Skip to main content

Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics

  • Chapter
  • First Online:
Modern Proteomics – Sample Preparation, Analysis and Practical Applications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 919))

Abstract

Posttranslational modifications (PTMs) are important biochemical processes for regulating various signaling pathways and determining specific cell fate. Mass spectrometry (MS)-based proteomics has been developed extensively in the past decade and is becoming the standard approach for systematic characterization of different PTMs on a global scale. In this chapter, we will explain the biological importance of various PTMs, summarize key innovations in PTMs enrichment strategies, high-performance liquid chromatography (HPLC)-based fractionation approaches, mass spectrometry detection methods, and lastly bioinformatic tools for PTMs related data analysis. With great effort in recent years by the proteomics community, highly efficient enriching methods and comprehensive resources have been developed. This chapter will specifically focus on five major types of PTMs; phosphorylation, glycosylation, ubiquitination/sumosylation, acetylation, and methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scott JD, Pawson T (2009) Cell signaling in space and time: where proteins come together and when they’re apart. Science 326(5957):1220–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bensimon A, Heck AJ, Aebersold R (2012) Mass spectrometry-based proteomics and network biology. Annu Rev Biochem 81:379–405

    Article  CAS  PubMed  Google Scholar 

  3. Christopher W (2006) Posttranslational modification of proteins: expanding nature’s inventory. Colo.: Roberts and Co. Publishers, Englewood, p xxi

    Google Scholar 

  4. Bakri Y et al (2005) Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood 105(7):2707–2716

    Article  CAS  PubMed  Google Scholar 

  5. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221

    Article  CAS  PubMed  Google Scholar 

  6. Mann M et al (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261–268

    Article  CAS  PubMed  Google Scholar 

  7. Ihara Y, Nukina N, Miura R, Ogawara M (1986) Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease. J Biochem 99(6):1807–1810

    CAS  PubMed  Google Scholar 

  8. Pedersen B, Holscher T, Sato Y, Pawlinski R, Mackman N (2005) A balance between tissue factor and tissue factor pathway inhibitor is required for embryonic development and hemostasis in adult mice. Blood 105(7):2777–2782

    Article  CAS  PubMed  Google Scholar 

  9. Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56R

    Article  CAS  PubMed  Google Scholar 

  10. Lechner J, Wieland F (1989) Structure and biosynthesis of prokaryotic glycoproteins. Annu Rev Biochem 58:173–194

    Article  CAS  PubMed  Google Scholar 

  11. Trombetta ES (2003) The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology 13(9):77R–91R

    Article  CAS  PubMed  Google Scholar 

  12. Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426(2):227–237

    Article  CAS  PubMed  Google Scholar 

  13. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291(5512):2370–2376

    Article  CAS  PubMed  Google Scholar 

  14. Kravtsova-Ivantsiv Y, Ciechanover A (2012) Non-canonical ubiquitin-based signals for proteasomal degradation. J Cell Sci 125(Pt 3):539–548

    Article  CAS  PubMed  Google Scholar 

  15. Hicke L (1999) Gettin’ down with ubiquitin: turning off cell-surface receptors, transporters and channels. Trends Cell Biol 9(3):107–112

    Article  CAS  PubMed  Google Scholar 

  16. Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2(3):195–201

    Article  CAS  PubMed  Google Scholar 

  17. Impens F, Radoshevich L, Cossart P, Ribet D (2014) Mapping of SUMO sites and analysis of SUMOylation changes induced by external stimuli. Proc Natl Acad Sci U S A 111(34):12432–12437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kamitani T, Kito K, Nguyen HP, Yeh ET (1997) Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem 272(45):28557–28562

    Article  CAS  PubMed  Google Scholar 

  19. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2(3):211–216

    Article  CAS  PubMed  Google Scholar 

  20. Loeb KR, Haas AL (1992) The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 267(11):7806–7813

    CAS  PubMed  Google Scholar 

  21. Zhao S et al (2010) Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968):1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chaurasia MK et al (2014) A prawn core histone 4: derivation of N- and C-terminal peptides and their antimicrobial properties, molecular characterization and mRNA transcription. Microbiol Res 170:78

    Article  PubMed  CAS  Google Scholar 

  23. Yang XJ, Seto E (2008) Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 31(4):449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang DT, Walden H, Duda D, Schulman BA (2004) Ubiquitin-like protein activation. Oncogene 23(11):1958–1971

    Article  CAS  PubMed  Google Scholar 

  25. Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48(4):491–507

    Article  CAS  PubMed  Google Scholar 

  26. Jellinger KA (2010) The neuropathologic substrate of Parkinson disease dementia. Acta Neuropathol 119(1):151–153

    Article  PubMed  Google Scholar 

  27. Munshi A, Shafi G, Aliya N, Jyothy A (2009) Histone modifications dictate specific biological readouts. J Genet Genomics 36(2):75–88

    Article  CAS  PubMed  Google Scholar 

  28. Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 73(11):2064–2077

    Article  CAS  PubMed  Google Scholar 

  29. Wang P, Giese RW (1998) Phosphate-specific fluorescence labeling with BO-IMI: reaction details. J Chromatogr A 809(1–2):211–218

    Article  CAS  PubMed  Google Scholar 

  30. Abu-Lawi KI, Sultzer BM (1995) Induction of serine and threonine protein phosphorylation by endotoxin-associated protein in murine resident peritoneal macrophages. Infect Immun 63(2):498–502

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Arad-Dann H, Beller U, Haimovitch R, Gavrieli Y, Ben-Sasson SA (1993) Immunohistochemistry of phosphotyrosine residues: identification of distinct intracellular patterns in epithelial and steroidogenic tissues. J Histochem Cytochem 41(4):513–519

    Article  CAS  PubMed  Google Scholar 

  32. MacDonald JA, Mackey AJ, Pearson WR, Haystead TAJ (2002) A strategy for the rapid identification of phosphorylation sites in the phosphoproteome. Mol Cell Proteomics 1(4):314–322

    Article  CAS  PubMed  Google Scholar 

  33. Olsen JV et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648

    Article  CAS  PubMed  Google Scholar 

  34. Sugiyama N et al (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6(6):1103–1109

    Article  CAS  PubMed  Google Scholar 

  35. Ficarro SB, Parikh JR, Blank NC, Marto JA (2008) Niobium (V) oxide (Nb2O5): application to phosphoproteomics. Anal Chem 80(12):4606–4613

    Article  CAS  PubMed  Google Scholar 

  36. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4(7):873–886

    Article  CAS  PubMed  Google Scholar 

  37. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4(3):231–237

    Article  CAS  PubMed  Google Scholar 

  38. Wu J, Shakey Q, Liu W, Schuller A, Follettie MT (2007) Global profiling of phosphopeptides by titania affinity enrichment. J Proteome Res 6(12):4684–4689

    Article  CAS  PubMed  Google Scholar 

  39. Villen J, Gygi SP (2008) The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat Protoc 3(10):1630–1638

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhou H et al (2013) Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat Protoc 8(3):461–480

    Article  CAS  PubMed  Google Scholar 

  41. Feng S et al (2007) Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol Cell Proteomics 6(9):1656–1665

    Article  CAS  PubMed  Google Scholar 

  42. Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71(14):2883–2892

    Article  CAS  PubMed  Google Scholar 

  43. Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154(1):250–254

    Article  CAS  PubMed  Google Scholar 

  44. Ficarro SB et al (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305

    Article  CAS  PubMed  Google Scholar 

  45. Engholm-Keller K et al (2012) TiSH–a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC. J Proteome 75(18):5749–5761

    Article  CAS  Google Scholar 

  46. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7(4):661–671

    Article  CAS  PubMed  Google Scholar 

  47. Zhou H et al (2008) Specific phosphopeptide enrichment with immobilized titanium Ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res 7(9):3957–3967

    Article  CAS  PubMed  Google Scholar 

  48. Beltran L, Casado P, Rodriguez-Prados JC, Cutillas PR (2012) Global profiling of protein kinase activities in cancer cells by mass spectrometry. J Proteome 77:492–503

    Article  CAS  Google Scholar 

  49. Hunter T, Sefton BM (1980) Transforming gene-product of Rous-sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A-Biol Sci 77(3):1311–1315

    Article  CAS  Google Scholar 

  50. Matsuoka S et al (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166

    Article  CAS  PubMed  Google Scholar 

  51. Gronborg M et al (2002) A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies – Identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics 1(7):517–527

    Article  CAS  PubMed  Google Scholar 

  52. Beausoleil SA et al (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A 101(33):12130–12135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Han G et al (2008) Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics 8(7):1346–1361

    Article  CAS  PubMed  Google Scholar 

  54. Gilar M, Olivova P, Daly AE, Gebler JC (2005) Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem 77(19):6426–6434

    Article  CAS  PubMed  Google Scholar 

  55. Reinders J, Sickmann A (2005) State-of-the-art in phosphoproteomics. Proteomics 5(16):4052–4061

    Article  CAS  PubMed  Google Scholar 

  56. Alpert AJ (2008) Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides. Anal Chem 80(1):62–76

    Article  CAS  PubMed  Google Scholar 

  57. Villén J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci 104(5):1488–1493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zhai B, Villen J, Beausoleil SA, Mintseris J, Gygi SP (2008) Phosphoproteome analysis of drosophila metanogaster embryos. J Proteome Res 7(4):1675–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McNulty DE, Annan RS (2008) Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7(5):971–980

    Article  CAS  PubMed  Google Scholar 

  60. Song CX et al (2010) Reversed-phase-reversed-phase liquid chromatography approach with high orthogonality for multidimensional separation of phosphopeptides. Anal Chem 82(1):53–56

    Article  CAS  PubMed  Google Scholar 

  61. Sano A, Nakamura H (2004) Chemo-affinity of titania for the column-switching HPLC analysis of phosphopeptides. Anal Sci 20(3):565–566

    Article  CAS  PubMed  Google Scholar 

  62. Kaji H et al (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21(6):667–672

    Article  CAS  PubMed  Google Scholar 

  63. Wang L et al (2006) OK—Concanavalin A-captured glycoproteins in healthy human urine. Mol Cell Proteomics 5(3):560–562

    Article  CAS  PubMed  Google Scholar 

  64. Wisniewski JR, Nagaraj N, Zougman A, Gnad F, Mann M (2010) Brain phosphoproteome obtained by a FASP-based method reveals plasma membrane protein topology. J Proteome Res 9(6):3280–3289

    Article  CAS  PubMed  Google Scholar 

  65. Yang Z, Hancock WS (2005) Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography. J Chromatogr A 1070(1–2):57–64

    Article  CAS  PubMed  Google Scholar 

  66. Madera M, Mechref Y, Novotny MV (2005) Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal Chem 77(13):4081–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaji H, Yamauchi Y, Takahashi N, Isobe T (2007) Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging. Nat Protoc 1(6):3019–3027

    Article  CAS  Google Scholar 

  68. Zhang H, X-j L, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21(6):660–666

    Article  CAS  PubMed  Google Scholar 

  69. Sun B et al (2007) Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol Cell Proteomics 6(1):141–149

    Article  PubMed  CAS  Google Scholar 

  70. Alley WR Jr, Mann BF, Novotny MV (2013) High-sensitivity analytical approaches for the structural characterization of glycoproteins. Chem Rev 113(4):2668–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sun B, Hood L (2014) Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins. J Proteome Res 13(6):2705–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wollscheid B et al (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27(4):378–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Teo CF et al (2010) Glycopeptide-specific monoclonal antibodies suggest new roles for O-GlcNAc. Nat Chem Biol 6(5):338–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alfaro JF et al (2012) Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc Natl Acad Sci 109(19):7280–7285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Anonsen JH, Vik A, Egge-Jacobsen W, Koomey M (2012) An extended spectrum of target proteins and modification sites in the general O-linked protein glycosylation system in Neisseria gonorrhoeae. J Proteome Res 11(12):5781–5793

    CAS  PubMed  Google Scholar 

  76. Peng J et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926

    Article  CAS  PubMed  Google Scholar 

  77. Tagwerker C et al (2006) A tandem affinity tag for two-step purification under fully denaturing conditions – Application in ubiquitin profiling and protein complex identification combined with in vivo cross-linking. Mol Cell Proteomics 5(4):737–748

    Article  CAS  PubMed  Google Scholar 

  78. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28(8):868–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kim W et al (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44(2):325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim SC et al (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23(4):607–618

    Article  CAS  PubMed  Google Scholar 

  81. Choudhary C et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840

    Article  CAS  PubMed  Google Scholar 

  82. Mertins P et al (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10(7):634–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mann M, Jensen ON (2003) Proteomic analysis of post-translational modifications. Nat Biotechnol 21(3):255–261

    Article  CAS  PubMed  Google Scholar 

  84. Tian R (2014) Exploring intercellular signaling by proteomic approaches. Proteomics 14(4–5):498–512

    Article  CAS  PubMed  Google Scholar 

  85. Gropengiesser J, Varadarajan BT, Stephanowitz H, Krause E (2009) The relative influence of phosphorylation and methylation on responsiveness of peptides to MALDI and ESI mass spectrometry. J Mass Spectrom 44(5):821–831

    Article  CAS  PubMed  Google Scholar 

  86. Gao Y, Wang Y (2007) A method to determine the ionization efficiency change of peptides caused by phosphorylation. J Am Soc Mass Spectrom 18(11):1973–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4(10):798–806

    Article  CAS  PubMed  Google Scholar 

  88. Tuytten R et al (2006) Stainless steel electrospray probe: a dead end for phosphorylated organic compounds? J Chromatogr A 1104(1–2):209–221

    Article  CAS  PubMed  Google Scholar 

  89. Swaney DL, Wenger CD, Thomson JA, Coon JJ (2009) Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci 106(4):995–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Villen J, Beausoleil SA, Gygi SP (2008) Evaluation of the utility of neutral-loss-dependent MS3 strategies in large-scale phosphorylation analysis. Proteomics 8(21):4444–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Palumbo AM, Tepe JJ, Reid GE (2008) Mechanistic insights into the multistage gas-phase fragmentation behavior of phosphoserine- and phosphothreonine-containing peptides. J Proteome Res 7(2):771–779

    Article  CAS  PubMed  Google Scholar 

  93. Boersema PJ, Mohammed S, Heck AJR (2009) Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom 44(6):861–878

    Article  CAS  PubMed  Google Scholar 

  94. Schroeder MJ, Shabanowitz J, Schwartz JC, Hunt DF, Coon JJ (2004) A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. Anal Chem 76(13):3590–3598

    Article  CAS  PubMed  Google Scholar 

  95. Palumbo AM, Reid GE (2008) Evaluation of Gas-phase rearrangement and competing fragmentation reactions on protein phosphorylation site assignment using collision induced dissociation-MS/MS and MS3. Anal Chem 80(24):9735–9747

    Article  CAS  PubMed  Google Scholar 

  96. Cain JA, Solis N, Cordwell SJ (2014) Beyond gene expression: the impact of protein post-translational modifications in bacteria. J Proteome 97:265–286

    Article  CAS  Google Scholar 

  97. Hung C-W, Schlosser A, Wei J, Lehmann WD (2007) Collision-induced reporter fragmentations for identification of covalently modified peptides. Anal Bioanal Chem 389(4):1003–1016

    Article  CAS  PubMed  Google Scholar 

  98. Olsen JV et al (2007) Higher-energy C-trap dissociation for peptide modification analysis. Nat Methods 4(9):709–712

    Article  CAS  PubMed  Google Scholar 

  99. Li X et al (2007) Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. J Proteome Res 6(3):1190–1197

    Article  CAS  PubMed  Google Scholar 

  100. Myung S et al (2011) High-capacity ion trap coupled to a time-of-flight mass spectrometer for comprehensive linked scans with no scanning losses. Int J Mass Spectrom 301(1–3):211–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chaze T et al (2014) O-Glycosylation of the N-terminal region of the serine-rich adhesin Srr1 of streptococcus agalactiae explored by mass spectrometry. Mol Cell Proteomics 13(9):2168–2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Larsen MR, Trelle MB, Thingholm TE, Jensen ON (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40(6):790–798

    Article  CAS  PubMed  Google Scholar 

  103. Melo-Braga MN et al (2012) Modulation of protein phosphorylation, N-Glycosylation and Lys-Acetylation in grape (Vitis vinifera) mesocarp and exocarp owing to lobesia botrana infection. Mol Cell Proteomics 11(10):945–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rappsilber J, Friesen WJ, Paushkin S, Dreyfuss G, Mann M (2003) Detection of arginine dimethylated peptides by parallel precursor ion scanning mass spectrometry in positive ion mode. Anal Chem 75(13):3107–3114

    Article  CAS  PubMed  Google Scholar 

  105. Na CH, Peng J (2012) Analysis of ubiquitinated proteome by quantitative mass spectrometry. Methods Mol Biol 893:417–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jedrychowski MP et al (2011) Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics 10(12):M111 009910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Nagaraj N, D’Souza RCJ, Cox J, Olsen JV, Mann M (2010) Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. J Proteome Res 9(12):6786–6794

    Article  CAS  PubMed  Google Scholar 

  108. Syrstad EA, Turecek F (2005) Toward a general mechanism of electron capture dissociation. J Am Soc Mass Spectrom 16(2):208–224

    Article  CAS  PubMed  Google Scholar 

  109. Chi A et al (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 104(7):2193–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mikesh LM et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764(12):1811–1822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Frese CK et al (2011) Improved peptide identification by targeted fragmentation using CID, HCD and ETD on an LTQ-Orbitrap Velos. J Proteome Res 10(5):2377–2388

    Article  CAS  PubMed  Google Scholar 

  112. Good DM, Wirtala M, McAlister GC, Coon JJ (2007) Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6(11):1942–1951

    Article  CAS  PubMed  Google Scholar 

  113. Molina H, Horn DM, Tang N, Mathivanan S, Pandey A (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci U S A 104(7):2199–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xia Y et al (2006) Implementation of ion/ion reactions in a quadrupole/time-of-flight tandem mass spectrometer. Anal Chem 78(12):4146–4154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. McAlister GC et al (2008) A proteomics grade electron transfer dissociation-enabled hybrid linear ion trap-Orbitrap mass spectrometer. J Proteome Res 7(8):3127–3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wysocki VH, Tsaprailis G, Smith LL, Breci LA (2000) Special feature: commentary – mobile and localized protons: a framework for understanding peptide dissociation. J Mass Spectrom 35(12):1399–1406

    Article  CAS  PubMed  Google Scholar 

  117. Michalski A, Neuhauser N, Cox J, Mann M (2012) A systematic investigation into the nature of tryptic HCD spectra. J Proteome Res 11(11):5479–5491

    Article  CAS  PubMed  Google Scholar 

  118. Zubarev RA, Kelleher NL, McLafferty FW (1998) Electron capture dissociation of multiply charged protein cations. A nonergodic process. J Am Chem Soc 120(13):3265–3266

    Article  CAS  Google Scholar 

  119. Cooper HJ, Hakansson K, Marshall AG (2005) The role of electron capture dissociation in biomolecular analysis. Mass Spectrom Rev 24(2):201–222

    Article  CAS  PubMed  Google Scholar 

  120. Bakhtiar R, Guan ZQ (2005) Electron capture dissociation mass spectrometry in characterization of post-translational modifications. Biochem Biophys Res Commun 334(1):1–8

    Article  CAS  PubMed  Google Scholar 

  121. Frese CK et al (2013) Unambiguous phosphosite localization using Electron-Transfer/Higher-Energy collision Dissociation (EThcD). J Proteome Res 12(3):1520–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Swaney DL, McAlister GC, Coon JJ (2008) Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 5(11):959–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Collins MO, Wright JC, Jones M, Rayner JC, Choudhary JS (2014) Confident and sensitive phosphoproteomics using combinations of collision induced dissociation and electron transfer dissociation. J Proteome 103:1–14

    Article  CAS  Google Scholar 

  124. Hart-Smith G, Raftery MJ (2012) Detection and characterization of low abundance glycopeptides via higher-energy C-Trap dissociation and orbitrap mass analysis. J Am Soc Mass Spectrom 23(1):124–140

    Article  CAS  PubMed  Google Scholar 

  125. Hakansson K et al (2001) Electron capture dissociation and infrared multiphoton dissociation MS/MS of an N-glycosylated tryptic peptide to yield complementary sequence information. Anal Chem 73(18):4530–4536

    Article  CAS  PubMed  Google Scholar 

  126. Singh C, Zampronio CG, Creese AJ, Cooper HJ (2012) Higher Energy Collision Dissociation (HCD) product ion-triggered Electron Transfer Dissociation (ETD) mass spectrometry for the analysis of N-linked glycoproteins. J Proteome Res 11(9):4517–4525

    Article  CAS  PubMed  Google Scholar 

  127. Zhao P et al (2011) Combining high-energy C-trap dissociation and electron transfer dissociation for protein O-GlcNAc modification site assignment. J Proteome Res 10(9):4088–4104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang Z et al (2010) Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 9(1):153–160

    Article  CAS  PubMed  Google Scholar 

  129. Shvartsburg AA, Singer D, Smith RD, Hoffmann R (2011) Ion mobility separation of isomeric phosphopeptides from a protein with variant modification of adjacent residues. Anal Chem 83(13):5078–5085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Creese AJ, Cooper HJ (2012) Separation and identification of isomeric glycopeptides by high field asymmetric waveform Ion mobility spectrometry. Anal Chem 84(5):2597–2601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shvartsburg AA, Zheng Y, Smith RD, Kelleher NL (2012) Ion mobility separation of variant histone tails extending to the “middle-down” range. Anal Chem 84(10):4271–4276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hahne H, Kuster B (2011) A novel two-stage tandem mass spectrometry approach and scoring scheme for the identification of O-GlcNAc modified peptides. J Am Soc Mass Spectrom 22(5):931–942

    Article  CAS  PubMed  Google Scholar 

  133. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24(10):1285–1292

    Article  CAS  PubMed  Google Scholar 

  134. Savitski MM et al (2011) Confident phosphorylation site localization using the mascot delta score. Mol Cell Proteomics 10(2):M110.003830

    Article  PubMed  CAS  Google Scholar 

  135. Taus T et al (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10(12):5354–5362

    Article  CAS  PubMed  Google Scholar 

  136. Bailey CM et al (2009) SLoMo: automated site localization of modifications from ETD/ECD mass spectra. J Proteome Res 8(4):1965–1971

    Article  CAS  PubMed  Google Scholar 

  137. Baker PR, Trinidad JC, Chalkley RJ (2011) Modification site localization scoring integrated into a search engine. Mol Cell Proteomics 10(7):M111.008078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Chen Y, Chen W, Cobb MH, Zhao YM (2009) PTMap-A sequence alignment software for unrestricted, accurate, and full-spectrum identification of post-translational modification sites. Proc Natl Acad Sci U S A 106(3):761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sharma K et al (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8:1583

    Article  CAS  PubMed  Google Scholar 

  140. Udeshi ND et al (2013) Refined preparation and use of anti-diglycine remnant (K-epsilon-GG) antibody enables routine quantification of 10,000 s of ubiquitination sites in single proteomics experiments. Mol Cell Proteomics 12(3):825–831

    Article  CAS  PubMed  Google Scholar 

  141. Guo AL et al (2014) Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13(1):372–387

    Article  CAS  PubMed  Google Scholar 

  142. Zielinska DF, Gnad F, Wisniewski JR, Mann M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141(5):897–907

    Article  CAS  PubMed  Google Scholar 

  143. Mommsen TP, Plisetskaya EM (1991) Insulin in fishes and agnathans – history, structure, and metabolic-regulation. Rev Aquat Sci 4(2–3):225–259

    CAS  Google Scholar 

  144. Owens DR (2002) New horizons – alternative routes for insulin therapy. Nat Rev Drug Discov 1(7):529–540

    Article  CAS  PubMed  Google Scholar 

  145. Hornbeck PV et al (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(D1):D261–D270

    Article  CAS  PubMed  Google Scholar 

  146. Lu CT et al (2013) dbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res 41(D1):D295–D305

    Article  CAS  PubMed  Google Scholar 

  147. Liu ZX et al (2014) CPLM: a database of protein lysine modifications. Nucleic Acids Res 42(D1):D531–D536

    Article  CAS  PubMed  Google Scholar 

  148. Dinkel H et al (2011) Phospho.ELM: a database of phosphorylation sites-update 2011. Nucleic Acids Res 39:D261–D267

    Article  CAS  PubMed  Google Scholar 

  149. Gnad F, Gunawardena J, Mann M (2011) PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res 39:D253–D260

    Article  CAS  PubMed  Google Scholar 

  150. Gupta R, Birch H, Rapacki K, Brunak S, Hansen JE (1999) O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins. Nucleic Acids Res 27(1):370–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhang H et al (2006) UniPep – a database for human N-linked glycosites: a resource for biomarker discovery. Genome Biol 7(8):R73

    Article  PubMed  PubMed Central  Google Scholar 

  152. Kaji H et al (2012) Large-scale identification of N-glycosylated proteins of mouse tissues and construction of a glycoprotein database, GlycoProtDB. J Proteome Res 11(9):4553–4566

    Article  CAS  PubMed  Google Scholar 

  153. Campbell MP et al (2014) UniCarbKB: building a knowledge platform for glycoproteomics. Nucleic Acids Res 42(D1):D215–D221

    Article  CAS  PubMed  Google Scholar 

  154. Gao TS et al (2013) UUCD: a family-based database of ubiquitin and ubiquitin-like conjugation. Nucleic Acids Res 41(D1):D445–D451

    Article  CAS  PubMed  Google Scholar 

  155. Lee WC, Lee M, Jung JW, Kim KP, Kim D (2008) SCUD: Saccharomyces Cerevisiae Ubiquitination Database. BMC Genomics 9:7

    Article  CAS  Google Scholar 

  156. Chernorudskiy AL et al (2007) UbiProt: a database of ubiquitinated proteins. Bmc Bioinf 8:126

    Article  CAS  Google Scholar 

  157. Fiedler D et al (2009) Functional organization of the S-cerevisiae phosphorylation network. Cell 136(5):952–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Horn H et al (2014) KinomeXplorer: an integrated platform for kinome biology studies. Nat Methods 11(6):603–604

    Article  CAS  PubMed  Google Scholar 

  160. Linding R et al (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. Nucleic Acids Res 36:D695–D699

    Article  CAS  PubMed  Google Scholar 

  161. Miller ML et al (2008) Linear motif atlas for phosphorylation-dependent signaling. Sci Signal 1(35):ra2

    Article  PubMed  CAS  Google Scholar 

  162. Swaney DL et al (2013) Global analysis of phosphorylation and ubiquitination cross-talk in protein degradation. Nat Methods 10(7):676–682

    Article  CAS  PubMed  Google Scholar 

  163. Wang Y et al (2011) Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. PROTEOMICS 11(10):2019–2026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang Z, Gucek M, Hart GW (2008) Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc. Proc Natl Acad Sci U S A 105(37):13793–13798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Olejnik J, Sonar S, Krzymanska-Olejnik E, Rothschild KJ (1995) Photocleavable biotin derivatives: a versatile approach for the isolation of biomolecules. Proc Natl Acad Sci U S A 92(16):7590–7594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruijun Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ke, M. et al. (2016). Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics. In: Mirzaei, H., Carrasco, M. (eds) Modern Proteomics – Sample Preparation, Analysis and Practical Applications. Advances in Experimental Medicine and Biology, vol 919. Springer, Cham. https://doi.org/10.1007/978-3-319-41448-5_17

Download citation

Publish with us

Policies and ethics