Advertisement

Sirtuins as Regulators of Cardiac Hypertrophy and Heart Failure

  • Sadhana Samant
  • Mahesh P. GuptaEmail author
Chapter
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)

Abstract

Sirtuins are emerging as key regulators of a number of biological functions ranging from cell growth, differentiation to longevity. Mammalian genome encodes seven sirtuins isoform (SIRT1–SIRT7), which are distributed in different compartment of the cells. Sirtuins need NAD+ for their enzymatic reaction. Because of their dependency on NAD, they can respond to energy need of the cells and modulate key enzymatic pathways relevant to the maintenance of cellular health. Throughout the evolution, from prokaryotes to mammals, sirtuins are mainly valued for their ability to bestow cells with efficient adaptation to stress conditions. Sirtuins target histone and nonhistone proteins to ameliorate varied pathophysiologic conditions by controlling gene transcription and fitness of mitochondria. Many sirtuin isoforms have been also studied for their roles in regulating cardiac development and protecting the heart from pathological stress. In this review, we will discuss impact of sirtuins in overall health of the cardiovascular system.

Keywords

Cardiac Hypertrophy Lysine Residue Werner Syndrome Histone H3K9 Lysine Acetylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

These studies were supported from NIH RO1 grants HL117041 and HL111455 to MPG.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Alcendor RR, Kirshenbaum LA, Imai S, Vatner SF, Sadoshima J (2004) Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes. Circ Res 95:971–980PubMedCrossRefGoogle Scholar
  2. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, Sadoshima J (2007) Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100:1512–1521PubMedCrossRefGoogle Scholar
  3. Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, Capasso JM (1990) Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 67:871–885PubMedCrossRefGoogle Scholar
  5. Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72:463–469PubMedCrossRefGoogle Scholar
  6. Backs J, Olson EN (2006) Control of cardiac growth by histone acetylation/deacetylation. Circ Res 98:15–24PubMedCrossRefGoogle Scholar
  7. Barber MF, Michishita-Kioi E, Xi Y, Tasselli L, Kioi M, Moqtaderi Z, Tennen RI, Paredes S, Young NL, Chen K, Struhl K, Garcia BA, Gozani O, Li W, Chua KF (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118PubMedPubMedCentralGoogle Scholar
  8. Batta K, Das C, Gadad S, Shandilya J, Kundu TK (2007) Reversible acetylation of non histone proteins: role in cellular function and disease. Subcell Biochem 41:193–212PubMedCrossRefGoogle Scholar
  9. Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF (2002) The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science (New York, NY) 296:148–151CrossRefGoogle Scholar
  10. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681PubMedCrossRefGoogle Scholar
  11. Bosch-Presegue L, Vaquero A (2014) Sirtuins in stress response: guardians of the genome. Oncogene 33:3764–3775PubMedCrossRefGoogle Scholar
  12. Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98:289–297PubMedPubMedCentralGoogle Scholar
  13. Cai L, Tu BP (2011) On acetyl-CoA as a gauge of cellular metabolic state. Cold Spring Harb Symp Quant Biol 76:195–202PubMedCrossRefGoogle Scholar
  14. Cai Y, Yu SS, Chen SR, Pi RB, Gao S, Li H, Ye JT, Liu PQ (2012) Nmnat2 protects cardiomyocytes from hypertrophy via activation of SIRT6. FEBS Lett 586:866–874PubMedCrossRefGoogle Scholar
  15. Cardus A, Uryga AK, Walters G, Erusalimsky JD (2013) SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence. Cardiovasc Res 97:571–579PubMedCrossRefGoogle Scholar
  16. Catalucci D, Condorelli G (2006) Effects of Akt on cardiac myocytes: location counts. Circ Res 99:339–341PubMedCrossRefGoogle Scholar
  17. Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24:8467–8476PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen IY, Lypowy J, Pain J, Sayed D, Grinberg S, Alcendor RR, Sadoshima J, Abdellatif M (2006) Histone H2A.z is essential for cardiac myocyte hypertrophy but opposed by silent information regulator 2alpha. J Biol Chem 281:19369–19377PubMedCrossRefGoogle Scholar
  19. Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 100:10794–10799PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C, Frye R, Ploegh H, Kessler BM, Sinclair DA (2004a) Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 13:627–638PubMedCrossRefGoogle Scholar
  21. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004b) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science (New York, NY) 305:390–392CrossRefGoogle Scholar
  22. Colucci WS (1997) Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 80:15L–25LPubMedCrossRefGoogle Scholar
  23. Du J, Zhou Y, Su X, Yu JJ, Khan S, Jiang H, Kim J, Woo J, Kim JH, Choi BH, He B, Chen W, Zhang S, Cerione RA, Auwerx J, Hao Q, Lin H (2011) Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science (New York, NY) 334:806–809CrossRefGoogle Scholar
  24. Ekwall K (2005) Genome-wide analysis of HDAC function. Trends Genet: TIG 21:608–615PubMedCrossRefGoogle Scholar
  25. Ferrara N, Rinaldi B, Corbi G, Conti V, Stiuso P, Boccuti S, Rengo G, Rossi F, Filippelli A (2008) Exercise training promotes SIRT1 activity in aged rats. Rejuvenation Res 11:139–150PubMedCrossRefGoogle Scholar
  26. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79PubMedCrossRefGoogle Scholar
  27. Frye RA (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273:793–798PubMedCrossRefGoogle Scholar
  28. Fukuda S, Kaga S, Zhan L, Bagchi D, Das DK, Bertelli A, Maulik N (2006) Resveratrol ameliorates myocardial damage by inducing vascular endothelial growth factor-angiogenesis and tyrosine kinase receptor Flk-1. Cell Biochem Biophys 44:43–49PubMedCrossRefGoogle Scholar
  29. Garnier A, Zoll J, Fortin D, N’Guessan B, Lefebvre F, Geny B, Mettauer B, Veksler V, Ventura-Clapier R (2009) Control by circulating factors of mitochondrial function and transcription cascade in heart failure: a role for endothelin-1 and angiotensin II. Circ Heart Fail 2:342–350PubMedCrossRefGoogle Scholar
  30. Giblin W, Skinner ME, Lombard DB (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet: TIG 30:271–286PubMedPubMedCentralCrossRefGoogle Scholar
  31. Giralt A, Villarroya F (2012) SIRT3, a pivotal actor in mitochondrial functions: metabolism, cell death and aging. Biochem J 444:1–10PubMedCrossRefGoogle Scholar
  32. Glozak MA, Sengupta N, Zhang X, Seto E (2005) Acetylation and deacetylation of non-histone proteins. Gene 363:15–23PubMedCrossRefGoogle Scholar
  33. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2013) Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation 127:e6–e245PubMedCrossRefGoogle Scholar
  34. Gu XS, Wang ZB, Ye Z, Lei JP, Li L, Su DF, Zheng X (2014) Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure. Genet Mol Res 13:323–335PubMedCrossRefGoogle Scholar
  35. Guan KL, Xiong Y (2011) Regulation of intermediary metabolism by protein acetylation. Trends Biochem Sci 36:108–116PubMedCrossRefGoogle Scholar
  36. Hafner AV, Dai J, Gomes AP, Xiao CY, Palmeira CM, Rosenzweig A, Sinclair DA (2010) Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging 2:914–923PubMedPubMedCentralCrossRefGoogle Scholar
  37. Haigis MC, Guarente LP (2006) Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921PubMedCrossRefGoogle Scholar
  38. Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J (2010) Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res 107:1470–1482PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J (2010) Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation 122:2170–2182PubMedPubMedCentralCrossRefGoogle Scholar
  41. Imai S, Johnson FB, Marciniak RA, McVey M, Park PU, Guarente L (2000) Sir2: an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb Symp Quant Biol 65:297–302PubMedCrossRefGoogle Scholar
  42. Inoue T, Hiratsuka M, Osaki M, Oshimura M (2007) The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation. Cell Cycle (Georgetown, Tex) 6:1011–1018CrossRefGoogle Scholar
  43. Iwahara T, Bonasio R, Narendra V, Reinberg D (2012) SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol Cell Biol 32:5022–5034PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jenuwein T, Allis CD (2001) Translating the histone code. Science (New York, NY) 293:1074–1080CrossRefGoogle Scholar
  45. Jian B, Yang S, Chaudry IH, Raju R (2012) Resveratrol improves cardiac contractility following trauma-hemorrhage by modulating Sirt1. Mol Med (Cambridge, Mass) 18:209–214Google Scholar
  46. Jiang H, Khan S, Wang Y, Charron G, He B, Sebastian C, Du J, Kim R, Ge E, Mostoslavsky R, Hang HC, Hao Q, Lin H (2013) SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110–113PubMedPubMedCentralCrossRefGoogle Scholar
  47. Katz AM (1990) Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med 322:100–110PubMedCrossRefGoogle Scholar
  48. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY, Chua KF (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136:62–74PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294PubMedCrossRefGoogle Scholar
  50. Kugel S, Mostoslavsky R (2014) Chromatin and beyond: the multitasking roles for SIRT6. Trends Biochem Sci 39:72–81PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122PubMedCrossRefGoogle Scholar
  52. Li L, Zhao L, Yi-Ming W, Yu YS, Xia CY, Duan JL, Su DF (2009) Sirt1 hyperexpression in SHR heart related to left ventricular hypertrophy. Can J Physiol Pharmacol 87:56–62PubMedCrossRefGoogle Scholar
  53. Limas CJ, Olivari MT, Goldenberg IF, Levine TB, Benditt DG, Simon A (1987) Calcium uptake by cardiac sarcoplasmic reticulum in human dilated cardiomyopathy. Cardiovasc Res 21:601–605PubMedCrossRefGoogle Scholar
  54. Lorenzen JM, Martino F, Thum T (2012) Epigenetic modifications in cardiovascular disease. Basic Res Cardiol 107:245PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A, Skovgaard T, Kelstrup CD, Dmytriyev A, Choudhary C, Lundby C, Olsen JV (2012) Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2:419–431PubMedPubMedCentralCrossRefGoogle Scholar
  56. Maksin-Matveev A, Kanfi Y, Hochhauser E, Isak A, Cohen HY, Shainberg A (2014) Sirtuin 6 protects the heart from hypoxic damage. Exp Cell Res 330:81–90PubMedCrossRefGoogle Scholar
  57. Mao Z, Hine C, Tian X, Van Meter M, Au M, Vaidya A, Seluanov A, Gorbunova V (2011) SIRT6 promotes DNA repair under stress by activating PARP1. Science (New York, NY) 332:1443–1446CrossRefGoogle Scholar
  58. Martinez-Redondo P, Vaquero A (2013) The diversity of histone versus nonhistone sirtuin substrates. Genes Cancer 4:148–163PubMedPubMedCentralCrossRefGoogle Scholar
  59. Massie BM, Shah NB (1997) Evolving trends in the epidemiologic factors of heart failure: rationale for preventive strategies and comprehensive disease management. Am Heart J 133:703–712PubMedCrossRefGoogle Scholar
  60. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, Irani K (2007) SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 104:14855–14860PubMedPubMedCentralCrossRefGoogle Scholar
  61. McBurney MW, Yang X, Jardine K, Hixon M, Boekelheide K, Webb JR, Lansdorp PM, Lemieux M (2003) The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23:38–54PubMedPubMedCentralCrossRefGoogle Scholar
  62. McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, Bohr VA, Chua KF (2009) SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging 1:109–121PubMedPubMedCentralCrossRefGoogle Scholar
  63. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13PubMedPubMedCentralCrossRefGoogle Scholar
  64. Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635PubMedPubMedCentralCrossRefGoogle Scholar
  65. Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–496PubMedPubMedCentralCrossRefGoogle Scholar
  66. Michishita E, McCord RA, Boxer LD, Barber MF, Hong T, Gozani O, Chua KF (2009) Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6. Cell Cycle (Georgetown, Tex) 8:2664–2666CrossRefGoogle Scholar
  67. Moller DE (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414:821–827PubMedCrossRefGoogle Scholar
  68. Morris BJ (2013) Seven sirtuins for seven deadly diseases of aging. Free Radic Biol Med 56:133–171PubMedCrossRefGoogle Scholar
  69. Nakagawa T, Guarente L (2011) Sirtuins at a glance. J Cell Sci 124:833–838PubMedPubMedCentralCrossRefGoogle Scholar
  70. Napoli C, Balestrieri ML, Sica V, Lerman LO, Crimi E, De Rosa G, Schiano C, Servillo L, D’Armiento FP (2008) Beneficial effects of low doses of red wine consumption on perturbed shear stress-induced atherogenesis. Heart Vessels 23:124–133PubMedCrossRefGoogle Scholar
  71. Nisoli E, Clementi E, Carruba MO, Moncada S (2007) Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res 100:795–806PubMedCrossRefGoogle Scholar
  72. Norris KL, Lee JY, Yao TP (2009) Acetylation goes global: the emergence of acetylation biology. Sci Signal 2:pe76PubMedPubMedCentralCrossRefGoogle Scholar
  73. Oka S, Zhai P, Alcendor R, Park JY, Tian B, Sadoshima J (2012) Suppression of ERR targets by a PPARalpha/Sirt1 complex in the failing heart. Cell Cycle (Georgetown, Tex) 11:856–864CrossRefGoogle Scholar
  74. Papait R, Greco C, Kunderfranco P, Latronico MV, Condorelli G (2013) Epigenetics: a new mechanism of regulation of heart failure? Basic Res Cardiol 108:361PubMedPubMedCentralCrossRefGoogle Scholar
  75. Peng C, Lu Z, Xie Z, Cheng Z, Chen Y, Tan M, Luo H, Zhang Y, He W, Yang K, Zwaans BM, Tishkoff D, Ho L, Lombard D, He TC, Dai J, Verdin E, Ye Y, Zhao Y (2011) The first identification of lysine malonylation substrates and its regulatory enzyme. Mol Cell Proteomics 10:M111 012658PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pereira SL, Grayling RA, Lurz R, Reeve JN (1997) Archaeal nucleosomes. Proc Natl Acad Sci U S A 94:12633–12637PubMedPubMedCentralCrossRefGoogle Scholar
  77. Pillai JB, Isbatan A, Imai S, Gupta MP (2005) Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 280:43121–43130PubMedCrossRefGoogle Scholar
  78. Pillai JB, Chen M, Rajamohan SB, Samant S, Pillai VB, Gupta M, Gupta MP (2008) Activation of SIRT1, a class III histone deacetylase, contributes to fructose feeding-mediated induction of the alpha-myosin heavy chain expression. Am J Physiol Heart Circ Physiol 294:H1388–H1397PubMedCrossRefGoogle Scholar
  79. Pillai VB, Sundaresan NR, Jeevanandam V, Gupta MP (2010a) Mitochondrial SIRT3 and heart disease. Cardiovasc Res 88:250–256PubMedPubMedCentralCrossRefGoogle Scholar
  80. Pillai VB, Sundaresan NR, Kim G, Gupta M, Rajamohan SB, Pillai JB, Samant S, Ravindra PV, Isbatan A, Gupta MP (2010b) Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J Biol Chem 285:3133–3144PubMedCrossRefGoogle Scholar
  81. Pillai VB, Sundaresan NR, Gupta MP (2014) Regulation of Akt signaling by sirtuins: its implication in cardiac hypertrophy and aging. Circ Res 114:368–378PubMedPubMedCentralCrossRefGoogle Scholar
  82. Planavila A, Iglesias R, Giralt M, Villarroya F (2011) Sirt1 acts in association with PPARalpha to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovasc Res 90:276–284PubMedCrossRefGoogle Scholar
  83. Planavila A, Dominguez E, Navarro M, Vinciguerra M, Iglesias R, Giralt M, Lope-Piedrafita S, Ruberte J, Villarroya F (2012) Dilated cardiomyopathy and mitochondrial dysfunction in Sirt1-deficient mice: a role for Sirt1-Mef2 in adult heart. J Mol Cell Cardiol 53:521–531PubMedCrossRefGoogle Scholar
  84. Polager S, Ofir M, Ginsberg D (2008) E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene 27:4860–4864PubMedCrossRefGoogle Scholar
  85. Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM (2014) SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol 306:H1602–H1609PubMedPubMedCentralCrossRefGoogle Scholar
  86. Potente M, Ghaeni L, Baldessari D, Mostoslavsky R, Rossig L, Dequiedt F, Haendeler J, Mione M, Dejana E, Alt FW, Zeiher AM, Dimmeler S (2007) SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21:2644–2658PubMedPubMedCentralCrossRefGoogle Scholar
  87. Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9:327–338PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rajamohan SB, Pillai VB, Gupta M, Sundaresan NR, Birukov KG, Samant S, Hottiger MO, Gupta MP (2009) SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol 29:4116–4129PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118PubMedCrossRefGoogle Scholar
  90. Sack MN (2012) The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging. J Mol Cell Cardiol 52:520–525PubMedCrossRefGoogle Scholar
  91. Samant SA, Courson DS, Sundaresan NR, Pillai VB, Tan M, Zhao Y, Shroff SG, Rock RS, Gupta MP (2011) HDAC3-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity. J Biol Chem 286:5567–5577PubMedCrossRefGoogle Scholar
  92. Samant SA, Zhang HJ, Hong Z, Pillai VB, Sundaresan NR, Wolfgeher D, Archer SL, Chan DC, Gupta MP (2014) SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol 34:807–819PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sano M, Minamino T, Toko H, Miyauchi H, Orimo M, Qin Y, Akazawa H, Tateno K, Kayama Y, Harada M, Shimizu I, Asahara T, Hamada H, Tomita S, Molkentin JD, Zou Y, Komuro I (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448PubMedCrossRefGoogle Scholar
  94. Scher MB, Vaquero A, Reinberg D (2007) SirT3 is a nuclear NAD+−dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 21:920–928PubMedPubMedCentralCrossRefGoogle Scholar
  95. Shinmura K, Tamaki K, Bolli R (2008) Impact of 6-mo caloric restriction on myocardial ischemic tolerance: possible involvement of nitric oxide-dependent increase in nuclear Sirt1. Am J Physiol Heart Circ Physiol 295:H2348–H2355PubMedPubMedCentralCrossRefGoogle Scholar
  96. Shiojima I, Sato K, Izumiya Y, Schiekofer S, Ito M, Liao R, Colucci WS, Walsh K (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115:2108–2118PubMedPubMedCentralCrossRefGoogle Scholar
  97. Sin TK, Yu AP, Yung BY, Yip SP, Chan LW, Wong CS, Ying M, Rudd JA, Siu PM (2014) Modulating effect of SIRT1 activation induced by resveratrol on Foxo1-associated apoptotic signalling in senescent heart. J Physiol 592:2535–2548PubMedPubMedCentralCrossRefGoogle Scholar
  98. Spange S, Wagner T, Heinzel T, Kramer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41:185–198PubMedCrossRefGoogle Scholar
  99. Stein S, Matter CM (2011) Protective roles of SIRT1 in atherosclerosis. Cell Cycle (Georgetown, Tex) 10:640–647CrossRefGoogle Scholar
  100. Sulaiman M, Matta MJ, Sunderesan NR, Gupta MP, Periasamy M, Gupta M (2010) Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol 298:H833–H843PubMedCrossRefGoogle Scholar
  101. Sun C, Zhang F, Ge X, Yan T, Chen X, Shi X, Zhai Q (2007) SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 6:307–319PubMedCrossRefGoogle Scholar
  102. Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28:6384–6401PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119:2758–2771PubMedPubMedCentralGoogle Scholar
  104. Sundaresan NR, Pillai VB, Gupta MP (2011a) Emerging roles of SIRT1 deacetylase in regulating cardiomyocyte survival and hypertrophy. J Mol Cell Cardiol 51:614–618PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta M, Gupta MP (2011b) The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal 4:ra46PubMedCrossRefGoogle Scholar
  106. Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, Pillai VB, Ravindra PV, Gupta M, Jeevanandam V, Cunningham JM, Deng CX, Lombard DB, Mostoslavsky R, Gupta MP (2012) The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 18:1643–1650PubMedPubMedCentralCrossRefGoogle Scholar
  107. Taddei S, Virdis A, Ghiadoni L, Versari D, Salvetti A (2006) Endothelium, aging, and hypertension. Curr Hypertens Rep 8:84–89PubMedCrossRefGoogle Scholar
  108. Tanner KG, Landry J, Sternglanz R, Denu JM (2000) Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci U S A 97:14178–14182PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tanno M, Sakamoto J, Miura T, Shimamoto K, Horio Y (2007) Nucleocytoplasmic shuttling of the NAD+−dependent histone deacetylase SIRT1. J Biol Chem 282:6823–6832PubMedCrossRefGoogle Scholar
  110. Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 983:84–100PubMedCrossRefGoogle Scholar
  111. Toiber D, Erdel F, Bouazoune K, Silberman DM, Zhong L, Mulligan P, Sebastian C, Cosentino C, Martinez-Pastor B, Giacosa S, D’Urso A, Naar AM, Kingston R, Rippe K, Mostoslavsky R (2013) SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling. Mol Cell 51:454–468PubMedPubMedCentralCrossRefGoogle Scholar
  112. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13:324–331PubMedCrossRefGoogle Scholar
  113. Vahtola E, Louhelainen M, Merasto S, Martonen E, Penttinen S, Aahos I, Kyto V, Virtanen I, Mervaala E (2008) Forkhead class O transcription factor 3a activation and Sirtuin1 overexpression in the hypertrophied myocardium of the diabetic Goto-Kakizaki rat. J Hypertens 26:334–344PubMedCrossRefGoogle Scholar
  114. Vakhrusheva O, Smolka C, Gajawada P, Kostin S, Boettger T, Kubin T, Braun T, Bober E (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ Res 102:703–710PubMedCrossRefGoogle Scholar
  115. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16:93–105PubMedCrossRefGoogle Scholar
  116. Vaquero A, Scher MB, Lee DH, Sutton A, Cheng HL, Alt FW, Serrano L, Sternglanz R, Reinberg D (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20:1256–1261PubMedPubMedCentralCrossRefGoogle Scholar
  117. Vaquero A, Sternglanz R, Reinberg D (2007) NAD+−dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene 26:5505–5520PubMedCrossRefGoogle Scholar
  118. Vassilopoulos A, Fritz KS, Petersen DR, Gius D (2011) The human sirtuin family: evolutionary divergences and functions. Hum Genomics 5:485–496PubMedPubMedCentralCrossRefGoogle Scholar
  119. Vempati RK, Jayani RS, Notani D, Sengupta A, Galande S, Haldar D (2010) p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem 285:28553–28564PubMedPubMedCentralCrossRefGoogle Scholar
  120. Voghel G, Thorin-Trescases N, Farhat N, Nguyen A, Villeneuve L, Mamarbachi AM, Fortier A, Perrault LP, Carrier M, Thorin E (2007) Cellular senescence in endothelial cells from atherosclerotic patients is accelerated by oxidative stress associated with cardiovascular risk factors. Mech Ageing Dev 128:662–671PubMedCrossRefGoogle Scholar
  121. Wagner GR, Hirschey MD (2014) Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Mol Cell 54:5–16PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wang C, Chen L, Hou X, Li Z, Kabra N, Ma Y, Nemoto S, Finkel T, Gu W, Cress WD, Chen J (2006) Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 8:1025–1031PubMedCrossRefGoogle Scholar
  123. Wolffe AP (1996) Histone deacetylase: a regulator of transcription. Science (New York, NY) 272:371–372CrossRefGoogle Scholar
  124. Wu JI, Lessard J, Crabtree GR (2009) Understanding the words of chromatin regulation. Cell 136:200–206PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yang B, Zwaans BM, Eckersdorff M, Lombard DB (2009) The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability. Cell Cycle (Georgetown, Tex) 8:2662–2663CrossRefGoogle Scholar
  126. Yuan J, Pu M, Zhang Z, Lou Z (2009) Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle (Georgetown, Tex) 8:1747–1753CrossRefGoogle Scholar
  127. Zhang T, Kraus WL (2010) SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions. Biochim Biophys Acta 1804:1666–1675PubMedCrossRefGoogle Scholar
  128. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–488PubMedPubMedCentralCrossRefGoogle Scholar
  129. Zhang T, Berrocal JG, Frizzell KM, Gamble MJ, DuMond ME, Krishnakumar R, Yang T, Sauve AA, Kraus WL (2009) Enzymes in the NAD+ salvage pathway regulate SIRT1 activity at target gene promoters. J Biol Chem 284:20408–20417PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zhong L, D’Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, Guimaraes A, Marinelli B, Wikstrom JD, Nir T, Clish CB, Vaitheesvaran B, Iliopoulos O, Kurland I, Dor Y, Weissleder R, Shirihai OS, Ellisen LW, Espinosa JM, Mostoslavsky R (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140:280–293PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Biological Science DivisionUniversity of Chicago MedicineChicagoUSA
  2. 2.Department of SurgeryUniversity of ChicagoChicagoUSA

Personalised recommendations