Skip to main content

Protocol for Standardizing High-to-Moderate Abundance Protein Biomarker Assessments Through an MRM-with-Standard-Peptides Quantitative Approach

  • Chapter
  • First Online:
Modern Proteomics – Sample Preparation, Analysis and Practical Applications

Abstract

Quantitative mass spectrometry (MS)-based approaches are emerging as a core technology for addressing health-related queries in systems biology and in the biomedical and clinical fields. In several ‘omics disciplines (proteomics included), an approach centered on selected or multiple reaction monitoring (SRM or MRM)-MS with stable isotope-labeled standards (SIS), at the protein or peptide level, has emerged as the most precise technique for quantifying and screening putative analytes in biological samples. To enable the widespread use of MRM-based protein quantitation for disease biomarker assessment studies and its ultimate acceptance for clinical analysis, the technique must be standardized to facilitate precise and accurate protein quantitation. To that end, we have developed a number of kits for assessing method/platform performance, as well as for screening proposed candidate protein biomarkers in various human biofluids. Collectively, these kits utilize a bottom-up LC-MS methodology with SIS peptides as internal standards and quantify proteins using regression analysis of standard curves. This chapter details the methodology used to quantify 192 plasma proteins of high-to-moderate abundance (covers a 6 order of magnitude range from 31 mg/mL for albumin to 18 ng/mL for peroxidredoxin-2), and a 21-protein subset thereof. We also describe the application of this method to patient samples for biomarker discovery and verification studies. Additionally, we introduce our recently developed Qualis-SIS software, which is used to expedite the analysis and assessment of protein quantitation data in control and patient samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–69

    Article  CAS  PubMed  Google Scholar 

  2. Dayon L, Sanchez JC (2012) Relative protein quantification by MS/MS using the tandem mass tag technology. Methods Mol Biol 893:115–27

    Article  CAS  PubMed  Google Scholar 

  3. Picard G, Lebert D, Louwagie M, Adrait A, Huillet C, Vandenesch F et al (2012) PSAQ™ standards for accurate MS-based quantification of proteins: from the concept to biomedical applications. J Mass Spectrom 47:1353–63

    Article  CAS  PubMed  Google Scholar 

  4. Villanueva J, Carrascal M, Abian J (2014) Isotope dilution mass spectrometry for absolute quantification in proteomics: concepts and strategies. J Proteomics 96:184–99

    Article  CAS  PubMed  Google Scholar 

  5. Gillette MA, Carr SA (2013) Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10:28–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–66

    Article  CAS  PubMed  Google Scholar 

  7. Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B (2012) Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol Cell Proteomics 11:1709–23

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gallien S, Bourmaud A, Kim SY, Domon B (2014) Technical considerations for large-scale parallel reaction monitoring analysis. J Proteomics 100:147–59

    Article  CAS  PubMed  Google Scholar 

  9. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11:1475–88

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gillet LC, Navarro P, Tate S, Röst H, Selevsek N, Reiter L et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717

    Article  PubMed  PubMed Central  Google Scholar 

  11. Picotti P, Clément-Ziza M, Lam H, Campbell DS, Schmidt A, Deutsch EW et al (2013) A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494:266–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–67

    Article  CAS  PubMed  Google Scholar 

  13. Omenn GS (2007) The HUPO Human Plasma Proteome Project. Proteomics Clin Appl 1:769–79

    Article  CAS  PubMed  Google Scholar 

  14. Omenn GS (2004) The Human Proteome Organization Plasma Proteome Project pilot phase: reference specimens, technology platform comparisons, and standardized data submissions and analyses. Proteomics 4:1235–40

    Article  CAS  PubMed  Google Scholar 

  15. Caisey JD, King DJ (1980) Clinical chemical values for some common laboratory animals. Clin Chem 26:1877–9

    CAS  PubMed  Google Scholar 

  16. Chambers AG, Percy AJ, Yang J, Camenzind AG, Borchers CH (2013) Multiplexed quantitation of endogenous proteins in dried blood spots by multiple reaction monitoring mass spectrometry. Mol Cell Proteomics 12:781–91

    Article  CAS  PubMed  Google Scholar 

  17. Berna M, Ott L, Engle S, Watson D, Solter P, Ackermann B (2008) Quantification of NTproBNP in rat serum using immunoprecipitation and LC/MS/MS: a biomarker of drug-induced cardiac hypertrophy. Anal Chem 80:561–6

    Article  CAS  PubMed  Google Scholar 

  18. Whiteaker JR, Zhao L, Lin C, Yan P, Wang P, Paulovich AG (2012) Sequential multiplexed analyte quantification using peptide immunoaffinity enrichment coupled to mass spectrometry. Mol Cell Proteomics 11:M111.015347. doi:10.1074/mcp.M111

    Article  PubMed  Google Scholar 

  19. Whiteaker JR, Zhao L, Frisch C, Ylera F, Harth S, Knappik A et al (2014) High-affinity recombinant antibody fragments (Fabs) can be applied in peptide enrichment immuno-MRM assays. J Proteome Res 13:2187–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Percy AJ, Simon R, Chambers AG, Borchers CH (2014) Enhanced sensitivity and multiplexing with 2D LC/MRM-MS and labeled standards for deeper and more comprehensive protein quantitation. J Proteomics 106:113–24

    Article  CAS  PubMed  Google Scholar 

  21. Shi T, Fillmore TL, Sun X, Zhao R, Schepmoes AA, Hossain M et al (2012) Antibody-free, targeted mass-spectrometric approach for quantification of proteins at low picogram per milliliter levels in human plasma/serum. Proc Natl Acad Sci U S A 109:15395–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 6:2212–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huttenhain R, Soste M, Selevsek N, Rost H, Sethi A, Carapito C et al (2012) Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Sci Transl Med 4:142ra94

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu T, Hossain M, Schepmoes AA, Fillmore TL, Sokoll LJ, Kronewitter SR et al (2012) Analysis of serum total and free PSA using immunoaffinity depletion coupled to SRM: correlation with clinical immunoassay tests. J Proteomics 75:4747–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rezeli M, Végvári A, Ottervald J, Olsson T, Laurell T, Marko-Varga G (2011) MRM assay for quantitation of complement components in human blood plasma – a feasibility study on multiple sclerosis. J Proteomics 75:211–20

    Article  CAS  PubMed  Google Scholar 

  26. Keshishian H, Addona T, Burgess M, Mani DR, Shi X, Kuhn E et al (2009) Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 8:2339–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Percy AJ, Yang J, Chambers AG, Simon R, Hardie DB, Borchers CH (2014) Multiplexed MRM with internal standards for cerebrospinal fluid candidate protein biomarker quantitation. J Proteome Res 13:3733–47

    Article  CAS  Google Scholar 

  28. Chambers AG, Percy AJ, Simon R, Borchers CH (2014) MRM for the verification of cancer biomarker proteins: recent applications to human plasma and serum. Expert Rev Proteomics 11:137–48

    Article  CAS  PubMed  Google Scholar 

  29. Percy AJ, Byrns S, Chambers AG, Borchers CH (2013) Targeted quantitation of CVD-linked plasma proteins for biomarker verification and validation. Expert Rev Proteomics 10:567–78

    Article  CAS  PubMed  Google Scholar 

  30. Domanski D, Percy AJ, Yang J, Chambers AG, Hill JS, Cohen Freue GV et al (2012) MRM-based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma. Proteomics 12:1222–43

    Article  CAS  PubMed  Google Scholar 

  31. Percy AJ, Chambers AG, Yang J, Borchers CH (2013) Multiplexed MRM-based quantitation of candidate cancer biomarker proteins in undepleted and non-enriched human plasma. Proteomics 13:2202–15

    Article  CAS  PubMed  Google Scholar 

  32. Percy AJ, Chambers AG, Yang J, Hardie D, Borchers CH (2014) Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim Biophys Acta 1844:917–26

    Article  CAS  PubMed  Google Scholar 

  33. Paulovich AG, Whiteaker JR, Hoofnagle AN, Wang P (2008) The interface between biomarker discovery and clinical validation: the tar pit of the protein biomarker pipeline. Proteomics Clin Appl 2:1386–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilson R (2013) Sensitivity and specificity: twin goals of proteomics assays. Can they be combined? Expert Rev Proteomics 10:135–49

    Article  CAS  PubMed  Google Scholar 

  35. Camenzind AG, van der Gugten JG, Popp R, Holmes DT, Borchers CH (2013) Development and evaluation of an immuno-MALDI (iMALDI) assay for angiotensin I and the diagnosis of secondary hypertension. Clin Proteomics 10:20

    Article  PubMed  PubMed Central  Google Scholar 

  36. Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW (2004) Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide antibodies (SISCAPA). J Proteome Res 3:235–44

    Article  CAS  PubMed  Google Scholar 

  37. Anderson NL, Razavi M, Pearson TW, Kruppa G, Paape R, Suckau D (2012) Precision of heavy-light peptide ratios measured by MALDI-tof mass spectrometry. J Proteome Res 11:1868–78

    Article  CAS  PubMed  Google Scholar 

  38. Sparbier K, Wenzel T, Dihazi H, Blaschke S, Müller GA, Deelder AM et al (2009) Immuno-MALDI-TOF MS: new perspectives for clinical applications of mass spectrometry. Proteomics 9:1442–50

    Article  CAS  PubMed  Google Scholar 

  39. Kennedy JJ, Abbatiello SE, Kim K, Yan P, Whiteaker JR, Lin C et al (2014) Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat Methods 11:149–55

    Article  CAS  PubMed  Google Scholar 

  40. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM et al (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27:633–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Percy AJ, Chambers AG, Smith DS, Borchers CH (2013) Standardized protocols for quality control of MRM-based plasma proteomic workflow. J Proteome Res 12:222–33

    Article  CAS  PubMed  Google Scholar 

  42. Percy AJ, Chambers AG, Yang J, Jackson AM, Domanski D, Burkhart J et al (2013) Method and platform standardization in MRM-based quantitative plasma proteomics. J Proteomics 95:66–76

    Article  CAS  PubMed  Google Scholar 

  43. Mohammed Y, Percy AJ, Chambers AG, Borchers CH (2015) Qualis-SIS: automated standard curve generation and quality assessment for multiplexed targeted quantitative proteomic experiments with labeled standards. J Proteome Res 14:1137–46

    Article  CAS  PubMed  Google Scholar 

  44. Kuzyk MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB et al (2009) Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics 8:1860–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kuzyk MA, Parker CE, Domanski D, Borchers CH (2013) Development of MRM-based assays for the absolute quantitation of plasma proteins. Methods Mol Biol 1023:53–82

    Article  CAS  PubMed  Google Scholar 

  46. Rodriguez J, Gupta N, Smith RD, Pevzner PA (2008) Does trypsin cut before proline? J Proteome Res 7:300–5

    Article  CAS  PubMed  Google Scholar 

  47. Mohammed Y, Domanski D, Jackson AM, Smith DS, Deelder AM, Palmblad M et al (2014) PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. J Proteomics 106:151–61

    Article  CAS  PubMed  Google Scholar 

  48. Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D et al (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 12:125–31

    Article  Google Scholar 

  49. Percy AJ, Chambers AG, Yang J, Domanski D, Borchers CH (2012) Comparison of standard- and nano-flow liquid chromatography platforms for MRM-based quantitation of putative plasma biomarker proteins. Anal Bioanal Chem 404:1089–101

    Article  CAS  PubMed  Google Scholar 

  50. Röst H, Malmström L, Aebersold R (2012) A computational tool to detect and avoid redundancy in selected reaction monitoring. Mol Cell Proteomics 11:540–9

    Article  PubMed  PubMed Central  Google Scholar 

  51. Agger SA, Marney LC, Hoofnagle AN (2010) Simultaneous quantification of apolipoprotein a-I and apolipoprotein B by liquid-chromatography-multiple- reaction-monitoring mass spectrometry. Clin Chem 56:1804–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Percy AJ, Chambers AG, Yang J, Hardie DB, Borchers CH (1844) Advances in multiplexed MRM-based protein biomarker quantitation toward clinical utility. Biochim Biophys Acta 2014:917–26

    Google Scholar 

  53. Tabb DL, Vega-Montoto L, Rudnick PA, Variyath AM, Ham A-JL, Bunk DM et al (2010) Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. J Proteome Res 9:761–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28:710–21

    Article  CAS  PubMed  Google Scholar 

  55. Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM, Schubert OT et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32:219–23

    Article  PubMed  Google Scholar 

  56. Ni X, Li X, Guo Y, Zhou T, Guo X, Zhao C et al (2014) Quantitative proteomics analysis of altered protein expression in the placental villous tissue of early pregnancy loss using isobaric tandem mass tags. Biomed Res Int 2014:647143

    PubMed  PubMed Central  Google Scholar 

  57. Mingrone G, Iaconelli A, Leccesi L, Nanni G, Pomp A, Castagneto M et al (2012) Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med 366:1577–85

    Article  CAS  PubMed  Google Scholar 

  58. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE et al (2012) Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med 366:1567–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sjöström L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden Å et al (2014) Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311:2297–304

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Genome Canada for STIC (Science and Technology Innovation Centre) funding and support. Carol Parker (UVic-Genome BC Proteomics Centre) is acknowledged for assisting in the manuscript editing process.

Competing Interests

CHB is the director of the Centre and the Chief Scientific Officer of MRM Proteomics, which has commercialized the performance kits (namely the PeptiQuant LC-MS Platform and PeptiQuant MRM/MS Workflow kits) and the assessment kits (PeptiQuant Human Discovery Assay kit, or BAK-192, and BAK-21) described here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph H. Borchers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Percy, A.J., Yang, J., Chambers, A.G., Mohammed, Y., Miliotis, T., Borchers, C.H. (2016). Protocol for Standardizing High-to-Moderate Abundance Protein Biomarker Assessments Through an MRM-with-Standard-Peptides Quantitative Approach. In: Mirzaei, H., Carrasco, M. (eds) Modern Proteomics – Sample Preparation, Analysis and Practical Applications. Advances in Experimental Medicine and Biology, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-319-41448-5_24

Download citation

Publish with us

Policies and ethics