Epigenome Dynamics and Reader Proteins in Cardiomyocyte Development and Heart Failure

  • Lutz HeinEmail author
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)


Epigenetic mechanisms are essential for cardiomyocyte function and adaptation in development, postnatal growth, and during cardiac remodeling in heart failure. Recent advances in the identification of cell-type-specific markers have facilitated the development of techniques to purify cardiomyocytes and their nuclei from intact heart tissue and to study DNA methylation and posttranslational histone modifications on a genome-wide basis. Cardiomyocyte development and postnatal maturation were accompanied by DNA demethylation of gene bodies of sarcomeric genes until adulthood. Genes that are expressed during the fetal period were also demethylated but were postnatally repressed by trimethylation of histone 3 at lysine 27 (developmental genes) or by de novo DNA methylation mediated by DNA methyltransferases 3A/3B (fetal sarcomeric genes). Dynamic changes in DNA methylation and histone modifications can be recognized by specialized “reader” proteins which modulate cardiomyocyte function. Future studies will be important to unravel the complex interplay between epigenetic modifications of DNA and histones and to identify the involved signaling pathways.


Histone Modification Gene Body Rett Syndrome Histone Mark Transverse Aortic Constriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Sources of Funding

This work was supported by the Deutsche Forschungsgemeinschaft SFB 992 (Medical Epigenetics, project B03) and the BIOSS Centre for Biological Signalling Studies.

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Allis CD, Jenuwein T, Reinberg D, Lachner M (2015) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  2. Anand P, Brown JD, Lin CY, Qi J, Zhang R, Artero PC, Alaiti MA, Bullard J, Alazem K, Margulies KB, Cappola TP, Lemieux M, Plutzky J, Bradner JE, Haldar SM (2013) BET bromodomains mediate transcriptional pause release in heart failure. Cell 154(3):569–582. doi: 10.1016/j.cell.2013.07.013 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Angrisano T, Schiattarella GG, Keller S, Pironti G, Florio E, Magliulo F, Bottino R, Pero R, Lembo F, Avvedimento EV, Esposito G, Trimarco B, Chiariotti L, Perrino C (2014) Epigenetic switch at atp2a2 and myh7 gene promoters in pressure overload-induced heart failure. PLoS One 9(9), e106024. doi: 10.1371/journal.pone.0106024 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Awad S, Kunhi M, Little GH, Bai Y, An W, Bers D, Kedes L, Poizat C (2013) Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acids Res 41(16):7656–7672. doi: 10.1093/nar/gkt500 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Awad S, Al-Haffar KM, Marashly Q, Quijada P, Kunhi M, Al-Yacoub N, Wade FS, Mohammed SF, Al-Dayel F, Sutherland G, Assiri A, Sussman M, Bers D, Al-Habeeb W, Poizat C (2015) Control of histone H3 phosphorylation by CaMKIIdelta in response to haemodynamic cardiac stress. J Pathol 235(4):606–618. doi: 10.1002/path.4489 CrossRefPubMedGoogle Scholar
  6. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143(3):470–484. doi: 10.1016/j.cell.2010.10.012 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baubec T, Ivanek R, Lienert F, Schubeler D (2013) Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153(2):480–492. doi: 10.1016/j.cell.2013.03.011 CrossRefPubMedGoogle Scholar
  8. Benayoun BA, Pollina EA, Ucar D, Mahmoudi S, Karra K, Wong ED, Devarajan K, Daugherty AC, Kundaje AB, Mancini E, Hitz BC, Gupta R, Rando TA, Baker JC, Snyder MP, Cherry JM, Brunet A (2014) H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158(3):673–688. doi: 10.1016/j.cell.2014.06.027 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102. doi: 10.1126/science.1164680 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bergmann O, Zdunek S, Alkass K, Druid H, Bernard S, Frisen J (2011) Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res 317(2):188–194. doi: 10.1016/j.yexcr.2010.08.017 CrossRefPubMedGoogle Scholar
  11. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21. doi: 10.1101/gad.947102 CrossRefPubMedGoogle Scholar
  12. Bissonnette JM, Knopp SJ, Maylie J, Thong T (2007) Autonomic cardiovascular control in methyl-CpG-binding protein 2 (Mecp2) deficient mice. Auton Neurosci 136(1–2):82–89. doi: 10.1016/j.autneu.2007.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Branco MR, Ficz G, Reik W (2012) Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet 13(1):7–13. doi: 10.1038/nrg3080 Google Scholar
  14. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320(5880):1224–1229. doi: 10.1126/science.1153252 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chu CH, Lo JF, Hu WS, Lu RB, Chang MH, Tsai FJ, Tsai CH, Weng YS, Tzang BS, Huang CY (2012) Histone acetylation is essential for ANG-II-induced IGF-IIR gene expression in H9c2 cardiomyoblast cells and pathologically hypertensive rat heart. J Cell Physiol 227(1):259–268. doi: 10.1002/jcp.22728 CrossRefPubMedGoogle Scholar
  16. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107(50):21931–21936. doi: 10.1073/pnas.1016071107 CrossRefPubMedPubMedCentralGoogle Scholar
  17. De Felice C, Maffei S, Signorini C, Leoncini S, Lunghetti S, Valacchi G, D’Esposito M, Filosa S, Della Ragione F, Butera G, Favilli R, Ciccoli L, Hayek J (2012) Subclinical myocardial dysfunction in Rett syndrome. Eur Heart J Cardiovasc Imaging 13(4):339–345. doi: 10.1093/ejechocard/jer256 CrossRefPubMedGoogle Scholar
  18. Delgado-Olguin P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A, Bruneau BG (2012) Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet 44(3):343–347. doi: 10.1038/ng.1068 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Du J, Patel DJ (2014) Structural biology-based insights into combinatorial readout and crosstalk among epigenetic marks. Biochim Biophys Acta 1839(8):719–727. doi: 10.1016/j.bbagrm.2014.04.011 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ebert DH, Gabel HW, Robinson ND, Kastan NR, Hu LS, Cohen S, Navarro AJ, Lyst MJ, Ekiert R, Bird AP, Greenberg ME (2013) Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR. Nature 499(7458):341–345. doi: 10.1038/nature12348 PubMedPubMedCentralGoogle Scholar
  21. Eissenberg JC, Elgin SC (2014) HP1a: a structural chromosomal protein regulating transcription. Trends Genet 30(3):103–110. doi: 10.1016/j.tig.2014.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Feng Y, Huang W, Wani M, Yu X, Ashraf M (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2), e88685. doi: 10.1371/journal.pone.0088685 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fournier A, Sasai N, Nakao M, Defossez PA (2012) The role of methyl-binding proteins in chromatin organization and epigenome maintenance. Brief Funct Genomics 11(3):251–264. doi: 10.1093/bfgp/elr040 CrossRefPubMedGoogle Scholar
  24. Gayatri S, Bedford MT (2014) Readers of histone methylarginine marks. Biochim Biophys Acta 1839(8):702–710. doi: 10.1016/j.bbagrm.2014.02.015 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gillette TG, Hill JA (2015) Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ Res 116(7):1245–1253. doi: 10.1161/CIRCRESAHA.116.303630 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gilsbach R, Preissl S, Gruning BA, Schnick T, Burger L, Benes V, Wurch A, Bonisch U, Gunther S, Backofen R, Fleischmann BK, Schubeler D, Hein L (2014) Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 5:5288. doi: 10.1038/ncomms6288 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN (2012) A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 149(3):671–683. doi: 10.1016/j.cell.2012.03.029 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Guy J, Cheval H, Selfridge J, Bird A (2011) The role of MeCP2 in the brain. Annu Rev Cell Dev Biol 27:631–652. doi: 10.1146/annurev-cellbio-092910-154121 CrossRefPubMedGoogle Scholar
  29. Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, Weichenhan D, Franke J, Fischer S, Bauer A, Marquart S, Sedaghat-Hamedani F, Kayvanpour E, Kohler D, Wolf NM, Hassel S, Nietsch R, Wieland T, Ehlermann P, Schultz JH, Dosch A, Mereles D, Hardt S, Backs J, Hoheisel JD, Plass C, Katus HA, Meder B (2013) Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med 5(3):413–429. doi: 10.1002/emmm.201201553 CrossRefPubMedPubMedCentralGoogle Scholar
  30. He A, Ma Q, Cao J, von Gise A, Zhou P, Xie H, Zhang B, Hsing M, Christodoulou DC, Cahan P, Daley GQ, Kong SW, Orkin SH, Seidman CE, Seidman JG, Pu WT (2012) Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res 110(3):406–415. doi: 10.1161/CIRCRESAHA.111.252205 CrossRefPubMedGoogle Scholar
  31. Hohl M, Wagner M, Reil JC, Muller SA, Tauchnitz M, Zimmer AM, Lehmann LH, Thiel G, Bohm M, Backs J, Maack C (2013) HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 123(3):1359–1370. doi: 10.1172/JCI61084 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hon GC, Rajagopal N, Shen Y, McCleary DF, Yue F, Dang MD, Ren B (2013) Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45(10):1198–1206. doi: 10.1038/ng.2746 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Huang Y, Fang J, Bedford MT, Zhang Y, Xu RM (2006) Recognition of histone H3 lysine-4 methylation by the double tudor domain of JMJD2A. Science 312(5774):748–751. doi: 10.1126/science.1125162 CrossRefPubMedGoogle Scholar
  34. Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol 15(2):R31. doi: 10.1186/gb-2014-15-2-r31 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492. doi: 10.1038/nrg3230 CrossRefPubMedGoogle Scholar
  36. Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui Y, Fortunato O, Avolio E, Cesselli D, Beltrami AP, Angelini G, Emanueli C, Madeddu P (2011) Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 109(8):894–906. doi: 10.1161/CIRCRESAHA.111.251546 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330(6001):235–239. doi: 10.1126/science.1189505 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Khrapunov S, Warren C, Cheng H, Berko ER, Greally JM, Brenowitz M (2014) Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry 53(21):3379–3391. doi: 10.1021/bi500424z CrossRefPubMedPubMedCentralGoogle Scholar
  39. Koczor CA, Lee EK, Torres RA, Boyd A, Vega JD, Uppal K, Yuan F, Fields EJ, Samarel AM, Lewis W (2013) Detection of differentially methylated gene promoters in failing and nonfailing human left ventricle myocardium using computation analysis. Physiol Genomics 45(14):597–605. doi: 10.1152/physiolgenomics.00013.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kou CY, Lau SL, Au KW, Leung PY, Chim SS, Fung KP, Waye MM, Tsui SK (2010) Epigenetic regulation of neonatal cardiomyocytes differentiation. Biochem Biophys Res Commun 400(2):278–283. doi: 10.1016/j.bbrc.2010.08.064 CrossRefPubMedGoogle Scholar
  41. Krüger M, Kohl T, Linke WA (2006) Developmental changes in passive stiffness and myofilament Ca2+ sensitivity due to titin and troponin-I isoform switching are not critically triggered by birth. Am J Physiol Heart Circ Physiol 291:H496–H506CrossRefPubMedGoogle Scholar
  42. Kwak H, Lis JT (2013) Control of transcriptional elongation. Annu Rev Genet 47:483–508. doi: 10.1146/annurev-genet-110711-155440 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Levkau B, Schafers M, Wohlschlaeger J, von Wnuck Lipinski K, Keul P, Hermann S, Kawaguchi N, Kirchhof P, Fabritz L, Stypmann J, Stegger L, Flogel U, Schrader J, Fischer JW, Hsieh P, Ou YL, Mehrhof F, Tiemann K, Ghanem A, Matus M, Neumann J, Heusch G, Schmid KW, Conway EM, Baba HA (2008) Survivin determines cardiac function by controlling total cardiomyocyte number. Circulation 117(12):1583–1593. doi: 10.1161/CIRCULATIONAHA.107.734160 CrossRefPubMedGoogle Scholar
  44. Liang L, Cookson WO (2014) Grasping nettles: cellular heterogeneity and other confounders in epigenome-wide association studies. Hum Mol Genet 23(R1):R83–R88. doi: 10.1093/hmg/ddu284 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905. doi: 10.1126/science.1237905 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu W, Ma Q, Wong K, Li W, Ohgi K, Zhang J, Aggarwal AK, Rosenfeld MG (2013) Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 155(7):1581–1595. doi: 10.1016/j.cell.2013.10.056 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Liu X, Wang X, Bi Y, Bu P, Zhang M (2015) The histone demethylase PHF8 represses cardiac hypertrophy upon pressure overload. Exp Cell Res. doi: 10.1016/j.yexcr.2015.04.012 Google Scholar
  48. Maunakea AK, Chepelev I, Cui K, Zhao K (2013) Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res 23(11):1256–1269. doi: 10.1038/cr.2013.110 CrossRefPubMedPubMedCentralGoogle Scholar
  49. McCauley MD, Wang T, Mike E, Herrera J, Beavers DL, Huang TW, Ward CS, Skinner S, Percy AK, Glaze DG, Wehrens XH, Neul JL (2011) Pathogenesis of lethal cardiac arrhythmias in Mecp2 mutant mice: implication for therapy in Rett syndrome. Sci Transl Med 3(113):113ra125. doi: 10.1126/scitranslmed.3002982 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I, Houseman EA, Izzi B, Kelsey KT, Meissner A, Milosavljevic A, Siegmund KD, Bock C, Irizarry RA (2013) Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods 10(10):949–955. doi: 10.1038/nmeth.2632 CrossRefPubMedGoogle Scholar
  51. Movassagh M, Choy MK, Knowles DA, Cordeddu L, Haider S, Down T, Siggens L, Vujic A, Simeoni I, Penkett C, Goddard M, Lio P, Bennett MR, Foo RS (2011a) Distinct epigenomic features in end-stage failing human hearts. Circulation 124(22):2411–2422. doi: 10.1161/CIRCULATIONAHA.111.040071 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Movassagh M, Vujic A, Foo R (2011b) Genome-wide DNA methylation in human heart failure. Epigenomics 3(1):103–109. doi: 10.2217/epi.10.70 CrossRefPubMedGoogle Scholar
  53. Nishibuchi G, Nakayama J (2014) Biochemical and structural properties of heterochromatin protein 1: understanding its role in chromatin assembly. J Biochem 156(1):11–20. doi: 10.1093/jb/mvu032 CrossRefPubMedGoogle Scholar
  54. Nuhrenberg T, Gilsbach R, Preissl S, Schnick T, Hein L (2014) Epigenetics in cardiac development, function, and disease. Cell Tissue Res 356(3):585–600. doi: 10.1007/s00441-014-1887-8 CrossRefPubMedGoogle Scholar
  55. Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P, Guffanti A, Vigano V, Stirparo GG, Latronico MV, Hasenfuss G, Chen J, Condorelli G (2013) Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci USA 110(50):20164–20169. doi: 10.1073/pnas.1315155110 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Patel DJ, Wang Z (2013) Readout of epigenetic modifications. Annu Rev Biochem 82:81–118. doi: 10.1146/annurev-biochem-072711-165700 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080. doi: 10.1126/science.1200708 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293(5532):1089–1093. doi: 10.1126/science.1063443 CrossRefPubMedGoogle Scholar
  59. Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155(1):39–55. doi: 10.1016/j.cell.2013.09.011 CrossRefPubMedGoogle Scholar
  60. Rubart M, Field LJ (2006) Cardiac regeneration: repopulating the heart. Annu Rev Physiol 68:29–49. doi: 10.1146/annurev.physiol.68.040104.124530 CrossRefPubMedGoogle Scholar
  61. Schrickel JW, Lickfett L, Lewalter T, Tiemann K, Nickenig G, Baba H, Heusch G, Schulz R, Levkau B (2012) Cardiomyocyte-specific deletion of survivin causes global cardiac conduction defects. Basic Res Cardiol 107(6):299. doi: 10.1007/s00395-012-0299-8 CrossRefPubMedGoogle Scholar
  62. Senyo SE, Steinhauser ML, Pizzimenti CL, Yang VK, Cai L, Wang M, Wu TD, Guerquin-Kern JL, Lechene CP, Lee RT (2013) Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493(7432):433–436. doi: 10.1038/nature11682 CrossRefPubMedGoogle Scholar
  63. Siedner S, Krüger M, Schroeter M, Metzler D, Roell W, Fleischmann BK, Hescheler J, Pfitzer G, Stehle R (2003) Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J Physiol 548:493–505CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sim CB, Ziemann M, Kaspi A, Harikrishnan KN, Ooi J, Khurana I, Chang L, Hudson JE, El-Osta A, Porrello ER (2015) Dynamic changes in the cardiac methylome during postnatal development. FASEB J 29(4):1329–1343. doi: 10.1096/fj.14-264093 CrossRefPubMedGoogle Scholar
  65. Song C, Feodorova Y, Guy J, Peichl L, Jost KL, Kimura H, Cardoso MC, Bird A, Leonhardt H, Joffe B, Solovei I (2014) DNA methylation reader MECP2: cell type- and differentiation stage-specific protein distribution. Epigenetics Chromatin 7:17. doi: 10.1186/1756-8935-7-17 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Spiltoir JI, Stratton MS, Cavasin MA, Demos-Davies K, Reid BG, Qi J, Bradner JE, McKinsey TA (2013) BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J Mol Cell Cardiol 63:175–179. doi: 10.1016/j.yjmcc.2013.07.017 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, van Nimwegen E, Wirbelauer C, Oakeley EJ, Gaidatzis D, Tiwari VK, Schubeler D (2011) DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480(7378):490–495. doi: 10.1038/nature10716 PubMedGoogle Scholar
  68. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040. doi: 10.1038/nsmb1338 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wamstad JA, Alexander JM, Truty RM, Shrikumar A, Li F, Eilertson KE, Ding H, Wylie JN, Pico AR, Capra JA, Erwin G, Kattman SJ, Keller GM, Srivastava D, Levine SS, Pollard KS, Holloway AK, Boyer LA, Bruneau BG (2012) Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell 151(1):206–220. doi: 10.1016/j.cell.2012.07.035 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21(4):564–578. doi: 10.1038/cr.2011.42 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110(4):479–488CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhang QJ, Chen HZ, Wang L, Liu DP, Hill JA, Liu ZP (2011) The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest 121(6):2447–2456. doi: 10.1172/JCI46277 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhuang S, Zhang Q, Zhuang T, Evans SM, Liang X, Sun Y (2013) Expression of Isl1 during mouse development. Gene Expr Patterns 13(8):407–412. doi: 10.1016/j.gep.2013.07.001 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Experimental and Clinical Pharmacology and ToxicologyUniversity of FreiburgFreiburgGermany
  2. 2.BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgFreiburgGermany

Personalised recommendations