EN (1998) Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125:4565–4574PubMedGoogle Scholar
  61. Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:969PubMedGoogle Scholar
  62. Lickert H, Takeuchi JK, Von Both I, Walls JR, McAuliffe F, Adamson SL, Henkelman RM, Wrana JL, Rossant J, Bruneau BG (2004) Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature 432:107–112PubMedCrossRefGoogle Scholar
  63. Lubitz S, Glaser S, Schaft J, Stewart AF, Anastassiadis K (2007) Increased apoptosis and skewed differentiation in mouse embryonic stem cells lacking the histone methyltransferase Mll2. Mol Biol Cell 18:2356–2366PubMedPubMedCentralCrossRefGoogle Scholar
  64. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260PubMedCrossRefGoogle Scholar
  65. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9:1654–1666PubMedCrossRefGoogle Scholar
  66. Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME (1999) Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286:785–790PubMedCrossRefGoogle Scholar
  67. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849PubMedCrossRefGoogle Scholar
  68. Massari ME, Murre C (2000) Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol Cell Biol 20:429–440PubMedPubMedCentralCrossRefGoogle Scholar
  69. McFadden DG, Charite J, Richardson JA, Srivastava D, Firulli AB, Olson EN (2000) A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart. Development 127:5331–5341PubMedGoogle Scholar
  70. McKinsey TA (2012) Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol 52:303–319PubMedCrossRefGoogle Scholar
  71. Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, Xavier RJ, Demay MB, Russell RG, Factor S et al (2001) TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104:619–629PubMedCrossRefGoogle Scholar
  72. Miller SA, Mohn SE, Weinmann AS (2010) Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression. Mol Cell 40:594–605PubMedPubMedCentralCrossRefGoogle Scholar
  73. Mohan RA, van Engelen K, Stefanovic S, Barnett P, Ilgun A, Baars MJ, Bouma BJ, Mulder BJ, Christoffels VM, Postma AV (2014) A mutation in the Kozak sequence of GATA4 hampers translation in a family with atrial septal defects. Am J Med Genet A 164A:2732–2738PubMedCrossRefGoogle Scholar
  74. Molkentin JD, Lin Q, Duncan SA, Olson EN (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11:1061–1072PubMedCrossRefGoogle Scholar
  75. Molkentin JD (2000) The zinc finger-containing transcription factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275:38949–38952PubMedCrossRefGoogle Scholar
  76. Mommersteeg MT, Dominguez JN, Wiese C, Norden J, de Gier-de Vries C, Burch JB, Kispert A, Brown NA, Moorman AF, Christoffels VM (2010) The sinus venosus progenitors separate and diversify from the first and second heart fields early in development. Cardiovasc Res 87:92–101PubMedCrossRefGoogle Scholar
  77. Mori AD, Bruneau BG (2004) TBX5 mutations and congenital heart disease: Holt-Oram syndrome revealed. Curr Opin Cardiol 19:211–215PubMedCrossRefGoogle Scholar
  78. Morrisey EE, Tang Z, Sigrist K, Lu MM, Jiang F, Ip HS, Parmacek MS (1998) GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12:3579–3590PubMedPubMedCentralCrossRefGoogle Scholar
  79. Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A, Komuro I (2006) Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci USA 103:19812–19817PubMedPubMedCentralCrossRefGoogle Scholar
  80. Naya FJ, Black BL, Wu H, Bassel-Duby R, Richardson JA, Hill JA, Olson EN (2002) Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med 8:1303–1309PubMedCrossRefGoogle Scholar
  81. Nemer G, Nemer M (2001) Regulation of heart development and function through combinatorial interactions of transcription factors. Ann Med 33:604–610PubMedCrossRefGoogle Scholar
  82. Nemer G, Nemer M (2003) Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and -6. Dev Biol 254:131–148PubMedCrossRefGoogle Scholar
  83. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC et al (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42:790–793PubMedPubMedCentralCrossRefGoogle Scholar
  84. Ohtani K, Zhao C, Dobreva G, Manavski Y, Kluge B, Braun T, Rieger MA, Zeiher AM, Dimmeler S (2013) Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells. Circ Res 113:856–862PubMedCrossRefGoogle Scholar
  85. Oka T, Maillet M, Watt AJ, Schwartz RJ, Aronow BJ, Duncan SA, Molkentin JD (2006) Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ Res 98:837–845PubMedCrossRefGoogle Scholar
  86. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMedCrossRefGoogle Scholar
  87. Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927PubMedPubMedCentralCrossRefGoogle Scholar
  88. Orkin SH, Shivdasani RA, Fujiwara Y, McDevitt MA (1998) Transcription factor GATA-1 in megakaryocyte development. Stem Cells 16(Suppl 2):79–83PubMedGoogle Scholar
  89. Paige SL, Thomas S, Stoick-Cooper CL, Wang H, Maves L, Sandstrom R, Pabon L, Reinecke H, Pratt G, Keller G et al (2012) A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development. Cell 151:221–232PubMedPubMedCentralCrossRefGoogle Scholar
  90. Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1:299–312PubMedCrossRefGoogle Scholar
  91. Pashmforoush M, Lu JT, Chen H, Amand TS, Kondo R, Pradervand S, Evans SM, Clark B, Feramisco JR, Giles W et al (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117:373–386PubMedCrossRefGoogle Scholar
  92. Phan D, Rasmussen TL, Nakagawa O, McAnally J, Gottlieb PD, Tucker PW, Richardson JA, Bassel-Duby R, Olson EN (2005) BOP, a regulator of right ventricular heart development, is a direct transcriptional target of MEF2C in the developing heart. Development 132:2669–2678PubMedCrossRefGoogle Scholar
  93. Pikkarainen S, Tokola H, Kerkela R, Ruskoaho H (2004) GATA transcription factors in the developing and adult heart. Cardiovasc Res 63:196–207PubMedCrossRefGoogle Scholar
  94. Postma AV, van de Meerakker JB, Mathijssen IB, Barnett P, Christoffels VM, Ilgun A, Lam J, Wilde AA, Lekanne Deprez RH, Moorman AF (2008) A gain-of-function TBX5 mutation is associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circ Res 102:1433–1442PubMedCrossRefGoogle Scholar
  95. Prall OW, Menon MK, Solloway MJ, Watanabe Y, Zaffran S, Bajolle F, Biben C, McBride JJ, Robertson BR, Chaulet H et al (2007) An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell 128:947–959PubMedPubMedCentralCrossRefGoogle Scholar
  96. Pu WT, Ishiwata T, Juraszek AL, Ma Q, Izumo S (2004) GATA4 is a dosage-sensitive regulator of cardiac morphogenesis. Dev Biol 275:235–244PubMedCrossRefGoogle Scholar
  97. Reamon-Buettner SM, Borlak J (2004) TBX5 mutations in non-Holt-Oram syndrome (HOS) malformed hearts. Hum Mutat 24:104PubMedCrossRefGoogle Scholar
  98. Reecy JM, Li X, Yamada M, DeMayo FJ, Newman CS, Harvey RP, Schwartz RJ (1999) Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2-5. Development 126:839–849PubMedGoogle Scholar
  99. Reiter JF, Alexander J, Rodaway A, Yelon D, Patient R, Holder N, Stainier DY (1999) Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 13:2983–2995PubMedPubMedCentralCrossRefGoogle Scholar
  100. Reyes JC, Barra J, Muchardt C, Camus A, Babinet C, Yaniv M (1998) Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). EMBO J 17:6979–6991PubMedPubMedCentralCrossRefGoogle Scholar
  101. Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki J, Inoue T (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126:3437–3447PubMedGoogle Scholar
  102. Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science 281:108–111PubMedCrossRefGoogle Scholar
  103. Shen T, Aneas I, Sakabe N, Dirschinger RJ, Wang G, Smemo S, Westlund JM, Cheng H, Dalton N, Gu Y et al (2011) Tbx20 regulates a genetic program essential to adult mouse cardiomyocyte function. J Clin Invest 121:4640–4654PubMedPubMedCentralCrossRefGoogle Scholar
  104. Shpargel KB, Starmer J, Yee D, Pohlers M, Magnuson T (2014) KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development. PLoS Genet 10, e1004507PubMedPubMedCentralCrossRefGoogle Scholar
  105. Simon JA, Kingston RE (2013) Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49:808–824PubMedPubMedCentralCrossRefGoogle Scholar
  106. Singh MK, Christoffels VM, Dias JM, Trowe MO, Petry M, Schuster-Gossler K, Burger A, Ericson J, Kispert A (2005) Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development 132:2697–2707PubMedCrossRefGoogle Scholar
  107. Soufi A, Donahue G, Zaret KS (2012) Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151:994–1004PubMedPubMedCentralCrossRefGoogle Scholar
  108. Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R, Huang C, Patel S, Lopez D, Mishra N, Pellegrini M et al (2013) Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat Cell Biol 15:872–882PubMedPubMedCentralCrossRefGoogle Scholar
  109. Srivastava D, Cserjesi P, Olson EN (1995) A subclass of bHLH proteins required for cardiac morphogenesis. Science 270:1995–1999PubMedCrossRefGoogle Scholar
  110. Srivastava D, Thomas T, Lin Q, Kirby ML, Brown D, Olson EN (1997) Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nat Genet 16:154–160PubMedCrossRefGoogle Scholar
  111. Srivastava D (2006) Making or breaking the heart: from lineage determination to morphogenesis. Cell 126:1037–1048PubMedCrossRefGoogle Scholar
  112. Stallmeyer B, Fenge H, Nowak-Gottl U, Schulze-Bahr E (2010) Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease. Clin Genet 78:533–540PubMedCrossRefGoogle Scholar
  113. Stanley EG, Biben C, Elefanty A, Barnett L, Koentgen F, Robb L, Harvey RP (2002) Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3′UTR-ires-Cre allele of the homeobox gene Nkx2-5. Int J Dev Biol 46:431–439PubMedGoogle Scholar
  114. Stennard FA, Costa MW, Elliott DA, Rankin S, Haast SJ, Lai D, McDonald LP, Niederreither K, Dolle P, Bruneau BG et al (2003) Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart. Dev Biol 262:206–224PubMedCrossRefGoogle Scholar
  115. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H et al (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16:1779–1791PubMedPubMedCentralCrossRefGoogle Scholar
  116. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19:815–826PubMedPubMedCentralCrossRefGoogle Scholar
  117. Takeuchi JK, Lou X, Alexander JM, Sugizaki H, Delgado-Olguín P, Holloway AK, Mori AD, Wylie JN, Munson C, Zhu Y et al (2011) Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nat Commun 2:187PubMedPubMedCentralCrossRefGoogle Scholar
  118. Tam PP, Parameswaran M, Kinder SJ, Weinberger RP (1997) The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124:1631–1642PubMedGoogle Scholar
  119. Tan X, Rotllant J, Li H, De Deyne P, Du SJ (2006) SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci USA 103:2713–2718PubMedPubMedCentralCrossRefGoogle Scholar
  120. von Both I, Silvestri C, Erdemir T, Lickert H, Walls JR, Henkelman RM, Rossant J, Harvey RP, Attisano L, Wrana JL (2004) Foxh1 is essential for development of the anterior heart field. Dev Cell 7:331–345CrossRefGoogle Scholar
  121. Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico AR, Capra JA et al (2012) Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151:206–220PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wang C, Lee JE, Cho YW, Xiao Y, Jin Q, Liu C, Ge K (2012) UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity. Proc Natl Acad Sci USA 109:15324–15329PubMedPubMedCentralCrossRefGoogle Scholar
  123. Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M et al (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125:467–481PubMedCrossRefGoogle Scholar
  124. Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R et al (2007) Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 9:347–353PubMedCrossRefGoogle Scholar
  125. Xiang R, Fan LL, Huang H, Cao BB, Li XP, Peng DQ, Xia K (2013) A novel mutation of GATA4 (K319E) is responsible for familial atrial septal defect and pulmonary valve stenosis. Gene 534:320–323CrossRefGoogle Scholar
  126. Xin M, Davis CA, Molkentin JD, Lien CL, Duncan SA, Richardson JA, Olson EN (2006) A threshold of GATA4 and GATA6 expression is required for cardiovascular development. Proc Natl Acad Sci USA 103:11189–11194PubMedPubMedCentralCrossRefGoogle Scholar
  127. Xu H, Morishima M, Wylie JN, Schwartz RJ, Bruneau BG, Lindsay EA, Baldini A (2004) Tbx1 has a dual role in the morphogenesis of the cardiac outflow tract. Development 131:3217–3227PubMedCrossRefGoogle Scholar
  128. Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S, Minoshima S, Ichida F, Joo K, Kimura M, Imamura S et al (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 362:1366–1373PubMedCrossRefGoogle Scholar
  129. Yamada M, Revelli JP, Eichele G, Barron M, Schwartz RJ (2000) Expression of chick Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 induction of Tbx2. Dev Biol 228:95–105PubMedCrossRefGoogle Scholar
  130. Yamagishi H, Olson EN, Srivastava D (2000) The basic helix-loop-helix transcription factor, dHAND, is required for vascular development. J Clin Invest 105:261–270PubMedPubMedCentralCrossRefGoogle Scholar
  131. Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y (2007) PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 25:801–812PubMedCrossRefGoogle Scholar
  132. Zeisberg EM, Ma Q, Juraszek AL, Moses K, Schwartz RJ, Izumo S, Pu WT (2005) Morphogenesis of the right ventricle requires myocardial expression of Gata4. J Clin Invest 115:1522–1531PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhao R, Watt AJ, Li J, Luebke-Wheeler J, Morrisey EE, Duncan SA (2005) GATA6 is essential for embryonic development of the liver but dispensable for early heart formation. Mol Cell Biol 25:2622–2631PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhao R, Watt AJ, Battle MA, Li J, Bondow BJ, Duncan SA (2008) Loss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice. Dev Biol 317:614–619PubMedPubMedCentralCrossRefGoogle Scholar
  135. Zhao XD, Han X, Chew JL, Liu J, Chiu KP, Choo A, Orlov YL, Sung WK, Shahab A, Kuznetsov VA et al (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1:286–298PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Pediatrics, Cincinnati Children’s HospitalUniversity of CincinnatiCincinnatiUSA
  2. 2.Division of Cardiology, Department of MedicineUniversity of Colorado School of MedicineAuroraUSA
  3. 3.Charles C. Gates Center for Regenerative Medicine and Stem Cell BiologyUniversity of Colorado School of MedicineAuroraUSA

Personalised recommendations