BET Bromodomains and P-TEFb in Cardiac Transcription and Heart Failure Pathogenesis

  • Priti Anand
  • Amir Munir
  • Saptarsi M. HaldarEmail author
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)


Stress-activated cardiac signaling cascades ultimately converge on defined transcriptional pathways that drive pathologic gene expression programs. Excessive or prolonged activation of these pathways culminates in hypertrophy, fibrosis, and contractile dysfunction. As the gene-regulatory machinery functions as a distal signal integrator in this disease process, defining mechanisms by which upstream pathways couple to chromatin-dependent signal transduction in cardiomyocytes (CMs) has been an area of intense scientific and therapeutic interest. It has long been recognized that dynamic positioning of acetyl-lysine on nucleosomal histone tails, regulated by histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes, plays a central role in cardiac plasticity and HF pathogenesis. In this chapter, we will discuss signaling events downstream of local chromatin acetylation in the heart and their role in pathologic cardiac plasticity and HF pathogenesis. We will highlight recently published studies that implicate BET family bromodomain-containing coactivator proteins as a critical link between activated cardiac enhancers, P-TEFb (positive transcription elongation factor b), and RNA polymerase II (Pol II) dynamics in the stressed myocardium.


Cardiac Hypertrophy Transverse Aortic Constriction Pathologic Cardiac Hypertrophy Positive Transcription Elongation Factor Myocardial Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by grants from the US National Institutes of Health (grants HL127240 and DK093821).

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Anand P, Brown JD, Lin CY, Qi J, Zhang R, Artero PC, Alaiti MA, Bullard J, Alazem K, Margulies KB, Cappola TP, Lemieux M, Plutzky J, Bradner JE, Haldar SM (2013) BET bromodomains mediate transcriptional pause release in heart failure. Cell 154(3):569–582. doi: 10.1016/j.cell.2013.07.013
  2. Arlotta P, Molyneaux BJ, Chen J, Inoue J, Kominami R, Macklis JD (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45(2):207–221. doi: 10.1016/j.neuron.2004.12.036 CrossRefPubMedGoogle Scholar
  3. Barboric M, Nissen RM, Kanazawa S, Jabrane-Ferrat N, Peterlin BM (2001) NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol Cell 8(2):327–337CrossRefPubMedGoogle Scholar
  4. Barrandon C, Bonnet F, Nguyen VT, Labas V, Bensaude O (2007) The transcription-dependent dissociation of P-TEFb-HEXIM1-7SK RNA relies upon formation of hnRNP-7SK RNA complexes. Mol Cell Biol 27(20):6996–7006. doi: 10.1128/MCB.00975-07 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Biglione S, Byers SA, Price JP, Nguyen VT, Bensaude O, Price DH, Maury W (2007) Inhibition of HIV-1 replication by P-TEFb inhibitors DRB, seliciclib and flavopiridol correlates with release of free P-TEFb from the large, inactive form of the complex. Retrovirology 4:47. doi: 10.1186/1742-4690-4-47 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bisgrove DA, Mahmoudi T, Henklein P, Verdin E (2007) Conserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription. Proc Natl Acad Sci USA 104(34):13690–13695. doi: 10.1073/pnas.0705053104 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bolden JE, Tasdemir N, Dow LE, van Es JH, Wilkinson JE, Zhao Z, Clevers H, Lowe SW (2014) Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep 8(6):1919–1929. doi: 10.1016/j.celrep.2014.08.025
  8. Bradner JE (2013) Interview with James Bradner. Interviewed by Hannah Coaker. Future Med Chem 5(12):1373–1376. doi: 10.4155/fmc.13.124 CrossRefPubMedGoogle Scholar
  9. Chen R, Yang Z, Zhou Q (2004) Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J Biol Chem 279(6):4153–4160. doi: 10.1074/jbc.M310044200 CrossRefPubMedGoogle Scholar
  10. Chen H, Contreras X, Yamaguchi Y, Handa H, Peterlin BM, Guo S (2009) Repression of RNA polymerase II elongation in vivo is critically dependent on the C-terminus of Spt5. PLoS One 4(9):e6918. doi: 10.1371/journal.pone.0006918 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cherrier T, Le Douce V, Eilebrecht S, Riclet R, Marban C, Dequiedt F, Goumon Y, Paillart JC, Mericskay M, Parlakian A, Bausero P, Abbas W, Herbein G, Kurdistani SK, Grana X, Van Driessche B, Schwartz C, Candolfi E, Benecke AG, Van Lint C, Rohr O (2013) CTIP2 is a negative regulator of P-TEFb. Proc Natl Acad Sci USA 110(31):12655–12660. doi: 10.1073/pnas.1220136110
  12. Chodosh LA, Fire A, Samuels M, Sharp PA (1989) 5,6-Dichloro-1-beta-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J Biol Chem 264(4):2250–2257PubMedGoogle Scholar
  13. Dawson MA, Kouzarides T, Huntly BJ (2012) Targeting epigenetic readers in cancer. N Engl J Med 367(7):647–657. doi: 10.1056/NEJMra1112635 CrossRefPubMedGoogle Scholar
  14. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146(6):904–917. doi: 10.1016/j.cell.2011.08.017
  15. Di Salvo TG, Haldar SM (2014) Epigenetic mechanisms in heart failure pathogenesis. Circ Heart Fail 7(5):850–863. doi: 10.1161/CIRCHEARTFAILURE.114.001193 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Eberhardy SR, Farnham PJ (2002) Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J Biol Chem 277(42):40156–40162. doi: 10.1074/jbc.M207441200 CrossRefPubMedGoogle Scholar
  17. Eick D, Geyer M (2013) The RNA polymerase II carboxy-terminal domain (CTD) code. Chem Rev 113(11):8456–8490. doi: 10.1021/cr400071f CrossRefPubMedGoogle Scholar
  18. Espinoza-Derout J, Wagner M, Shahmiri K, Mascareno E, Chaqour B, Siddiqui MA (2007) Pivotal role of cardiac lineage protein-1 (CLP-1) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy. Cardiovasc Res 75(1):129–138. doi: 10.1016/j.cardiores.2007.03.019 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Espinoza-Derout J, Wagner M, Salciccioli L, Lazar JM, Bhaduri S, Mascareno E, Chaqour B, Siddiqui MA (2009) Positive transcription elongation factor b activity in compensatory myocardial hypertrophy is regulated by cardiac lineage protein-1. Circ Res 104(12):1347–1354. doi: 10.1161/CIRCRESAHA.108.191726
  20. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073. doi: 10.1038/nature09504
  21. Fu TJ, Peng J, Lee G, Price DH, Flores O (1999) Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. J Biol Chem 274(49):34527–34530CrossRefPubMedGoogle Scholar
  22. Fujinaga K, Irwin D, Huang Y, Taube R, Kurosu T, Peterlin BM (2004) Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol 24(2):787–795CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ganguli-Indra G, Wasylyk C, Liang X, Millon R, Leid M, Wasylyk B, Abecassis J, Indra AK (2009) CTIP2 expression in human head and neck squamous cell carcinoma is linked to poorly differentiated tumor status. PLoS One 4(4):e5367. doi: 10.1371/journal.pone.0005367
  24. Haldar SM, McKinsey TA (2014) BET-ting on chromatin-based therapeutics for heart failure. J Mol Cell Cardiol 74:98–102. doi: 10.1016/j.yjmcc.2014.05.002 CrossRefPubMedGoogle Scholar
  25. Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466(7302): 62–67. doi:  10.1038/nature09130
  26. He N, Jahchan NS, Hong E, Li Q, Bayfield MA, Maraia RJ, Luo K, Zhou Q (2008) A La-related protein modulates 7SK snRNP integrity to suppress P-TEFb-dependent transcriptional elongation and tumorigenesis. Mol Cell 29(5):588–599. doi: 10.1016/j.molcel.2008.01.003
  27. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358(13):1370–1380. doi: 10.1056/NEJMra072139 CrossRefPubMedGoogle Scholar
  28. Houzelstein D, Bullock SL, Lynch DE, Grigorieva EF, Wilson VA, Beddington RS (2002) Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol Cell Biol 22(11):3794–3802CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ikawa T, Hirose S, Masuda K, Kakugawa K, Satoh R, Shibano-Satoh A, Kominami R, Katsura Y, Kawamoto H (2010) An essential developmental checkpoint for production of the T cell lineage. Science 329(5987):93–96. doi: 10.1126/science.1188995
  30. Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K (2005) The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 19(4):523–534. doi: 10.1016/j.molcel.2005.06.027 CrossRefPubMedGoogle Scholar
  31. Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, Thérien C, Bergeron D, Bourassa S, Greenblatt J, Chabot B, Poirier GG, Hughes TR, Blanchette M, Price DH, Coulombe B (2007) Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 27(2):262–274. doi: 10.1016/j.molcel.2007.06.027
  32. Kanazawa S, Soucek L, Evan G, Okamoto T, Peterlin BM (2003) c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene 22(36):5707–5711. doi: 10.1038/sj.onc.1206800 CrossRefPubMedGoogle Scholar
  33. Krueger BJ, Jeronimo C, Roy BB, Bouchard A, Barrandon C, Byers SA, Searcey CE, Cooper JJ, Bensaude O, Cohen EA, Coulombe B, Price DH (2008) LARP7 is a stable component of the 7SK snRNP while P-TEFb, HEXIM1 and hnRNP A1 are reversibly associated. Nucleic Acids Res 36(7):2219–2229. doi: 10.1093/nar/gkn061
  34. Krueger BJ, Varzavand K, Cooper JJ, Price DH (2010) The mechanism of release of P-TEFb and HEXIM1 from the 7SK snRNP by viral and cellular activators includes a conformational change in 7SK. PLoS One 5(8):e12335. doi: 10.1371/journal.pone.0012335 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kwak H, Lis JT (2013) Control of transcriptional elongation. Annu Rev Genet 47:483–508. doi: 10.1146/annurev-genet-110711-155440 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lee TI, Young RA (2013) Transcriptional regulation and its misregulation in disease. Cell 152(6):1237–1251. doi: 10.1016/j.cell.2013.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li L, Leid M, Rothenberg EV (2010) An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 329(5987):89–93. doi: 10.1126/science.1188989 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Liu P, Xiang Y, Fujinaga K, Bartholomeeusen K, Nilson KA, Price DH, Peterlin BM (2014) Release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein (snRNP) activates hexamethylene bisacetamide-inducible protein (HEXIM1) transcription. J Biol Chem 289(14):9918–9925. doi: 10.1074/jbc.M113.539015 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, Van Lint C, Aunis D, Rohr O (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26(2):412–423. doi: 10.1038/sj.emboj.7601516
  40. Marshall NF, Price DH (1992) Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol Cell Biol 12(5):2078–2090CrossRefPubMedPubMedCentralGoogle Scholar
  41. Marshall NF, Price DH (1995) Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem 270(21):12335–12338CrossRefPubMedGoogle Scholar
  42. Marshall NF, Peng J, Xie Z, Price DH (1996) Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem 271(43):27176–27183CrossRefPubMedGoogle Scholar
  43. Matzuk MM, McKeown MR, Filippakopoulos P, Li Q, Ma L, Agno JE, Lemieux ME, Picaud S, Yu RN, Qi J, Knapp S, Bradner JE (2012) Small-molecule inhibition of BRDT for male contraception. Cell 150(4):673–684. doi: 10.1016/j.cell.2012.06.045
  44. McKinsey TA (2012) Therapeutic potential for HDAC inhibitors in the heart. Annu Rev Pharmacol Toxicol 52:303–319. doi: 10.1146/annurev-pharmtox-010611-134712 CrossRefPubMedGoogle Scholar
  45. Michels AA, Fraldi A, Li Q, Adamson TE, Bonnet F, Nguyen VT, Sedore SC, Price JP, Price DH, Lania L, Bensaude O (2004) Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J 23(13):2608–2619. doi: 10.1038/sj.emboj.7600275
  46. Montano MM, Doughman YQ, Deng H, Chaplin L, Yang J, Wang N, Zhou Q, Ward NL, Watanabe M (2008) Mutation of the HEXIM1 gene results in defects during heart and vascular development partly through downregulation of vascular endothelial growth factor. Circ Res 102(4):415–422. doi: 10.1161/CIRCRESAHA.107.157859
  47. Montano MM, Desjardins CL, Doughman YQ, Hsieh YH, Hu Y, Bensinger HM, Wang C, Stelzer JE, Dick TE, Hoit BD, Chandler MP, Yu X, Watanabe M (2013) Inducible re-expression of HEXIM1 causes physiological cardiac hypertrophy in the adult mouse. Cardiovasc Res 99(1):74–82. doi: 10.1093/cvr/cvt086
  48. Ni Z, Schwartz BE, Werner J, Suarez JR, Lis JT (2004) Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol Cell 13(1):55–65CrossRefPubMedGoogle Scholar
  49. Nicholls SJ, Gordon A, Johansson J, Wolski K, Ballantyne CM, Kastelein JJ, Taylor A, Borgman M, Nissen SE (2011) Efficacy and safety of a novel oral inducer of apolipoprotein a-I synthesis in statin-treated patients with stable coronary artery disease a randomized controlled trial. J Am Coll Cardiol 57(9):1111–1119. doi: 10.1016/j.jacc.2010.11.015
  50. Peng J, Zhu Y, Milton JT, Price DH (1998) Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 12(5):755–762CrossRefPubMedPubMedCentralGoogle Scholar
  51. Peterlin BM, Brogie JE, Price DH (2012) 7SK snRNA: a noncoding RNA that plays a major role in regulating eukaryotic transcription. Wiley Interdiscip Rev RNA 3(1):92–103. doi: 10.1002/wrna.106 CrossRefPubMedGoogle Scholar
  52. Picaud S, Wells C, Felletar I, Brotherton D, Martin S, Savitsky P, Diez-Dacal B, Philpott M, Bountra C, Lingard H, Fedorov O, Müller S, Brennan PE, Knapp S, Filippakopoulos P (2013). RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Natl Acad Sci USA 110(49):19754–19759. doi: 10.1073/pnas.1310658110
  53. Rohn J (2012) Tensha therapeutics. Nat Biotechnol 30(4):305. doi: 10.1038/nbt0412-305 CrossRefPubMedGoogle Scholar
  54. Sano M, Abdellatif M, Oh H, Xie M, Bagella L, Giordano A, Michael LH, DeMayo FJ, Schneider MD (2002) Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nat Med 8(11):1310–1317. doi: 10.1038/nm778
  55. Sano M, Wang SC, Shirai M, Scaglia F, Xie M, Sakai S, Tanaka T, Kulkarni PA, Barger PM, Youker KA, Taffet GE, Hamamori Y, Michael LH, Craigen WJ, Schneider MD (2004) Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. EMBO J 23(17):3559–3569. doi: 10.1038/sj.emboj.7600351
  56. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424. doi: 10.1161/01.RES.0000257913.42552.23 CrossRefPubMedGoogle Scholar
  57. Schreiber SL, Bernstein BE (2002) Signaling network model of chromatin. Cell 111(6):771–778CrossRefPubMedGoogle Scholar
  58. Sehgal PB, Darnell JE Jr, Tamm I (1976) The inhibition by DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) of hnRNA and mRNA production in HeLa cells. Cell 9(3):473–480CrossRefPubMedGoogle Scholar
  59. Shi J, Vakoc CR (2014) The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol Cell 54(5):728–736. doi: 10.1016/j.molcel.2014.05.016 CrossRefPubMedGoogle Scholar
  60. Shim EY, Walker AK, Shi Y, Blackwell TK (2002) CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev 16(16):2135–2146. doi: 10.1101/gad.999002 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Spiltoir JI, Stratton MS, Cavasin MA, Demos-Davies K, Reid BG, Qi J, Bradner JE, McKinsey TA (2013) BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J Mol Cell Cardiol 63:175–179. doi: 10.1016/j.yjmcc.2013.07.017
  62. Tahirov TH, Babayeva ND, Varzavand K, Cooper JJ, Sedore SC, Price DH (2010) Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465(7299):747–751. doi: 10.1038/nature09131 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Takahashi H, Parmely TJ, Sato S, Tomomori-Sato C, Banks CA, Kong SE, Szutorisz H, Swanson SK, Martin-Brown S, Washburn MP, Florens L, Seidel CW, Lin C, Smith ER, Shilatifard A, Conaway RC, Conaway JW (2011) Human mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146(1):92–104. doi: 10.1016/j.cell.2011.06.005
  64. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13(3):324–331. doi: 10.1038/nm1552
  65. van Berlo JH, Maillet M, Molkentin JD (2013) Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest 123(1):37–45. doi: 10.1172/JCI62839 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog GA, Winston F, Buratowski S, Handa H (1998) DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12(3):343–356Google Scholar
  67. Wei JQ, Shehadeh LA, Mitrani JM, Pessanha M, Slepak TI, Webster KA, Bishopric NH (2008) Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118(9):934–946. doi: 10.1161/CIRCULATIONAHA.107.760488 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Xie M, Hill JA (2013) HDAC-dependent ventricular remodeling. Trends Cardiovasc Med 23(6):229–235. doi: 10.1016/j.tcm.2012.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H (1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97(1):41–51Google Scholar
  70. Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, Zhou Q (2005) Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19(4):535–545. doi: 10.1016/j.molcel.2005.06.029 CrossRefPubMedGoogle Scholar
  71. Yik JH, Chen R, Nishimura R, Jennings JL, Link AJ, Zhou Q (2003) Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol Cell 12(4):971–982CrossRefPubMedGoogle Scholar
  72. Yoshikawa N, Shimizu N, Maruyama T, Sano M, Matsuhashi T, Fukuda K, Kataoka M, Satoh T, Ojima H, Sawai T, Morimoto C, Kuribara A, Hosono O, Tanaka H (2012) Cardiomyocyte-specific overexpression of HEXIM1 prevents right ventricular hypertrophy in hypoxia-induced pulmonary hypertension in mice. PLoS One 7(12):e52522. doi: 10.1371/journal.pone.0052522
  73. Zandomeni R, Zandomeni MC, Shugar D, Weinmann R (1986) Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J Biol Chem 261(7):3414–3419PubMedGoogle Scholar
  74. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110(4):479–488CrossRefPubMedPubMedCentralGoogle Scholar
  75. Zhong W, Mao S, Tobis S, Angelis E, Jordan MC, Roos KP, Fishbein MC, de Alborán IM, MacLellan WR. (2006) Hypertrophic growth in cardiac myocytes is mediated by Myc through a Cyclin D2-dependent pathway. EMBO J 25(16): 3869–3879. doi: 10.1038/sj.emboj.7601252
  76. Zhou Q, Li T, Price DH (2012) RNA polymerase II elongation control. Annu Rev Biochem 81:119–143. doi: 10.1146/annurev-biochem-052610-095910 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Zhu Y, Pe’ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, Amendt B, Mathews MB, Price DH (1997) Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 11(20):2622–2632Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Gladstone Institute of Cardiovascular Disease and University of California, San Francisco School of MedicineSan FranciscoUSA
  2. 2.Case Western Reserve University School of MedicineClevelandUSA

Personalised recommendations