Advertisement

Long Noncoding RNAs in Heart Disease

  • Constantin Kühl
  • Norbert FreyEmail author
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)

Abstract

Advances in research technology with systematic and unbiased measurements of transcriptional activity revealed the surprising fact of pervasive transcription of mammalian genomes. However, most of these transcripts are not obviously protein coding nor do they reveal easily inferable biological relevance and thus have been termed “noncoding”. This universe of noncoding RNAs with diverse and versatile families such as transfer RNAs (tRNA), ribosomal RNAs (rRNA), micro-RNAs (miRNA) small nucleolar RNAs (snoRNA) has fuelled an entire new branch of research and already challenged major dogmas in molecular biology. Among the diverse classes of noncoding RNAs, long noncoding RNAs (lncRNA) have emerged as major regulators of transcription, nucleolar organization, and chromatin-modifying complexes. The goal of this chapter is to present the state of research of lncRNAs in the context of heart disease and heart failure.

Keywords

Cardiac Myocytes Noncoding RNAs Evolutionary Conservation Mitochondrial Fission Transverse Aortic Constriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ChIP-Seq

Chromatin immunoprecipitation sequencing

eRNA

Enhancer-associated RNA

lincRNA

Long intergenic/intervening noncoding RNA

lncRNA

Long noncoding RNA

ncRNA

Noncoding RNA

PARP

Poly ADP ribose polymerase

RPKM

Reads per kilobase per million mapped reads

TAC

Transverse aortic constriction

UTR

Untranslated region

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422):56–65. doi: 10.1038/nature11632 CrossRefGoogle Scholar
  2. Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, Olson EN (2015) A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell 160(4):595–606. doi: 10.1016/j.cell.2015.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Andrews SJ, Rothnagel JA (2014) Emerging evidence for functional peptides encoded by short open reading frames. Nat Rev Genet 15(3):193–204. doi: 10.1038/nrg3520 CrossRefPubMedGoogle Scholar
  4. Backs J, Olson EN (2006) Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98(1):15–24. doi: 10.1161/01.RES.0000197782.21444.8f CrossRefPubMedGoogle Scholar
  5. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783. doi: 10.1101/gad.1787609 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA, Beaudet AL, Ecker JR, Farnham PJ, Hirst M, Lander ES, Mikkelsen TS, Thomson JA (2010) The NIH roadmap epigenomics mapping consortium. Nat Biotechnol 28(10):1045–1048. doi: 10.1038/nbt1010-1045 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306(5705):2242–2246. doi: 10.1126/science.1103388 CrossRefPubMedGoogle Scholar
  8. Brockdorff N (2013) Noncoding RNA and Polycomb recruitment. RNA 19(4):429–442. doi: 10.1261/rna.037598.112 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burchfield JS, Xie M, Hill JA (2013) Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation 128(4):388–400. doi: 10.1161/CIRCULATIONAHA.113.001878 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S et al (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563CrossRefPubMedGoogle Scholar
  11. Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H, Helt G, Struhl K, Gingeras TR (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116(4):499–509CrossRefPubMedGoogle Scholar
  12. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94. doi: 10.1016/j.cell.2014.03.008 CrossRefPubMedGoogle Scholar
  13. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chang CP, Bruneau BG (2012) Epigenetics and cardiovascular development. Annu Rev Physiol 74:41–68. doi: 10.1146/annurev-physiol-020911-153242 CrossRefPubMedGoogle Scholar
  15. Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G, Sementchenko V, Piccolboni A, Bekiranov S, Bailey DK, Ganesh M, Ghosh S, Bell I, Gerhard DS, Gingeras TR (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308(5725):1149–1154. doi: 10.1126/science.1108625 CrossRefPubMedGoogle Scholar
  16. Chng SC, Ho L, Tian J, Reversade B (2013) ELABELA: a hormone essential for heart development signals via the apelin receptor. Dev Cell 27(6):672–680. doi: 10.1016/j.devcel.2013.11.002 CrossRefPubMedGoogle Scholar
  17. Davidovich C, Zheng L, Goodrich KJ, Cech TR (2013) Promiscuous RNA binding by Polycomb repressive complex 2. Nat Struct Mol Biol 20(11):1250–1257CrossRefPubMedPubMedCentralGoogle Scholar
  18. Davidovich C, Wang X, Cifuentes-Rojas C, Goodrich KJ, Gooding AR, Lee JT, Cech TR (2015) Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol Cell 57(3):552–558. doi: 10.1016/j.molcel.2014.12.017 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dey BK, Pfeifer K, Dutta A (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev. doi: 10.1101/gad.234419.113 PubMedPubMedCentralGoogle Scholar
  21. Di Croce L, Helin K (2013) Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol 20(10):1147–1155. doi: 10.1038/nsmb.2669 CrossRefPubMedGoogle Scholar
  22. Diederichs S (2014) The four dimensions of noncoding RNA conservation. Trends Genet. doi: 10.1016/j.tig.2014.01.004 PubMedGoogle Scholar
  23. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A, Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C et al (2012) Landscape of transcription in human cells. Nature 489(7414):101–108. doi: 10.1038/nature11233 CrossRefPubMedPubMedCentralGoogle Scholar
  24. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. doi: 10.1038/nature11247 CrossRefGoogle Scholar
  25. Forrest AR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Haberle V, Lassmann T, Kulakovskiy IV, Lizio M, Itoh M, Andersson R, Mungall CJ, Meehan TF, Schmeier S, Bertin N et al (2014) A promoter-level mammalian expression atlas. Nature 507(7493):462–470. doi: 10.1038/nature13182 CrossRefPubMedGoogle Scholar
  26. Frank D, Kuhn C, Katus HA, Frey N (2006) The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med (Berl) 84(6):446–468CrossRefGoogle Scholar
  27. Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart: a new therapeutic target? Circulation 109(13):1580–1589CrossRefPubMedGoogle Scholar
  28. Fu Y, Dominissini D, Rechavi G, He C (2014) Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet 15(5):293–306. doi: 10.1038/nrg3724 CrossRefPubMedGoogle Scholar
  29. Go YY, Allen JC, Chia SY, Sim LL, Jaufeerally FR, Yap J, Ching CK, Sim D, Kwok B, Liew R (2014) Predictors of mortality in acute heart failure: interaction between diabetes and impaired left ventricular ejection fraction. Eur J Heart Fail 16(11):1183–1189. doi: 10.1002/ejhf.119 CrossRefPubMedGoogle Scholar
  30. Grote P, Herrmann BG (2013) The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol 10(10):1579–1585. doi: 10.4161/rna.26165 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A, Macura K, Blass G, Kellis M, Werber M, Herrmann BG (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24(2):206–214. doi: 10.1016/j.devcel.2012.12.012 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227. doi: 10.1038/nature07672 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES (2013) Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154(1):240–251. doi: 10.1016/j.cell.2013.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Haddad F, Bodell PW, Qin AX, Giger JM, Baldwin KM (2003) Role of antisense RNA in coordinating cardiac myosin heavy chain gene switching. J Biol Chem 278(39):37132–37138. doi: 10.1074/jbc.M305911200 CrossRefPubMedGoogle Scholar
  35. Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien HC, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HS, Quertermous T, Chang CP (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature. doi: 10.1038/nature13596 Google Scholar
  36. Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466(7302):62–67. doi: 10.1038/nature09130 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I (2015) Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep 11(7):1110–1122. doi: 10.1016/j.celrep.2015.04.023 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358(13):1370–1380CrossRefPubMedGoogle Scholar
  39. Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y, Tanaka T (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51(12):1087–1099CrossRefPubMedGoogle Scholar
  40. Johnson AD, Hwang SJ, Voorman A, Morrison A, Peloso GM, Hsu YH, Thanassoulis G, Newton-Cheh C, Rogers IS, Hoffmann U, Freedman JE, Fox CS, Psaty BM, Boerwinkle E, Cupples LA, O’Donnell CJ (2013) Resequencing and clinical associations of the 9p21.3 region: a comprehensive investigation in the Framingham heart study. Circulation 127(7):799–810. doi: 10.1161/CIRCULATIONAHA.112.111559 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kampa D, Cheng J, Kapranov P, Yamanaka M, Brubaker S, Cawley S, Drenkow J, Piccolboni A, Bekiranov S, Helt G, Tammana H, Gingeras TR (2004) Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 14(3):331–342. doi: 10.1101/gr.2094104 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras T (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296(5569):916–919CrossRefPubMedGoogle Scholar
  43. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488. doi: 10.1126/science.1138341 CrossRefPubMedGoogle Scholar
  44. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 106(28):11667–11672. doi: 10.1073/pnas.0904715106 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187. doi: 10.1038/nature09033 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB, Boyer LA (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152(3):570–583CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, Lemesle G, Degroote P, Pinet F, Thum T (2014) The circulating long non-coding RNA LIPCAR predicts survival in heart failure patients. Circ Res. doi: 10.1161/CIRCRESAHA.114.303915 PubMedGoogle Scholar
  48. Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, Amin V, Whitaker JW, Schultz MD, Ward LD, Sarkar A et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518(7539):317–330. doi: 10.1038/nature14248 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. doi: 10.1038/35057062 CrossRefPubMedGoogle Scholar
  50. Lee JH, Gao C, Peng G, Greer C, Ren S, Wang Y, Xiao X (2011) Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circ Res 109(12):1332–1341CrossRefPubMedPubMedCentralGoogle Scholar
  51. Li D, Chen G, Yang J, Fan X, Gong Y, Xu G, Cui Q, Geng B (2013) Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure. PLoS One 8(10), e77938. doi: 10.1371/journal.pone.0077938 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Liu Y, Li G, Lu H, Li W, Li X, Liu H, Li X, Li T, Yu B (2014) Expression profiling and ontology analysis of long noncoding RNAs in post-ischemic heart and their implied roles in ischemia/reperfusion injury. Gene. doi: 10.1016/j.gene.2014.04.016 PubMedCentralGoogle Scholar
  53. Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116(8):1462–1476. doi: 10.1161/circresaha.116.304937 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Magny EG, Pueyo JI, Pearl FMG, Cespedes MA, Niven JE, Bishop SA, Couso JP (2013) Conserved regulation of cardiac calcium uptake by peptides encoded in small open reading frames. Science 341(6150): 1116–1120. doi:  10.1126/science.1238802
  55. Marques AC, Hughes J, Graham B, Kowalczyk MS, Higgs DR, Ponting CP (2013) Chromatin signatures at transcriptional start sites separate two equally populated yet distinct classes of intergenic long noncoding RNAs. Genome Biol 14(11):R131. doi: 10.1186/gb-2013-14-11-r131 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Matkovich SJ, Edwards JR, Grossenheider TC, de Guzman Strong C, Dorn GW 2nd (2014) Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1410622111 PubMedPubMedCentralGoogle Scholar
  57. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, Reynolds AP, Sandstrom R, Qu H, Brody J, Shafer A, Neri F, Lee K, Kutyavin T, Stehling-Sun S et al (2012) Systematic localization of common disease-associated variation in regulatory DNA. Science 337(6099):1190–1195. doi: 10.1126/science.1222794 CrossRefPubMedPubMedCentralGoogle Scholar
  58. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Kober L, Lip GY, Maggioni AP, Parkhomenko A et al. (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 14(8):803–869. doi: 10.1093/eurjhf/hfs105
  59. Meder B, Ruhle F, Weis T, Homuth G, Keller A, Franke J, Peil B, Lorenzo Bermejo J, Frese K, Huge A, Witten A, Vogel B, Haas J, Volker U, Ernst F et al (2014) A genome-wide association study identifies 6p21 as novel risk locus for dilated cardiomyopathy. Eur Heart J 35(16):1069–1077. doi: 10.1093/eurheartj/eht251 CrossRefPubMedGoogle Scholar
  60. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P, Brockman W, Kim TK, Koche RP, Lee W, Mendenhall E, O’Donovan A, Presser A, Russ C, Xie X, Meissner A, Wernig M, Jaenisch R, Nusbaum C, Lander ES, Bernstein BE (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448(7153):553–560. doi: 10.1038/nature06008 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Miyata S, Minobe W, Bristow MR, Leinwand LA (2000) Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ Res 86(4):386–390. doi: 10.1161/01.res.86.4.386 CrossRefPubMedGoogle Scholar
  62. Mu XJ, Lu ZJ, Kong Y, Lam HY, Gerstein MB (2011) Analysis of genomic variation in non-coding elements using population-scale sequencing data from the 1000 Genomes Project. Nucleic Acids Res 39(16):7058–7076. doi: 10.1093/nar/gkr342 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grützner F, Kaessmann H (2014) The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature. doi: 10.1038/nature12943 PubMedGoogle Scholar
  64. Olson EN (2014) MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med 6(239): 239ps233. doi: 10.1126/scitranslmed.3009008
  65. Orom UA, Shiekhattar R (2013) Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 154(6):1190–1193. doi: 10.1016/j.cell.2013.08.028 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q, Guigo R, Shiekhattar R (2010) Long noncoding RNAs with enhancer-like function in human cells. Cell 143(1):46–58CrossRefPubMedPubMedCentralGoogle Scholar
  67. Ounzain S, Micheletti R, Beckmann T, Schroen B, Alexanian M, Pezzuto I, Crippa S, Nemir M, Sarre A, Johnson R, Dauvillier J, Burdet F, Ibberson M, Guigo R, Xenarios I, Heymans S, Pedrazzini T (2014a) Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J. doi: 10.1093/eurheartj/ehu180 PubMedPubMedCentralGoogle Scholar
  68. Ounzain S, Pezzuto I, Micheletti R, Burdet F, Sheta R, Nemir M, Gonzales C, Sarre A, Alexanian M, Blow MJ, May D, Johnson R, Dauvillier J, Pennacchio LA, Pedrazzini T (2014b) Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease. J Mol Cell Cardiol 76C:55–70. doi: 10.1016/j.yjmcc.2014.08.009 CrossRefGoogle Scholar
  69. Packer M, McMurray JJ, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile M, Andersen K, Arango JL, Arnold JM, Belohlavek J et al (2015) Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation 131(1):54–61. doi: 10.1161/circulationaha.114.013748 CrossRefPubMedGoogle Scholar
  70. Pasmant E, Sabbagh A, Vidaud M, Bieche I (2011) ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS. FASEB J 25(2):444–448. doi: 10.1096/fj.10-172452 CrossRefPubMedGoogle Scholar
  71. Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17(5):556–565. doi: 10.1101/gr.6036807 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136(4):629–641. doi: 10.1016/j.cell.2009.02.006 CrossRefPubMedGoogle Scholar
  73. Rinn JL, Euskirchen G, Bertone P, Martone R, Luscombe NM, Hartman S, Harrison PM, Nelson FK, Miller P, Gerstein M, Weissman S, Snyder M (2003) The transcriptional activity of human Chromosome 22. Genes Dev 17(4):529–540. doi: 10.1101/gad.1055203 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Roberts R (2014) Genetics of coronary artery disease. Circ Res 114(12):1890–1903. doi: 10.1161/CIRCRESAHA.114.302692 CrossRefPubMedGoogle Scholar
  75. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358CrossRefPubMedPubMedCentralGoogle Scholar
  76. Schuettengruber B, Martinez AM, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12(12):799–814. doi: 10.1038/nrm3230 CrossRefPubMedGoogle Scholar
  77. St Laurent G, Wahlestedt C, Kapranov P (2015) The landscape of long noncoding RNA classification. Trends Genet 31(5):239–251. doi: 10.1016/j.tig.2015.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Tarnavski O (2009) Mouse surgical models in cardiovascular research. Methods Mol Biol 573:115–137. doi: 10.1007/978-1-60761-247-6_7 CrossRefPubMedGoogle Scholar
  79. Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505(7483):344–352. doi: 10.1038/nature12986 CrossRefPubMedPubMedCentralGoogle Scholar
  80. van Berlo JH, Maillet M, Molkentin JD (2013) Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest 123(1):37–45CrossRefPubMedPubMedCentralGoogle Scholar
  81. Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115(7):668–677. doi: 10.1161/CIRCRESAHA.115.303836 CrossRefPubMedGoogle Scholar
  82. Waddington CH (1942) The epigenotype. Endeavour 1942:18–20. reprinted in: Int J Epidemiol 2012;41:10–13:18–20. doi: 10.1093/ije/dyr184 Google Scholar
  83. Wang QT (2012) Epigenetic regulation of cardiac development and function by polycomb group and trithorax group proteins. Dev Dyn 241(6):1021–1033. doi: 10.1002/dvdy.23796 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014a) A long noncoding RNA, CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. doi: 10.1161/circresaha.114.302476 Google Scholar
  86. Wang K, Long B, Zhou LY, Liu F, Zhou QY, Liu CY, Fan YY, Li PF (2014b) CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun 5:3596. doi: 10.1038/ncomms4596 PubMedGoogle Scholar
  87. Wang K, Liu CY, Zhou LY, Wang JX, Wang M, Zhao B, Zhao WK, Xu SJ, Fan LH, Zhang XJ, Feng C, Wang CQ, Zhao YF, Li PF (2015) APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun 6:6779. doi: 10.1038/ncomms7779 CrossRefPubMedGoogle Scholar
  88. Washietl S, Kellis M, Garber M (2014) Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res 24(4):616–628. doi: 10.1101/gr.165035.113 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Weichenhan D, Plass C (2013) The evolving epigenome. Hum Mol Genet 22(R1):R1–R6. doi: 10.1093/hmg/ddt348 CrossRefPubMedGoogle Scholar
  90. Willingham AT, Gingeras T (2006) TUF love for “junk” DNA. Cell 125(7):1215–1220CrossRefPubMedGoogle Scholar
  91. Wong CM, Hawkins NM, Petrie MC, Jhund PS, Gardner RS, Ariti CA, Poppe KK, Earle N, Whalley GA, Squire IB, Doughty RN, McMurray JJ, Investigators M (2014) Heart failure in younger patients: the Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). Eur Heart J 35(39):2714–2721. doi: 10.1093/eurheartj/ehu216 CrossRefPubMedGoogle Scholar
  92. Wright MW (2014) A short guide to long non-coding RNA gene nomenclature. Hum Genomics 8:7. doi: 10.1186/1479-7364-8-7 CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL, Nerbonne JM (2014) Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNA in failing human heart and remodeling with mechanical circulatory support. Circulation. doi: 10.1161/CIRCULATIONAHA.113.003863 Google Scholar
  94. Zangrando J, Zhang L, Vausort M, Maskali F, Marie PY, Wagner DR, Devaux Y (2014) Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genomics 15:460. doi: 10.1186/1471-2164-15-460 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhang K, Shi ZM, Chang YN, Hu ZM, Qi HX, Hong W (2014) The ways of action of long non-coding RNAs in cytoplasm and nucleus. Gene. doi: 10.1016/j.gene.2014.06.043 Google Scholar
  96. Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M, Lee JT (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell 40(6):939–953CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zhu JG, Shen YH, Liu HL, Liu M, Shen YQ, Kong XQ, Song GX, Qian LM (2013) Long noncoding RNAs expression profile of the developing mouse heart. J Cell Biochem. doi: 10.1002/jcb.24733 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Internal Medicine III, Cardiology and AngiologyUniversity Medical Center Schleswig-HolsteinKielGermany
  2. 2.German Centre for Cardiovascular Research (DZHK)KielGermany

Personalised recommendations