Epigenetics: Chromatin Organization and Function

  • Genevieve P. Delcuve
  • Dilshad H. Khan
  • Vichithra R. B. Liyanage
  • Sanzida Jahan
  • Mojgan Rastegar
  • Lorrie A. Kirshenbaum
  • James R. DavieEmail author
Part of the Cardiac and Vascular Biology book series (Abbreviated title: Card. vasc. biol.)


Epigenetics refer to processes such as histone post-translational modifications (PTMs), DNA methylation and RNA that regulate gene activity and expression but are not dependent on alterations in DNA sequence. Herein, we review histone PTMs, histone variants and DNA modifications in the functioning of the nucleosome as an epigenetic signalling module. The majority of the human genome is transcribed, with most of the genome producing non-coding RNA, some of which is a component of the nuclear matrix, a dynamic RNA protein nuclear sub-structure. Non-coding RNA and coding RNA are associated with epigenetic modifiers, architectural chromatin proteins, coactivators and corepressors. The impact of changes in DNA sequence (single nucleotide polymorphisms) on the epigenome is discussed.


Histone Acetylation Nuclear Matrix Core Histone Nucleosome Position HDAC Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by grants from the Canadian Institutes of Health Research (CIHR) Team Grant (TEC-128094) to JRD, MR and other team members, CIHR (LAK), Research Manitoba (JRD), CancerCare Manitoba Foundation (JRD), Canadian Breast Cancer Foundation (JRD), Canadian Cancer Society (grant 702957 to JRD), Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant 2016–06035 to MR), Health Sciences Center Foundation (HSCF) to MR, CIHR Catalyst Grant CEN-132383 to MR and JRD, and International Rett Syndrome Foundation (IRSF) to MR. VRBL is a recipient of MHRC-UMGF studentship award. JRD is a Canada Research Chair in Chromatin Dynamics. LAK is a Canada Research Chair in Molecular Cardiology. The authors acknowledge the strong support of the Manitoba Institute of Child Health and CancerCare Manitoba Foundation.


Our work is compliant with ethical standards and I have no conflicts of interest to disclose.


  1. Acuna LI, Kornblihtt AR (2014) Long range chromatin organization: a new layer in splicing regulation? Transcription 5:e28726PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13(10):720–731. doi: 10.1038/nrg3293 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agger K, Christensen J, Cloos PA, Helin K (2008) The emerging functions of histone demethylases. Curr Opin Genet Dev 18(2):159–168. doi: 10.1016/j.gde.2007.12.003 PubMedCrossRefGoogle Scholar
  4. Ahmed K, Li R, Bazett-Jones DP (2009) Electron spectroscopic imaging of the nuclear landscape. Methods Mol Biol 464:415–423. doi: 10.1007/978-1-60327-461-6_23 PubMedCrossRefGoogle Scholar
  5. Ahmed K, Dehghani H, Rugg-Gunn P, Fussner E, Rossant J, Bazett-Jones DP (2010) Global chromatin architecture reflects pluripotency and lineage commitment in the early mouse embryo. PLoS One 5(5):e10531. doi: 10.1371/journal.pone.0010531 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, Shilatifard A, Workman J, Zhang Y (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4):633–636. doi: 10.1016/j.cell.2007.10.039 PubMedCrossRefGoogle Scholar
  7. Altaf M, Auger A, Covic M, Cote J (2009) Connection between histone H2A variants and chromatin remodeling complexes. Biochem Cell Biol 87(1):35–50. doi: 10.1139/O08-140 PubMedCrossRefGoogle Scholar
  8. Amine Aloui AEM, Sahbani SK, Landoulsi A (2013) Roles of methylation and sequestration in the mechanisms of DNA replication in some members of the enterobacteriaceae family. In: The mechanisms of DNA replication. doi: 10.5772/51724
  9. Anamika K, Krebs AR, Thompson J, Poch O, Devys D, Tora L (2010) Lessons from genome-wide studies: an integrated definition of the coactivator function of histone acetyl transferases. Epigenetics Chromatin 3(1):18. doi: 10.1186/1756-8935-3-18 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ansari SA, Morse RH (2013) Mechanisms of mediator complex action in transcriptional activation. Cell Mol Life Sci 70(15):2743–2756. doi: 10.1007/s00018-013-1265-9 PubMedCrossRefGoogle Scholar
  11. Avvakumov N, Nourani A, Cote J (2011) Histone chaperones: modulators of chromatin marks. Mol Cell 41(5):502–514. doi: 10.1016/j.molcel.2011.02.013 PubMedCrossRefGoogle Scholar
  12. Behjati S, Tarpey PS, Presneau N, Scheipl S, Pillay N, Van Loo P, Wedge DC, Cooke SL, Gundem G, Davies H, Nik-Zainal S, Martin S, McLaren S, Goody V, Robinson B, Butler A, Teague JW, Halai D, Khatri B, Myklebost O, Baumhoer D, Jundt G, Hamoudi R, Tirabosco R, Amary MF, Futreal PA, Stratton MR, Campbell PJ, Flanagan AM (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45(12):1479–1482. doi: 10.1038/ng.2814 PubMedCrossRefGoogle Scholar
  13. Bell O, Tiwari VK, Thoma NH, Schubeler D (2011) Determinants and dynamics of genome accessibility. Nat Rev Genet 12(8):554–564. doi: 10.1038/nrg3017 PubMedCrossRefGoogle Scholar
  14. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447(7143):407–412. doi: 10.1038/nature05915 PubMedCrossRefGoogle Scholar
  15. Berndsen CE, Denu JM (2008) Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol 18(6):682–689. doi: 10.1016/ PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bicker KL, Thompson PR (2013) The protein arginine deiminases: structure, function, inhibition, and disease. Biopolymers 99(2):155–163. doi: 10.1002/bip.22127 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blackledge NP, Thomson JP, Skene PJ (2013) CpG island chromatin is shaped by recruitment of ZF-CxxC proteins. Cold Spring Harb Perspect Biol 5(11):a018648. doi: 10.1101/cshperspect.a018648 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martinez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A, Lorincz MC, Ramalho-Santos M (2013) Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature 500(7461):222–226. doi: 10.1038/nature12362 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336(6083):934–937. doi: 10.1126/science.1220671 PubMedCrossRefGoogle Scholar
  20. Brown JD, Lin CY, Duan Q, Griffin G, Federation AJ, Paranal RM, Bair S, Newton G, Lichtman AH, Kung AL, Yang T, Wang H, Luscinskas FW, Croce KJ, Bradner JE, Plutzky J (2014) NF-kappaB directs dynamic super enhancer formation in inflammation and atherogenesis. Mol Cell 56(2):219–231. doi: 10.1016/j.molcel.2014.08.024 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Burgess RJ, Zhang Z (2013) Histone chaperones in nucleosome assembly and human disease. Nat Struct Mol Biol 20(1):14–22. doi: 10.1038/nsmb.2461 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Capell BC, Berger SL (2013) Genome-wide epigenetics. J Invest Dermatol 133(6), e9. doi: 10.1038/jid.2013.173 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M, Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K, Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R, Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond SM, Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y, Consortium F, Group RGER, Genome Science G (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563. doi: 10.1126/science.1112014 PubMedCrossRefGoogle Scholar
  24. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123(4):581–592. doi: 10.1016/j.cell.2005.10.023 PubMedCrossRefGoogle Scholar
  25. Cartron PF, Nadaradjane A, Lepape F, Lalier L, Gardie B, Vallette FM (2013) Identification of TET1 partners that control its DNA-demethylating function. Genes Cancer 4(5–6):235–241. doi: 10.1177/1947601913489020 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Caudron-Herger M, Rippe K (2012) Nuclear architecture by RNA. Curr Opin Genet Dev 22(2):179–187. doi: 10.1016/j.gde.2011.12.005 PubMedCrossRefGoogle Scholar
  27. Caudron-Herger M, Muller-Ott K, Mallm JP, Marth C, Schmidt U, Fejes-Toth K, Rippe K (2011) Coding RNAs with a non-coding function: maintenance of open chromatin structure. Nucleus 2(5):410–424, PubMedCrossRefGoogle Scholar
  28. Cerutti H, Casas-Mollano JA (2009) Histone H3 phosphorylation: universal code or lineage specific dialects? Epigenetics 4(2):71–75PubMedCrossRefGoogle Scholar
  29. Chen P, Zhao J, Li G (2013a) Histone variants in development and diseases. J Genet Genomics = Yi chuan xue bao 40(7):355–365. doi: 10.1016/j.jgg.2013.05.001 PubMedCrossRefGoogle Scholar
  30. Chen P, Zhao J, Wang Y, Wang M, Long H, Liang D, Huang L, Wen Z, Li W, Li X, Feng H, Zhao H, Zhu P, Li M, Wang QF, Li G (2013b) H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes Dev 27(19):2109–2124. doi: 10.1101/gad.222174.113 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chi TH, Wan M, Lee PP, Akashi K, Metzger D, Chambon P, Wilson CB, Crabtree GR (2003) Sequential roles of Brg, the ATPase subunit of BAF chromatin remodeling complexes, in thymocyte development. Immunity 19(2):169–182PubMedCrossRefGoogle Scholar
  32. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. doi: 10.1146/annurev.biochem.77.062706.153223 PubMedCrossRefGoogle Scholar
  33. Clayton AL, Rose S, Barratt MJ, Mahadevan LC (2000) Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J 19(14):3714–3726. doi: 10.1093/emboj/19.14.3714 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cole AJ, Clifton-Bligh RJ, Marsh DJ (2014) Ubiquitination and cancer: histone H2B monoubiquitination – roles to play in human malignancy. Endocr Relat Cancer. doi: 10.1530/ERC-14-0185 PubMedGoogle Scholar
  35. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322(5909):1845–1848. doi: 10.1126/science.1162228 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Corella D, Ordovas JM (2014) Aging and cardiovascular diseases: the role of gene-diet interactions. Ageing Res Rev 18C:53–73. doi: 10.1016/j.arr.2014.08.002 CrossRefGoogle Scholar
  37. Corradin O, Saiakhova A, Akhtar-Zaidi B, Myeroff L, Willis J, Cowper-Sal lari R, Lupien M, Markowitz S, Scacheri PC (2014) Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genome Res 24(1):1–13. doi: 10.1101/gr.164079.113 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cosgrove MS (2007) Histone proteomics and the epigenetic regulation of nucleosome mobility. Expert Rev Proteomics 4(4):465–478. doi: 10.1586/14789450.4.4.465 PubMedCrossRefGoogle Scholar
  39. Cosgrove MS, Wolberger C (2005) How does the histone code work? Biochem Cell Biol 83(4):468–476. doi: 10.1139/o05-137 PubMedCrossRefGoogle Scholar
  40. Danko CG, Hah N, Luo X, Martins AL, Core L, Lis JT, Siepel A, Kraus WL (2013) Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells. Mol Cell 50(2):212–222. doi: 10.1016/j.molcel.2013.02.015 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Das C, Tyler JK (2013) Histone exchange and histone modifications during transcription and aging. Biochim Biophys Acta 1819(3–4):332–342PubMedPubMedCentralGoogle Scholar
  42. Das C, Tyler JK, Churchill ME (2010) The histone shuffle: histone chaperones in an energetic dance. Trends Biochem Sci 35(9):476–489. doi: 10.1016/j.tibs.2010.04.001 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Davie JR, Murphy LC (1990) Level of ubiquitinated histone H2B in chromatin is coupled to ongoing transcription. Biochemistry 29(20):4752–4757PubMedCrossRefGoogle Scholar
  44. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150(1):12–27. doi: 10.1016/j.cell.2012.06.013 PubMedCrossRefGoogle Scholar
  45. De Koning L, Corpet A, Haber JE, Almouzni G (2007) Histone chaperones: an escort network regulating histone traffic. Nat Struct Mol Biol 14(11):997–1007. doi: 10.1038/nsmb1318 PubMedCrossRefGoogle Scholar
  46. Dekker J (2008) Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. J Biol Chem 283(50):34532–34540. doi: 10.1074/jbc.M806479200 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Delcuve GP, Davie JR (1989) Chromatin structure of erythroid-specific genes of immature and mature chicken erythrocytes. Biochem J 263(1):179–186PubMedPubMedCentralCrossRefGoogle Scholar
  48. Delcuve GP, Rastegar M, Davie JR (2009) Epigenetic control. J Cell Physiol 219(2):243–250. doi: 10.1002/jcp.21678 PubMedCrossRefGoogle Scholar
  49. Delcuve GP, Khan DH, Davie JR (2012) Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenetics 4(1):5. doi: 10.1186/1868-7083-4-5 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Delcuve GP, Khan DH, Davie JR (2013) Targeting class I histone deacetylases in cancer therapy. Expert Opin Ther Targets 17(1):29–41. doi: 10.1517/14728222.2013.729042 PubMedCrossRefGoogle Scholar
  51. Dhall A, Wei S, Fierz B, Woodcock CL, Lee TH, Chatterjee C (2014) Sumoylated human histone H4 prevents chromatin compaction by inhibiting long-range internucleosomal interactions. J Biol Chem. doi: 10.1074/jbc.M114.591644 PubMedPubMedCentralGoogle Scholar
  52. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380. doi: 10.1038/nature11082 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Draker R, Ng MK, Sarcinella E, Ignatchenko V, Kislinger T, Cheung P (2012) A combination of H2A.Z and H4 acetylation recruits Brd2 to chromatin during transcriptional activation. PLoS Genet 8(11), e1003047. doi: 10.1371/journal.pgen.1003047 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dujardin G, Lafaille C, de la Mata M, Marasco LE, Munoz MJ, Le Jossic-Corcos C, Corcos L, Kornblihtt AR (2014) How slow RNA polymerase II elongation favors alternative exon skipping. Mol Cell 54(4):683–690. doi: 10.1016/j.molcel.2014.03.044 PubMedCrossRefGoogle Scholar
  55. Dunn KL, Zhao H, Davie JR (2003) The insulator binding protein CTCF associates with the nuclear matrix. Exp Cell Res 288(1):218–223PubMedCrossRefGoogle Scholar
  56. Dyson MH, Thomson S, Inagaki M, Goto H, Arthur SJ, Nightingale K, Iborra FJ, Mahadevan LC (2005) MAP kinase-mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2. J Cell Sci 118(Pt 10):2247–2259. doi: 10.1242/jcs.02373 PubMedCrossRefGoogle Scholar
  57. Edmunds JW, Mahadevan LC, Clayton AL (2008) Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27(2):406–420. doi: 10.1038/sj.emboj.7601967 PubMedCrossRefGoogle Scholar
  58. Elsaesser SJ, Goldberg AD, Allis CD (2010) New functions for an old variant: no substitute for histone H3.3. Curr Opin Genet Dev 20(2):110–117. doi: 10.1016/j.gde.2010.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci U S A 105(50):19732–19737. doi: 10.1073/pnas.0810057105 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Erdel F, Krug J, Langst G, Rippe K (2011) Targeting chromatin remodelers: signals and search mechanisms. Biochim Biophys Acta 1809(9):497–508. doi: 10.1016/j.bbagrm.2011.06.005 PubMedCrossRefGoogle Scholar
  61. Fanucchi S, Shibayama Y, Burd S, Weinberg MS, Mhlanga MM (2013) Chromosomal contact permits transcription between coregulated genes. Cell 155(3):606–620. doi: 10.1016/j.cell.2013.09.051 PubMedCrossRefGoogle Scholar
  62. Feldman JL, Dittenhafer-Reed KE, Denu JM (2012) Sirtuin catalysis and regulation. J Biol Chem 287(51):42419–42427. doi: 10.1074/jbc.R112.378877 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421(6921):448–453. doi: 10.1038/nature01411 PubMedCrossRefGoogle Scholar
  64. Feser J, Tyler J (2011) Chromatin structure as a mediator of aging. FEBS Lett 585(13):2041–2048. doi: 10.1016/j.febslet.2010.11.016 PubMedCrossRefGoogle Scholar
  65. Fussner E, Ching RW, Bazett-Jones DP (2011) Living without 30nm chromatin fibers. Trends Biochem Sci 36(1):1–6. doi: 10.1016/j.tibs.2010.09.002 PubMedCrossRefGoogle Scholar
  66. Fussner E, Strauss M, Djuric U, Li R, Ahmed K, Hart M, Ellis J, Bazett-Jones DP (2012) Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Rep 13(11):992–996. doi: 10.1038/embor.2012.139 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gang H, Dhingra R, Wang Y, Mughal W, Gordon JW, Kirshenbaum LA (2011) Epigenetic regulation of E2F-1-dependent Bnip3 transcription and cell death by nuclear factor-kappaB and histone deacetylase-1. Pediatr Cardiol 32(3):263–266. doi: 10.1007/s00246-011-9893-z PubMedCrossRefGoogle Scholar
  68. Gang H, Shaw J, Dhingra R, Davie JR, Kirshenbaum LA (2013) Epigenetic regulation of canonical TNFalpha pathway by HDAC1 determines survival of cardiac myocytes. Am J Physiol Heart Circ Physiol 304(12):H1662–H1669. doi: 10.1152/ajpheart.00093.2013 PubMedCrossRefGoogle Scholar
  69. Gardini A, Shiekhattar R (2014) The many faces of long noncoding RNAs. FEBS J. doi: 10.1111/febs.13101 PubMedPubMedCentralGoogle Scholar
  70. Gardner KE, Allis CD, Strahl BD (2011) Operating on chromatin, a colorful language where context matters. J Mol Biol 409(1):36–46. doi: 10.1016/j.jmb.2011.01.040 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14(11):699–712. doi: 10.1038/nrm3679 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Gelfman S, Ast G (2013) When epigenetics meets alternative splicing: the roles of DNA methylation and GC architecture. Epigenomics 5(4):351–353. doi: 10.2217/epi.13.32 PubMedCrossRefGoogle Scholar
  73. Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D, Allis CD (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140(5):678–691. doi: 10.1016/j.cell.2010.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Gomez Acuna LI, Fiszbein A, Allo M, Schor IE, Kornblihtt AR (2013) Connections between chromatin signatures and splicing. Wiley Interdiscip Rev RNA 4(1):77–91. doi: 10.1002/wrna.1142 PubMedCrossRefGoogle Scholar
  75. Guil S, Esteller M (2012) Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol 19(11):1068–1075. doi: 10.1038/nsmb.2428 PubMedCrossRefGoogle Scholar
  76. Guil S, Soler M, Portela A, Carrere J, Fonalleras E, Gomez A, Villanueva A, Esteller M (2012) Intronic RNAs mediate EZH2 regulation of epigenetic targets. Nat Struct Mol Biol 19(7):664–670. doi: 10.1038/nsmb.2315 PubMedCrossRefGoogle Scholar
  77. Guo JU, Agarwal V, Guo H, Bartel DP (2014a) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409. doi: 10.1186/s13059-014-0409-z PubMedPubMedCentralCrossRefGoogle Scholar
  78. Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming GL, Song H (2014b) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17(2):215–222. doi: 10.1038/nn.3607 PubMedCrossRefGoogle Scholar
  79. Hall LL, Carone DM, Gomez AV, Kolpa HJ, Byron M, Mehta N, Fackelmayer FO, Lawrence JB (2014) Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156(5):907–919. doi: 10.1016/j.cell.2014.01.042 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Hangauer MJ, Vaughn IW, McManus MT (2013) Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet 9(6):e1003569. doi: 10.1371/journal.pgen.1003569 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Hansen JC, Ghosh RP, Woodcock CL (2010) Binding of the Rett syndrome protein, MeCP2, to methylated and unmethylated DNA and chromatin. IUBMB Life 62(10):732–738. doi: 10.1002/iub.386 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21(3):396–420. doi: 10.1038/cr.2011.32 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Hashimoto H, Vertino PM, Cheng X (2010) Molecular coupling of DNA methylation and histone methylation. Epigenomics 2(5):657–669. doi: 10.2217/epi.10.44 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hattori N, Ushijima T (2014) Compendium of aberrant DNA methylation and histone modifications in cancer. Biochem Biophys Res Commun. doi: 10.1016/j.bbrc.2014.08.140 Google Scholar
  85. Healy S, Khan P, He S, Davie JR (2012) Histone H3 phosphorylation, immediate-early gene expression, and the nucleosomal response: a historical perspective. Biochem Cell Biol 90(1):39–54. doi: 10.1139/o11-092 PubMedGoogle Scholar
  86. Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J 13(8):1823–1830PubMedPubMedCentralGoogle Scholar
  87. Heinz S, Romanoski CE, Benner C, Glass CK (2015) The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol 16(3):144–154. doi: 10.1038/nrm3949 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Hendzel MJ, Davie JR (1990) Nucleosomal histones of transcriptionally active/competent chromatin preferentially exchange with newly synthesized histones in quiescent chicken erythrocytes. Biochem J 271(1):67–73PubMedPubMedCentralCrossRefGoogle Scholar
  89. Hendzel MJ, Delcuve GP, Davie JR (1991) Histone deacetylase is a component of the internal nuclear matrix. J Biol Chem 266(32):21936–21942PubMedGoogle Scholar
  90. Hendzel MJ, Sun JM, Chen HY, Rattner JB, Davie JR (1994) Histone acetyltransferase is associated with the nuclear matrix. J Biol Chem 269(36):22894–22901PubMedGoogle Scholar
  91. Heyn H, Moran S, Hernando-Herraez I, Sayols S, Gomez A, Sandoval J, Monk D, Hata K, Marques-Bonet T, Wang L, Esteller M (2013) DNA methylation contributes to natural human variation. Genome Res 23(9):1363–1372. doi: 10.1101/gr.154187.112 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Heyn H, Sayols S, Moutinho C, Vidal E, Sanchez-Mut JV, Stefansson OA, Nadal E, Moran S, Eyfjord JE, Gonzalez-Suarez E, Pujana MA, Esteller M (2014) Linkage of DNA methylation quantitative trait loci to human cancer risk. Cell Rep 7(2):331–338. doi: 10.1016/j.celrep.2014.03.016 PubMedCrossRefGoogle Scholar
  93. Hnilicova J, Stanek D (2011) Where splicing joins chromatin. Nucleus 2(3):182–188. doi: 10.4161/nucl.2.3.15876 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Hnilicova J, Hozeifi S, Duskova E, Icha J, Tomankova T, Stanek D (2011) Histone deacetylase activity modulates alternative splicing. PLoS One 6(2):e16727. doi: 10.1371/journal.pone.0016727 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155(4):934–947. doi: 10.1016/j.cell.2013.09.053 PubMedCrossRefGoogle Scholar
  96. Ho L, Crabtree GR (2010) Chromatin remodelling during development. Nature 463(7280):474–484. doi: 10.1038/nature08911 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Ho L, Jothi R, Ronan JL, Cui K, Zhao K, Crabtree GR (2009) An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci U S A 106(13):5187–5191. doi: 10.1073/pnas.0812888106 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Hojfeldt JW, Agger K, Helin K (2013) Histone lysine demethylases as targets for anticancer therapy. Nat Rev Drug Discov 12(12):917–930. doi: 10.1038/nrd4154 PubMedCrossRefGoogle Scholar
  99. Hsu DW, Chubb JR, Muramoto T, Pears CJ, Mahadevan LC (2012) Dynamic acetylation of lysine-4-trimethylated histone H3 and H3 variant biology in a simple multicellular eukaryote. Nucleic Acids Res 40(15):7247–7256. doi: 10.1093/nar/gks367 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Huang S, Litt M, Felsenfeld G (2005) Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev 19(16):1885–1893. doi: 10.1101/gad.1333905 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Huang S, Li X, Yusufzai TM, Qiu Y, Felsenfeld G (2007) USF1 recruits histone modification complexes and is critical for maintenance of a chromatin barrier. Mol Cell Biol 27(22):7991–8002. doi: 10.1128/MCB.01326-07 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Huang H, Sabari BR, Garcia BA, Allis CD, Zhao Y (2014) SnapShot: histone modifications. Cell 159(2):458–458 e451. doi: 10.1016/j.cell.2014.09.037 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Hubner MR, Eckersley-Maslin MA, Spector DL (2013) Chromatin organization and transcriptional regulation. Curr Opin Genet Dev 23(2):89–95. doi: 10.1016/j.gde.2012.11.006 PubMedCrossRefGoogle Scholar
  104. Ibn-Salem J, Kohler S, Love MI, Chung HR, Huang N, Hurles ME, Haendel M, Washington NL, Smedley D, Mungall CJ, Lewis SE, Ott CE, Bauer S, Schofield PN, Mundlos S, Spielmann M, Robinson PN (2014) Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome Biol 15(9):423. doi: 10.1186/s13059-014-0423-1 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ, Andrews S, Balasubramanian S, Reik W (2013) A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol 14(10):R119. doi: 10.1186/gb-2013-14-10-r119 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Jack AP, Hake SB (2014) Getting down to the core of histone modifications. Chromosoma 123(4):355–371. doi: 10.1007/s00412-014-0465-x PubMedCrossRefGoogle Scholar
  107. Jackson V (1990) In vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 29(3):719–731PubMedCrossRefGoogle Scholar
  108. Jackson DA, Cook PR (1988) Visualization of a filamentous nucleoskeleton with a 23 nm axial repeat. EMBO J 7(12):3667–3677PubMedPubMedCentralGoogle Scholar
  109. Jahan S, Davie JR (2014) Protein arginine methyltransferases (PRMTs): role in chromatin organization. Adv Biol Regul. doi: 10.1016/j.jbior.2014.09.003 PubMedGoogle Scholar
  110. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532):1074–1080. doi: 10.1126/science.1063127 PubMedCrossRefGoogle Scholar
  111. Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10(3):161–172. doi: 10.1038/nrg2522 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Jin C, Felsenfeld G (2006) Distribution of histone H3.3 in hematopoietic cell lineages. Proc Natl Acad Sci U S A 103(3):574–579. doi: 10.1073/pnas.0509974103 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Jin J, Cai Y, Li B, Conaway RC, Workman JL, Conaway JW, Kusch T (2005) In and out: histone variant exchange in chromatin. Trends Biochem Sci 30(12):680–687. doi: 10.1016/j.tibs.2005.10.003 PubMedCrossRefGoogle Scholar
  114. Jonkers I, Kwak H, Lis JT (2014) Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. Elife 3:e02407. doi: 10.7554/eLife.02407 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Kanherkar RR, Bhatia-Dey N, Csoka AB (2014) Epigenetics across the human lifespan. Front Cell Dev Biol 2:49. doi: 10.3389/fcell.2014.00049 PubMedPubMedCentralGoogle Scholar
  116. Kaochar S, Tu BP (2012) Gatekeepers of chromatin: small metabolites elicit big changes in gene expression. Trends Biochem Sci 37(11):477–483. doi: 10.1016/j.tibs.2012.07.008 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap CC, Suzuki M, Kawai J, Suzuki H, Carninci P, Hayashizaki Y, Wells C, Frith M, Ravasi T, Pang KC, Hallinan J, Mattick J, Hume DA, Lipovich L, Batalov S, Engstrom PG, Mizuno Y, Faghihi MA, Sandelin A, Chalk AM, Mottagui-Tabar S, Liang Z, Lenhard B, Wahlestedt C, Group RGER, Genome Science G, Consortium F (2005) Antisense transcription in the mammalian transcriptome. Science 309(5740):1564–1566. doi: 10.1126/science.1112009 PubMedCrossRefGoogle Scholar
  118. Kaur P, Shorey LE, Ho E, Dashwood RH, Williams DE (2013) The epigenome as a potential mediator of cancer and disease prevention in prenatal development. Nutr Rev 71(7):441–457. doi: 10.1111/nure.12030 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Khan DH, Jahan S, Davie JR (2012) Pre-mRNA splicing: role of epigenetics and implications in disease. Adv Biol Regul 52(3):377–388. doi: 10.1016/j.jbior.2012.04.003 PubMedCrossRefGoogle Scholar
  120. Khan P, Drobic B, Perez-Cadahia B, Healy S, He S, Davie JR (2013) Mitogen- and stress-activated protein kinases 1 and 2 are required for maximal trefoil factor 1 induction. PLoS One 8(5):e63189. doi: 10.1371/journal.pone.0063189 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Khan DH, Gonzalez C, Cooper C, Sun JM, Chen HY, Healy S, Xu W, Smith KT, Workman JL, Leygue E, Davie JR (2014) RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing. Nucleic Acids Res 42(3):1656–1670. doi: 10.1093/nar/gkt1134 PubMedCrossRefGoogle Scholar
  122. Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, Shilatifard A, Muir TW, Roeder RG (2009) RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137(3):459–471. doi: 10.1016/j.cell.2009.02.027 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM, Wu J, Harmin DA, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff-Papadimitriou E, Kuhl D, Bito H, Worley PF, Kreiman G, Greenberg ME (2010) Widespread transcription at neuronal activity-regulated enhancers. Nature 465(7295):182–187. doi: 10.1038/nature09033 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Klein BJ, Piao L, Xi Y, Rincon-Arano H, Rothbart SB, Peng D, Wen H, Larson C, Zhang X, Zheng X, Cortazar MA, Pena PV, Mangan A, Bentley DL, Strahl BD, Groudine M, Li W, Shi X, Kutateladze TG (2014) The histone-H3K4-specific demethylase KDM5B binds to its substrate and product through distinct PHD fingers. Cell Rep 6(2):325–335. doi: 10.1016/j.celrep.2013.12.021 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin JW, Jennings JL, Link AJ, Madhani HD, Rine J (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2(5):E131. doi: 10.1371/journal.pbio.0020131 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Kondo Y (2009) Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J 50(4):455–463. doi: 10.3349/ymj.2009.50.4.455 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Kornblihtt AR, Schor IE, Allo M, Dujardin G, Petrillo E, Munoz MJ (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14(3):153–165. doi: 10.1038/nrm3525 PubMedCrossRefGoogle Scholar
  128. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. doi: 10.1016/j.cell.2007.02.005 PubMedCrossRefGoogle Scholar
  129. Kraushaar DC, Jin W, Maunakea A, Abraham B, Ha M, Zhao K (2013) Genome-wide incorporation dynamics reveal distinct categories of turnover for the histone variant H3.3. Genome Biol 14(10):R121. doi: 10.1186/gb-2013-14-10-r121 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Krogan NJ, Keogh MC, Datta N, Sawa C, Ryan OW, Ding H, Haw RA, Pootoolal J, Tong A, Canadien V, Richards DP, Wu X, Emili A, Hughes TR, Buratowski S, Greenblatt JF (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12(6):1565–1576PubMedCrossRefGoogle Scholar
  131. Kulaeva OI, Hsieh FK, Chang HW, Luse DS, Studitsky VM (2013) Mechanism of transcription through a nucleosome by RNA polymerase II. Biochim Biophys Acta 1829(1):76–83. doi: 10.1016/j.bbagrm.2012.08.015 PubMedCrossRefGoogle Scholar
  132. Kwak H, Lis JT (2013) Control of transcriptional elongation. Annu Rev Genet 47:483–508. doi: 10.1146/annurev-genet-110711-155440 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Kwak H, Fuda NJ, Core LJ, Lis JT (2013) Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339(6122):950–953. doi: 10.1126/science.1229386 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Lai F, Shiekhattar R (2014) Enhancer RNAs: the new molecules of transcription. Curr Opin Genet Dev 25:38–42. doi: 10.1016/j.gde.2013.11.017 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ, Blobel GA, Shiekhattar R (2013) Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494(7438):497–501. doi: 10.1038/nature11884 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lam MT, Li W, Rosenfeld MG, Glass CK (2014) Enhancer RNAs and regulated transcriptional programs. Trends Biochem Sci 39(4):170–182. doi: 10.1016/j.tibs.2014.02.007 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Law C, Cheung P (2013) Histone variants and transcription regulation. Subcell Biochem 61:319–341. doi: 10.1007/978-94-007-4525-4_14 PubMedCrossRefGoogle Scholar
  138. Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21(2):175–186. doi: 10.1016/j.gde.2011.01.022 PubMedPubMedCentralCrossRefGoogle Scholar
  139. Li W, Nagaraja S, Delcuve GP, Hendzel MJ, Davie JR (1993) Effects of histone acetylation, ubiquitination and variants on nucleosome stability. Biochem J 296(Pt 3):737–744PubMedPubMedCentralCrossRefGoogle Scholar
  140. Li X, Hu X, Patel B, Zhou Z, Liang S, Ybarra R, Qiu Y, Felsenfeld G, Bungert J, Huang S (2010) H4R3 methylation facilitates beta-globin transcription by regulating histone acetyltransferase binding and H3 acetylation. Blood 115(10):2028–2037. doi: 10.1182/blood-2009-07-236059 PubMedPubMedCentralCrossRefGoogle Scholar
  141. Li T, Song B, Wu Z, Lu M, Zhu WG (2014) Systematic identification of class I HDAC substrates. Brief Bioinform 15(6):963–972. doi: 10.1093/bib/bbt060 PubMedCrossRefGoogle Scholar
  142. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. doi: 10.1126/science.1181369 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Liu Z, Merkurjev D, Yang F, Li W, Oh S, Friedman MJ, Song X, Zhang F, Ma Q, Ohgi KA, Krones A, Rosenfeld MG (2014) Enhancer activation requires trans-recruitment of a mega transcription factor complex. Cell 159(2):358–373. doi: 10.1016/j.cell.2014.08.027 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Liyanage VR, Rastegar M (2014) Rett syndrome and MeCP2. Neuromolecular Med. doi: 10.1007/s12017-014-8295-9 PubMedGoogle Scholar
  145. Liyanage VRB, Zachariah RM, Delcuve GP, Davie JR, Rastegar M (2012) New developments in chromatin research: an epigenetic perspective. In: Simpson NM, Stewart VJ (eds) New developments in chromatin research. Nova Science Publishers, New York, pp 29–58Google Scholar
  146. Liyanage VR, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR (2014) DNA modifications: function and applications in normal and disease states. Biology (Basel) 3(4):670–723. doi: 10.3390/biology3040670 Google Scholar
  147. Locklear L Jr, Ridsdale JA, Bazett-Jones DP, Davie JR (1990) Ultrastructure of transcriptionally competent chromatin. Nucleic Acids Res 18(23):7015–7024PubMedPubMedCentralCrossRefGoogle Scholar
  148. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA (2013) Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153(2):320–334. doi: 10.1016/j.cell.2013.03.036 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Loyola A, Almouzni G (2007) Marking histone H3 variants: how, when and why? Trends Biochem Sci 32(9):425–433. doi: 10.1016/j.tibs.2007.08.004 PubMedCrossRefGoogle Scholar
  150. Lu PJ, Sundquist K, Baeckstrom D, Poulsom R, Hanby A, Meier-Ewert S, Jones T, Mitchell M, Pitha-Rowe P, Freemont P, Taylor-Papadimitriou J (1999) A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J Biol Chem 274(22):15633–15645PubMedCrossRefGoogle Scholar
  151. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T (2010) Regulation of alternative splicing by histone modifications. Science 327(5968):996–1000. doi: 10.1126/science.1184208 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8(2):140–146PubMedCrossRefGoogle Scholar
  153. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260. doi: 10.1038/38444 PubMedCrossRefGoogle Scholar
  154. Luther HP, Bartsch H, Morano I, Podlowski S, Baumann G (2005) Regulation of naturally occurring antisense RNA of myosin heavy chain (MyHC) in neonatal cardiomyocytes. J Cell Biochem 94(4):848–855. doi: 10.1002/jcb.20319 PubMedCrossRefGoogle Scholar
  155. Ma MK, Heath C, Hair A, West AG (2011) Histone crosstalk directed by H2B ubiquitination is required for chromatin boundary integrity. PLoS Genet 7(7):e1002175. doi: 10.1371/journal.pgen.1002175 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Maeshima K, Hihara S, Eltsov M (2010) Chromatin structure: does the 30-nm fibre exist in vivo? Curr Opin Cell Biol 22(3):291–297. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  157. Marino-Ramirez L, Levine KM, Morales M, Zhang S, Moreland RT, Baxevanis AD, Landsman D (2011) The histone database: an integrated resource for histones and histone fold-containing proteins. Database (Oxford) 2011:bar048. doi: 10.1093/database/bar048
  158. Marmorstein R, Zhou MM (2014) Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb Perspect Biol 6(7):a018762. doi: 10.1101/cshperspect.a018762 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Martens JH, Verlaan M, Kalkhoven E, Dorsman JC, Zantema A (2002) Scaffold/matrix attachment region elements interact with a p300-scaffold attachment factor A complex and are bound by acetylated nucleosomes. Mol Cell Biol 22(8):2598–2606PubMedPubMedCentralCrossRefGoogle Scholar
  160. Mattick JS (2011) The central role of RNA in human development and cognition. FEBS Lett 585(11):1600–1616. doi: 10.1016/j.febslet.2011.05.001 PubMedCrossRefGoogle Scholar
  161. Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, Turecki G, Delaney A, Varhol R, Thiessen N, Shchors K, Heine VM, Rowitch DH, Xing X, Fiore C, Schillebeeckx M, Jones SJ, Haussler D, Marra MA, Hirst M, Wang T, Costello JF (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257. doi: 10.1038/nature09165 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Maxwell SS, Pelka GJ, Tam PP, El-Osta A (2013) Chromatin context and ncRNA highlight targets of MeCP2 in brain. RNA Biol 10(11):1741–1757. doi: 10.4161/rna.26921 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Maze I, Noh KM, Soshnev AA, Allis CD (2014) Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 15(4):259–271. doi: 10.1038/nrg3673 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Mellen M, Ayata P, Dewell S, Kriaucionis S, Heintz N (2012) MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151(7):1417–1430. doi: 10.1016/j.cell.2012.11.022 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Mercer TR, Clark MB, Crawford J, Brunck ME, Gerhardt DJ, Taft RJ, Nielsen LK, Dinger ME, Mattick JS (2014) Targeted sequencing for gene discovery and quantification using RNA CaptureSeq. Nat Protoc 9(5):989–1009. doi: 10.1038/nprot.2014.058 PubMedCrossRefGoogle Scholar
  166. Mersfelder EL, Parthun MR (2006) The tale beyond the tail: histone core domain modifications and the regulation of chromatin structure. Nucleic Acids Res 34(9):2653–2662. doi: 10.1093/nar/gkl338 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 21(9):534–542. doi: 10.1016/j.tcb.2011.06.001 PubMedCrossRefGoogle Scholar
  168. Migliori V, Muller J, Phalke S, Low D, Bezzi M, Mok WC, Sahu SK, Gunaratne J, Capasso P, Bassi C, Cecatiello V, De Marco A, Blackstock W, Kuznetsov V, Amati B, Mapelli M, Guccione E (2012) Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 19(2):136–144. doi: 10.1038/nsmb.2209 PubMedCrossRefGoogle Scholar
  169. Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303(5656):343–348. doi: 10.1126/science.1090701 PubMedCrossRefGoogle Scholar
  170. Moser MA, Hagelkruys A, Seiser C (2014) Transcription and beyond: the role of mammalian class I lysine deacetylases. Chromosoma 123(1–2):67–78. doi: 10.1007/s00412-013-0441-x PubMedCrossRefGoogle Scholar
  171. Myers FA, Evans DR, Clayton AL, Thorne AW, Crane-Robinson C (2001) Targeted and extended acetylation of histones H4 and H3 at active and inactive genes in chicken embryo erythrocytes. J Biol Chem 276(23):20197–20205. doi: 10.1074/jbc.M009472200 PubMedCrossRefGoogle Scholar
  172. Myers FA, Chong W, Evans DR, Thorne AW, Crane-Robinson C (2003) Acetylation of histone H2B mirrors that of H4 and H3 at the chicken beta-globin locus but not at housekeeping genes. J Biol Chem 278(38):36315–36322. doi: 10.1074/jbc.M305822200 PubMedCrossRefGoogle Scholar
  173. Natoli G, Andrau JC (2012) Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet 46:1–19. doi: 10.1146/annurev-genet-110711-155459 PubMedCrossRefGoogle Scholar
  174. Newman JC, Verdin E (2014) beta-hydroxybutyrate: much more than a metabolite. Diabetes Res Clin Pract 106(2):173–181. doi: 10.1016/j.diabres.2014.08.009 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Nishino Y, Eltsov M, Joti Y, Ito K, Takata H, Takahashi Y, Hihara S, Frangakis AS, Imamoto N, Ishikawa T, Maeshima K (2012) Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J 31(7):1644–1653. doi: 10.1038/emboj.2012.35 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Nozawa RS, Gilbert N (2014) Interphase chromatin LINEd with RNA. Cell 156(5):864–865. doi: 10.1016/j.cell.2014.02.005 PubMedCrossRefGoogle Scholar
  177. Obrdlik A, Kukalev A, Louvet E, Farrants AK, Caputo L, Percipalle P (2008) The histone acetyltransferase PCAF associates with actin and hnRNP U for RNA polymerase II transcription. Mol Cell Biol 28(20):6342–6357. doi: 10.1128/MCB.00766-08 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Ong CT, Corces VG (2014) CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15(4):234–246. doi: 10.1038/nrg3663 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Orom UA, Shiekhattar R (2011) Noncoding RNAs and enhancers: complications of a long-distance relationship. Trends Genet 27(10):433–439. doi: 10.1016/j.tig.2011.06.009 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Perez-Cadahia B, Drobic B, Khan P, Shivashankar CC, Davie JR (2010) Current understanding and importance of histone phosphorylation in regulating chromatin biology. Curr Opin Drug Discov Devel 13(5):613–622PubMedGoogle Scholar
  181. Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14(14):R546–R551. doi: 10.1016/j.cub.2004.07.007 PubMedCrossRefGoogle Scholar
  182. Petesch SJ, Lis JT (2012) Overcoming the nucleosome barrier during transcript elongation. Trends Genet 28(6):285–294. doi: 10.1016/j.tig.2012.02.005 PubMedPubMedCentralCrossRefGoogle Scholar
  183. Phillips-Cremins JE, Corces VG (2013) Chromatin insulators: linking genome organization to cellular function. Mol Cell 50(4):461–474. doi: 10.1016/j.molcel.2013.04.018 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Pina B, Suau P (1987) Changes in histones H2A and H3 variant composition in differentiating and mature rat brain cortical neurons. Dev Biol 123(1):51–58PubMedCrossRefGoogle Scholar
  185. Quinn JJ, Ilik IA, Qu K, Georgiev P, Chu C, Akhtar A, Chang HY (2014) Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat Biotechnol 32(9):933–940. doi: 10.1038/nbt.2943 PubMedPubMedCentralCrossRefGoogle Scholar
  186. Radman-Livaja M, Rando OJ (2010) Nucleosome positioning: how is it established, and why does it matter? Dev Biol 339(2):258–266. doi: 10.1016/j.ydbio.2009.06.012 PubMedCrossRefGoogle Scholar
  187. Ridsdale JA, Hendzel MJ, Delcuve GP, Davie JR (1990) Histone acetylation alters the capacity of the H1 histones to condense transcriptionally active/competent chromatin. J Biol Chem 265(9):5150–5156PubMedGoogle Scholar
  188. Riester D, Hildmann C, Grunewald S, Beckers T, Schwienhorst A (2007) Factors affecting the substrate specificity of histone deacetylases. Biochem Biophys Res Commun 357(2):439–445. doi: 10.1016/j.bbrc.2007.03.158 PubMedCrossRefGoogle Scholar
  189. Rodriguez-Campos A, Azorin F (2007) RNA is an integral component of chromatin that contributes to its structural organization. PLoS One 2(11):e1182. doi: 10.1371/journal.pone.0001182 PubMedPubMedCentralCrossRefGoogle Scholar
  190. Rogakou EP, Sekeri-Pataryas KE (1999) Histone variants of H2A and H3 families are regulated during in vitro aging in the same manner as during differentiation. Exp Gerontol 34(6):741–754PubMedCrossRefGoogle Scholar
  191. Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839(8):627–643. doi: 10.1016/j.bbagrm.2014.03.001 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Rottach A, Leonhardt H, Spada F (2009) DNA methylation-mediated epigenetic control. J Cell Biochem 108(1):43–51. doi: 10.1002/jcb.22253 PubMedCrossRefGoogle Scholar
  193. Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG (2010) PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10(4):293–301. doi: 10.1038/nrc2812 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8(12):983–994. doi: 10.1038/nrm2298 PubMedPubMedCentralCrossRefGoogle Scholar
  195. Sanchez R, Meslamani J, Zhou MM (2014) The bromodomain: from epigenome reader to druggable target. Biochim Biophys Acta 1839(8):676–685. doi: 10.1016/j.bbagrm.2014.03.011 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Sapra AK, Anko ML, Grishina I, Lorenz M, Pabis M, Poser I, Rollins J, Weiland EM, Neugebauer KM (2009) SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo. Mol Cell 34(2):179–190. doi: 10.1016/j.molcel.2009.02.031 PubMedCrossRefGoogle Scholar
  197. Sawicka A, Seiser C (2012) Histone H3 phosphorylation – a versatile chromatin modification for different occasions. Biochimie 94(11):2193–2201. doi: 10.1016/j.biochi.2012.04.018 PubMedPubMedCentralCrossRefGoogle Scholar
  198. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M, Hovestadt V, Albrecht S, Kool M, Nantel A, Konermann C, Lindroth A, Jager N, Rausch T, Ryzhova M, Korbel JO, Hielscher T, Hauser P, Garami M, Klekner A, Bognar L, Ebinger M, Schuhmann MU, Scheurlen W, Pekrun A, Fruhwald MC, Roggendorf W, Kramm C, Durken M, Atkinson J, Lepage P, Montpetit A, Zakrzewska M, Zakrzewski K, Liberski PP, Dong Z, Siegel P, Kulozik AE, Zapatka M, Guha A, Malkin D, Felsberg J, Reifenberger G, von Deimling A, Ichimura K, Collins VP, Witt H, Milde T, Witt O, Zhang C, Castelo-Branco P, Lichter P, Faury D, Tabori U, Plass C, Majewski J, Pfister SM, Jabado N (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482(7384):226–231. doi: 10.1038/nature10833 PubMedCrossRefGoogle Scholar
  199. Segal E, Widom J (2009) What controls nucleosome positions? Trends Genet 25(8):335–343. doi: 10.1016/j.tig.2009.06.002 PubMedPubMedCentralCrossRefGoogle Scholar
  200. Shaw J, Zhang T, Rzeszutek M, Yurkova N, Baetz D, Davie JR, Kirshenbaum LA (2006) Transcriptional silencing of the death gene BNIP3 by cooperative action of NF-kappaB and histone deacetylase 1 in ventricular myocytes. Circ Res 99(12):1347–1354. doi: 10.1161/01.RES.0000251744.06138.50 PubMedCrossRefGoogle Scholar
  201. Shiio Y, Eisenman RN (2003) Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci U S A 100(23):13225–13230. doi: 10.1073/pnas.1735528100 PubMedPubMedCentralCrossRefGoogle Scholar
  202. Shmakova A, Batie M, Druker J, Rocha S (2014) Chromatin and oxygen sensing in the context of JmjC histone demethylases. Biochem J 462(3):385–395. doi: 10.1042/BJ20140754 PubMedPubMedCentralCrossRefGoogle Scholar
  203. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311(5762):844–847. doi: 10.1126/science.1124000 PubMedCrossRefGoogle Scholar
  204. Sims RJ 3rd, Reinberg D (2006) Histone H3 Lys 4 methylation: caught in a bind? Genes Dev 20(20):2779–2786. doi: 10.1101/gad.1468206 PubMedCrossRefGoogle Scholar
  205. Sims RJ 3rd, Millhouse S, Chen CF, Lewis BA, Erdjument-Bromage H, Tempst P, Manley JL, Reinberg D (2007) Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing. Mol Cell 28(4):665–676. doi: 10.1016/j.molcel.2007.11.010 PubMedPubMedCentralCrossRefGoogle Scholar
  206. Sjolinder M, Bjork P, Soderberg E, Sabri N, Farrants AK, Visa N (2005) The growing pre-mRNA recruits actin and chromatin-modifying factors to transcriptionally active genes. Genes Dev 19(16):1871–1884. doi: 10.1101/gad.339405 PubMedPubMedCentralCrossRefGoogle Scholar
  207. Skowronska-Krawczyk D, Ma Q, Schwartz M, Scully K, Li W, Liu Z, Taylor H, Tollkuhn J, Ohgi KA, Notani D, Kohwi Y, Kohwi-Shigematsu T, Rosenfeld MG (2014) Required enhancer-matrin-3 network interactions for a homeodomain transcription program. Nature 514(7521):257–261. doi: 10.1038/nature13573 PubMedPubMedCentralGoogle Scholar
  208. Small EC, Xi L, Wang JP, Widom J, Licht JD (2014) Single-cell nucleosome mapping reveals the molecular basis of gene expression heterogeneity. Proc Natl Acad Sci U S A 111(24):E2462–E2471. doi: 10.1073/pnas.1400517111 PubMedPubMedCentralCrossRefGoogle Scholar
  209. Soloaga A, Thomson S, Wiggin GR, Rampersaud N, Dyson MH, Hazzalin CA, Mahadevan LC, Arthur JS (2003) MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 22(11):2788–2797. doi: 10.1093/emboj/cdg273 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Munzel M, Wagner M, Muller M, Khan F, Eberl HC, Mensinga A, Brinkman AB, Lephikov K, Muller U, Walter J, Boelens R, van Ingen H, Leonhardt H, Carell T, Vermeulen M (2013) Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152(5):1146–1159. doi: 10.1016/j.cell.2013.02.004 PubMedCrossRefGoogle Scholar
  211. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45. doi: 10.1038/47412 PubMedCrossRefGoogle Scholar
  212. Szenker E, Ray-Gallet D, Almouzni G (2011) The double face of the histone variant H3.3. Cell Res 21(3):421–434. doi: 10.1038/cr.2011.14 PubMedPubMedCentralCrossRefGoogle Scholar
  213. Talbert PB, Henikoff S (2010) Histone variants--ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11(4):264–275. doi: 10.1038/nrm2861 PubMedCrossRefGoogle Scholar
  214. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040. doi: 10.1038/nsmb1338 PubMedPubMedCentralCrossRefGoogle Scholar
  215. Terrenoire E, McRonald F, Halsall JA, Page P, Illingworth RS, Taylor AM, Davison V, O’Neill LP, Turner BM (2010) Immunostaining of modified histones defines high-level features of the human metaphase epigenome. Genome Biol 11(11):R110. doi: 10.1186/gb-2010-11-11-r110 PubMedPubMedCentralCrossRefGoogle Scholar
  216. Teves SS, Henikoff S (2011) Heat shock reduces stalled RNA polymerase II and nucleosome turnover genome-wide. Genes Dev 25(22):2387–2397. doi: 10.1101/gad.178079.111 PubMedPubMedCentralCrossRefGoogle Scholar
  217. Thiriet C, Hayes JJ (2005) Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev 19(6):677–682. doi: 10.1101/gad.1265205 PubMedPubMedCentralCrossRefGoogle Scholar
  218. Thompson LL, Guppy BJ, Sawchuk L, Davie JR, McManus KJ (2013) Regulation of chromatin structure via histone post-translational modification and the link to carcinogenesis. Cancer Metastasis Rev 32(3–4):363–376. doi: 10.1007/s10555-013-9434-8 PubMedCrossRefGoogle Scholar
  219. Trojer P, Reinberg D (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28(1):1–13. doi: 10.1016/j.molcel.2007.09.011 PubMedCrossRefGoogle Scholar
  220. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science 329(5992):689–693. doi: 10.1126/science.1192002 PubMedPubMedCentralCrossRefGoogle Scholar
  221. Turner BM (2014) Nucleosome signalling: an evolving concept. Biochim Biophys Acta 1839(8):623–626. doi: 10.1016/j.bbagrm.2014.01.001 PubMedCrossRefGoogle Scholar
  222. Turner AM, Morris KV (2010) Controlling transcription with noncoding RNAs in mammalian cells. Biotechniques 48(6):ix–xvi. doi: 10.2144/000113442 PubMedCrossRefGoogle Scholar
  223. Tyagi A, Ryme J, Brodin D, Ostlund Farrants AK, Visa N (2009) SWI/SNF associates with nascent pre-mRNPs and regulates alternative pre-mRNA processing. PLoS Genet 5(5):e1000470. doi: 10.1371/journal.pgen.1000470 PubMedPubMedCentralCrossRefGoogle Scholar
  224. Vaissiere T, Sawan C, Herceg Z (2008) Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res 659(1–2):40–48. doi: 10.1016/j.mrrev.2008.02.004 PubMedCrossRefGoogle Scholar
  225. Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A (2011) Determinants of nucleosome organization in primary human cells. Nature 474(7352):516–520. doi: 10.1038/nature10002 PubMedPubMedCentralCrossRefGoogle Scholar
  226. van Holde KE, Lohr DE, Robert C (1992) What happens to nucleosomes during transcription? J Biol Chem 267(5):2837–2840PubMedGoogle Scholar
  227. Van Rechem C, Whetstine JR (2014) Examining the impact of gene variants on histone lysine methylation. Biochim Biophys Acta. doi: 10.1016/j.bbagrm.2014.05.014 PubMedPubMedCentralGoogle Scholar
  228. Villeponteau B, Martinson HG (1987) Gamma rays and bleomycin nick DNA and reverse the DNase I sensitivity of beta-globin gene chromatin in vivo. Mol Cell Biol 7(5):1917–1924PubMedPubMedCentralCrossRefGoogle Scholar
  229. Villeponteau B, Lundell M, Martinson H (1984) Torsional stress promotes the DNAase I sensitivity of active genes. Cell 39(3 Pt 2):469–478PubMedCrossRefGoogle Scholar
  230. Voigt P, LeRoy G, Drury WJ 3rd, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D (2012) Asymmetrically modified nucleosomes. Cell 151(1):181–193. doi: 10.1016/j.cell.2012.09.002 PubMedPubMedCentralCrossRefGoogle Scholar
  231. Walia H, Chen HY, Sun JM, Holth LT, Davie JR (1998) Histone acetylation is required to maintain the unfolded nucleosome structure associated with transcribing DNA. J Biol Chem 273(23):14516–14522PubMedCrossRefGoogle Scholar
  232. Walker J, Chen TA, Sterner R, Berger M, Winston F, Allfrey VG (1990) Affinity chromatography of mammalian and yeast nucleosomes. Two modes of binding of transcriptionally active mammalian nucleosomes to organomercurial-agarose columns, and contrasting behavior of the active nucleosomes of yeast. J Biol Chem 265(10):5736–5746PubMedGoogle Scholar
  233. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138(5):1019–1031. doi: 10.1016/j.cell.2009.06.049 PubMedPubMedCentralCrossRefGoogle Scholar
  234. Weber CM, Henikoff S (2014) Histone variants: dynamic punctuation in transcription. Genes Dev 28(7):672–682. doi: 10.1101/gad.238873.114 PubMedPubMedCentralCrossRefGoogle Scholar
  235. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324(5930):1076–1080. doi: 10.1126/science.1164097 PubMedPubMedCentralCrossRefGoogle Scholar
  236. Wery M, Shematorova E, Van Driessche B, Vandenhaute J, Thuriaux P, Van Mullem V (2004) Members of the SAGA and mediator complexes are partners of the transcription elongation factor TFIIS. EMBO J 23(21):4232–4242. doi: 10.1038/sj.emboj.7600326 PubMedPubMedCentralCrossRefGoogle Scholar
  237. Whitehouse I, Rando OJ, Delrow J, Tsukiyama T (2007) Chromatin remodelling at promoters suppresses antisense transcription. Nature 450(7172):1031–1035. doi: 10.1038/nature06391 PubMedCrossRefGoogle Scholar
  238. Winter S, Simboeck E, Fischle W, Zupkovitz G, Dohnal I, Mechtler K, Ammerer G, Seiser C (2008) 14-3-3 proteins recognize a histone code at histone H3 and are required for transcriptional activation. EMBO J 27(1):88–99. doi: 10.1038/sj.emboj.7601954 PubMedCrossRefGoogle Scholar
  239. Wright DE, Wang CY, Kao CF (2012) Histone ubiquitylation and chromatin dynamics. Front Biosci (Landmark Ed) 17:1051–1078CrossRefGoogle Scholar
  240. Wu H, Zhang Y (2011) Tet1 and 5-hydroxymethylation: a genome-wide view in mouse embryonic stem cells. Cell Cycle 10(15):2428–2436PubMedPubMedCentralCrossRefGoogle Scholar
  241. Wu H, Zhang Y (2014) Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156(1–2):45–68. doi: 10.1016/j.cell.2013.12.019 PubMedPubMedCentralCrossRefGoogle Scholar
  242. Wunsch AM, Lough J (1987) Modulation of histone H3 variant synthesis during the myoblast-myotube transition of chicken myogenesis. Dev Biol 119(1):94–99PubMedCrossRefGoogle Scholar
  243. Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y (2007) PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 25(6):801–812. doi: 10.1016/j.molcel.2007.03.001 PubMedCrossRefGoogle Scholar
  244. Yao YL, Yang WM (2011) Beyond histone and deacetylase: an overview of cytoplasmic histone deacetylases and their nonhistone substrates. J Biomed Biotechnol 2011:146493. doi: 10.1155/2011/146493 PubMedCrossRefGoogle Scholar
  245. Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A, Morin RD, Mungall AJ, Meissner B, Boyle M, Marquez VE, Marra MA, Gascoyne RD, Humphries RK, Arrowsmith CH, Morin GB, Aparicio SA (2011) Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 117(8):2451–2459. doi: 10.1182/blood-2010-11-321208 PubMedPubMedCentralCrossRefGoogle Scholar
  246. Young NL, DiMaggio PA, Plazas-Mayorca MD, Baliban RC, Floudas CA, Garcia BA (2009) High throughput characterization of combinatorial histone codes. Mol Cell Proteomics 8(10):2266–2284. doi: 10.1074/mcp.M900238-MCP200 PubMedPubMedCentralCrossRefGoogle Scholar
  247. Yuan CC, Matthews AG, Jin Y, Chen CF, Chapman BA, Ohsumi TK, Glass KC, Kutateladze TG, Borowsky ML, Struhl K, Oettinger MA (2012) Histone H3R2 symmetric dimethylation and histone H3K4 trimethylation are tightly correlated in eukaryotic genomes. Cell Rep 1(2):83–90. doi: 10.1016/j.celrep.2011.12.008 PubMedPubMedCentralCrossRefGoogle Scholar
  248. Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21(4):564–578. doi: 10.1038/cr.2011.42 PubMedPubMedCentralCrossRefGoogle Scholar
  249. Zaidi SK, Young DW, Montecino M, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2011) Bookmarking the genome: maintenance of epigenetic information. J Biol Chem 286(21):18355–18361. doi: 10.1074/jbc.R110.197061 PubMedPubMedCentralCrossRefGoogle Scholar
  250. Zaidi SK, Grandy RA, Lopez-Camacho C, Montecino M, van Wijnen AJ, Lian JB, Stein JL, Stein GS (2014) Bookmarking target genes in mitosis: a shared epigenetic trait of phenotypic transcription factors and oncogenes? Cancer Res 74(2):420–425. doi: 10.1158/0008-5472.CAN-13-2837 PubMedPubMedCentralCrossRefGoogle Scholar
  251. Zane L, Sharma V, Misteli T (2014) Common features of chromatin in aging and cancer: cause or coincidence? Trends Cell Biol. doi: 10.1016/j.tcb.2014.07.001 PubMedPubMedCentralGoogle Scholar
  252. Zentner GE, Scacheri PC (2012) The chromatin fingerprint of gene enhancer elements. J Biol Chem 287(37):30888–30896. doi: 10.1074/jbc.R111.296491 PubMedPubMedCentralCrossRefGoogle Scholar
  253. Zhang DE, Nelson DA (1988a) Histone acetylation in chicken erythrocytes. Rates of acetylation and evidence that histones in both active and potentially active chromatin are rapidly modified. Biochem J 250(1):233–240PubMedPubMedCentralCrossRefGoogle Scholar
  254. Zhang DE, Nelson DA (1988b) Histone acetylation in chicken erythrocytes. Rates of deacetylation in immature and mature red blood cells. Biochem J 250(1):241–245PubMedPubMedCentralCrossRefGoogle Scholar
  255. Zhang Z, Pugh BF (2011) High-resolution genome-wide mapping of the primary structure of chromatin. Cell 144(2):175–186. doi: 10.1016/j.cell.2011.01.003 PubMedPubMedCentralCrossRefGoogle Scholar
  256. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15(18):2343–2360. doi: 10.1101/gad.927301 PubMedCrossRefGoogle Scholar
  257. Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, Pugh BF (2011) A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332(6032):977–980. doi: 10.1126/science.1200508 PubMedPubMedCentralCrossRefGoogle Scholar
  258. Zhou HL, Luo G, Wise JA, Lou H (2014) Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 42(2):701–713. doi: 10.1093/nar/gkt875 PubMedCrossRefGoogle Scholar
  259. Zhubi A, Chen Y, Dong E, Cook EH, Guidotti A, Grayson DR (2014) Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Transl Psychiatry 4, e349. doi: 10.1038/tp.2013.123 PubMedPubMedCentralCrossRefGoogle Scholar
  260. Zlatanova J, Bishop TC, Victor JM, Jackson V, van Holde K (2009) The nucleosome family: dynamic and growing. Structure 17(2):160–171. doi: 10.1016/j.str.2008.12.016 PubMedCrossRefGoogle Scholar
  261. Zuin J, Dixon JR, van der Reijden MI, Ye Z, Kolovos P, Brouwer RW, van de Corput MP, van de Werken HJ, Knoch TA, van Ijcken WF, Grosveld FG, Ren B, Wendt KS (2014) Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci U S A 111(3):996–1001. doi: 10.1073/pnas.1317788111 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Genevieve P. Delcuve
    • 1
    • 2
  • Dilshad H. Khan
    • 1
    • 2
  • Vichithra R. B. Liyanage
    • 1
  • Sanzida Jahan
    • 1
    • 2
  • Mojgan Rastegar
    • 1
    • 2
  • Lorrie A. Kirshenbaum
    • 3
  • James R. Davie
    • 2
    Email author
  1. 1.Department of Biochemistry and Medical GeneticsUniversity of ManitobaWinnipegCanada
  2. 2.Manitoba Institute of Cell BiologyUniversity of ManitobaWinnipegCanada
  3. 3.Department of Physiology, The Institute of Cardiovascular Sciences, St. Boniface General Hospital Research CentreUniversity of ManitobaWinnipegCanada

Personalised recommendations