Advertisement

Fuzzy T–S Model-Based Design of Min–Max Control for Uncertain Nonlinear Systems

  • Tatjana Kolemishevska-GugulovskaEmail author
  • Mile Stankovski
  • Imre J. Rudas
  • Nan Jiang
  • Juanwei Jing
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 657)

Abstract

The min–max robust control synthesis for uncertain nonlinear systems is solved using Takagi–Sugeno fuzzy model and fuzzy state observer. Existence conditions are derived for the output feedback min–max control in the sense of Lyapunov asymptotic stability and formulated in terms of linear matrix inequalities. The convex optimization algorithm is used to obtain the minimum upper bound on performance and the optimum parameters of min–max controller. The closed-loop system is asymptotically stable under the worst case disturbances and uncertainty. Benchmark of inverted pendulum plant is used to demonstrate the robust performance within a much larger equilibrium region of attraction achieved by the proposed design.

Keywords

Linear Matrix Inequality Fuzzy Model Inverted Pendulum Uncertain Nonlinear System Fuzzy Control System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The Authors gratefully acknowledge the crucial contribution by Professor Georgi M. Dimirovski in proving the theoretical results reported in this article.

References

  1. 1.
    Zak, S.H.: Systems and Control. Oxford University Press, New York (2003)Google Scholar
  2. 2.
    Driankov, D., Saffioti, A. (eds.): Fuzzy Logic Techniques for Autonomous Vehicle Navigataion. Physica-Verlag, Heidelberg, DE (2001)Google Scholar
  3. 3.
    Zadeh, L.A.: Is there a need for fuzzy logic? Inf. Sci. 178, 2751–2779 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Takagi, T., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45(2), 135–156 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizablilty, H control theory, and linear matrix inequalities. IEEE Trans. Fuzzy Syst. 4(1), 1–13 (1996)CrossRefGoogle Scholar
  6. 6.
    Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)CrossRefGoogle Scholar
  7. 7.
    Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(4), 250–265 (1998)Google Scholar
  8. 8.
    Leung, F.H.F., Lam, H.K., Tam, P.K.S.: Design of fuzzy controllers for uncertain nonlinear systems using stability and robustness analyses. Syst. Control Lett. 35(3), 237–243 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kim, E., Lee, T.H.: New approaches to relaxed quadratic stability condition on fuzzy control systems. IEEE Trans. Fuzzy Syst. 8(6), 523–533 (2000)Google Scholar
  10. 10.
    Zheng, F., Wang, Q.-G., Lee, T.H.: Robust controller design for uncertain nonlinear systems via fuzzy modelling approach. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(1), 166–178 (2002)Google Scholar
  11. 11.
    Tong, S.-C., Li, H.-H.: Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties. Fuzzy Sets Syst. 131(3), 165–184 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kim, J., Park, D.: LMI-based design of stabilizing controllers for nonlinear systems described by Takagi-Sugeno model. Fuzzy Sets Syst. 122(2), 73–82 (2003)Google Scholar
  13. 13.
    Liu, X., Zhang, Q.: New approaches to H controller designs based on fuzzy observers for fuzzy system via LMI. Automatica 39(12), 1571–1582 (2003)Google Scholar
  14. 14.
    Lin, C., Wang, Q.-G., Lee, T.H.: Improvement on observer-based H control for T-S fuzzy systems. Automatica 41(12), 1651–1656 (2005)Google Scholar
  15. 15.
    Guerra, T.M., Kruszewski, A., Vermeieren, L., Tirmant, H.: Conditions of output stabilization for nonlinear models in the Takagi-Sugeno’s form. Fuzzy Sets Syst. 157(9), 1248–1259 (2006)Google Scholar
  16. 16.
    Sala, A., Arino, C.: Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya’s theorem. Fuzzy Sets Syst. 158(24), 2671–2686 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yang, H., Dimirovski, G.M., Zhao, J.: Switched fuzzy systems: modelling representation, stability, and control. Chap. 9. In: Kacprzyk, J. (ed.) Studies in Computational Intelligence, vol. 109, pp. 155–168. Springer, Heidelberg (2008)Google Scholar
  18. 18.
    Tanaka, K., Wang, H.O.: Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach. Wiley (Canada) (2001)Google Scholar
  19. 19.
    Wu, H.-N., Cai, K.-Y.: H2 guaranteed cost fuzzy control for uncertain nonlinear systems via linear matrix inequalities. Fuzzy Sets Syst. 148(6), 411–429 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wu, Z.-Q., Li, J., Gao, M.-J.: Guaranteed cost control for uncertain discrete fuzzy systems with delays. Fuzzy Syst. Math. 18(3), 95–101 (2004)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Assawinchiachote, W., Nguang, S.K., Shi, P.: H output feedback control design for uncertain fuzzy singularly disturbed systems: an LMI approach. Automatica 40(12), 2147–2152 (2005)Google Scholar
  22. 22.
    Jing, Y., Jiang, N., Zheng, Y., Dimirovski, G.M.: Fuzzy robust and non-fragile minimax control of a trailer-truck model. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 1221–1226 (2007)Google Scholar
  23. 23.
    Kogan, M.M.: Solution to the inverse problem of minimax control and minimax robust control. Avtomatika i Telemechanika 53, 87–97 (1998). (in Russian)Google Scholar
  24. 24.
    Kogan, M.M.: Solution to the inverse problem of minimax control and worst case disturbance for linear continuous-time systems. IEEE Trans. Autom. Control 43(5), 670–674 (1998)Google Scholar
  25. 25.
    Yoon, M., Utkin, V., Postletwhite, I.: On the worst-case disturbance of minimax optimal control. Automatica 41(7), 847–855 (2005)Google Scholar
  26. 26.
    MathWorks.: Using Matlab—LMI Toolbox. The Mathworks Inc, Natick, NJGoogle Scholar
  27. 27.
    MathWorks.: Using Simulink—Version 5. The Mathworks Inc, Natick, NJGoogle Scholar
  28. 28.
    Zadeh, L.A.: Inference in fuzzy logic. IEEE Proc. 68, 124–131 (1980)CrossRefzbMATHGoogle Scholar
  29. 29.
    Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)CrossRefGoogle Scholar
  30. 30.
    Kolemishevska-Gugulovska, T., Stankovski, M., Rudas, I.J., Jiang, N., Jing, J.: A min-max control synthesis for uncertain nonlinear systems based on fuzzy T-S model. In: Proceedings of the IEEE 6th International Conference on Intelligent Systems, IS 2012, Sofia, Bulgaria, 6–8 Sept 2012, pp. 303–310Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Tatjana Kolemishevska-Gugulovska
    • 1
    Email author
  • Mile Stankovski
    • 1
  • Imre J. Rudas
    • 1
  • Nan Jiang
    • 1
  • Juanwei Jing
    • 1
  1. 1.SkopjeMacedonia

Personalised recommendations