Skip to main content

Fuzzy T–S Model-Based Design of Min–Max Control for Uncertain Nonlinear Systems

  • Chapter
  • First Online:
Book cover Recent Contributions in Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 657))

  • 567 Accesses

Abstract

The min–max robust control synthesis for uncertain nonlinear systems is solved using Takagi–Sugeno fuzzy model and fuzzy state observer. Existence conditions are derived for the output feedback min–max control in the sense of Lyapunov asymptotic stability and formulated in terms of linear matrix inequalities. The convex optimization algorithm is used to obtain the minimum upper bound on performance and the optimum parameters of min–max controller. The closed-loop system is asymptotically stable under the worst case disturbances and uncertainty. Benchmark of inverted pendulum plant is used to demonstrate the robust performance within a much larger equilibrium region of attraction achieved by the proposed design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zak, S.H.: Systems and Control. Oxford University Press, New York (2003)

    Google Scholar 

  2. Driankov, D., Saffioti, A. (eds.): Fuzzy Logic Techniques for Autonomous Vehicle Navigataion. Physica-Verlag, Heidelberg, DE (2001)

    Google Scholar 

  3. Zadeh, L.A.: Is there a need for fuzzy logic? Inf. Sci. 178, 2751–2779 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Takagi, T., Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45(2), 135–156 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tanaka, K., Ikeda, T., Wang, H.O.: Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizablilty, H control theory, and linear matrix inequalities. IEEE Trans. Fuzzy Syst. 4(1), 1–13 (1996)

    Article  Google Scholar 

  6. Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)

    Article  Google Scholar 

  7. Tanaka, K., Ikeda, T., Wang, H.O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Trans. Fuzzy Syst. 6(4), 250–265 (1998)

    Google Scholar 

  8. Leung, F.H.F., Lam, H.K., Tam, P.K.S.: Design of fuzzy controllers for uncertain nonlinear systems using stability and robustness analyses. Syst. Control Lett. 35(3), 237–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kim, E., Lee, T.H.: New approaches to relaxed quadratic stability condition on fuzzy control systems. IEEE Trans. Fuzzy Syst. 8(6), 523–533 (2000)

    Google Scholar 

  10. Zheng, F., Wang, Q.-G., Lee, T.H.: Robust controller design for uncertain nonlinear systems via fuzzy modelling approach. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(1), 166–178 (2002)

    Google Scholar 

  11. Tong, S.-C., Li, H.-H.: Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties. Fuzzy Sets Syst. 131(3), 165–184 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, J., Park, D.: LMI-based design of stabilizing controllers for nonlinear systems described by Takagi-Sugeno model. Fuzzy Sets Syst. 122(2), 73–82 (2003)

    Google Scholar 

  13. Liu, X., Zhang, Q.: New approaches to H controller designs based on fuzzy observers for fuzzy system via LMI. Automatica 39(12), 1571–1582 (2003)

    Google Scholar 

  14. Lin, C., Wang, Q.-G., Lee, T.H.: Improvement on observer-based H control for T-S fuzzy systems. Automatica 41(12), 1651–1656 (2005)

    Google Scholar 

  15. Guerra, T.M., Kruszewski, A., Vermeieren, L., Tirmant, H.: Conditions of output stabilization for nonlinear models in the Takagi-Sugeno’s form. Fuzzy Sets Syst. 157(9), 1248–1259 (2006)

    Google Scholar 

  16. Sala, A., Arino, C.: Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya’s theorem. Fuzzy Sets Syst. 158(24), 2671–2686 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, H., Dimirovski, G.M., Zhao, J.: Switched fuzzy systems: modelling representation, stability, and control. Chap. 9. In: Kacprzyk, J. (ed.) Studies in Computational Intelligence, vol. 109, pp. 155–168. Springer, Heidelberg (2008)

    Google Scholar 

  18. Tanaka, K., Wang, H.O.: Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach. Wiley (Canada) (2001)

    Google Scholar 

  19. Wu, H.-N., Cai, K.-Y.: H2 guaranteed cost fuzzy control for uncertain nonlinear systems via linear matrix inequalities. Fuzzy Sets Syst. 148(6), 411–429 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, Z.-Q., Li, J., Gao, M.-J.: Guaranteed cost control for uncertain discrete fuzzy systems with delays. Fuzzy Syst. Math. 18(3), 95–101 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Assawinchiachote, W., Nguang, S.K., Shi, P.: H output feedback control design for uncertain fuzzy singularly disturbed systems: an LMI approach. Automatica 40(12), 2147–2152 (2005)

    Google Scholar 

  22. Jing, Y., Jiang, N., Zheng, Y., Dimirovski, G.M.: Fuzzy robust and non-fragile minimax control of a trailer-truck model. In: Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 1221–1226 (2007)

    Google Scholar 

  23. Kogan, M.M.: Solution to the inverse problem of minimax control and minimax robust control. Avtomatika i Telemechanika 53, 87–97 (1998). (in Russian)

    Google Scholar 

  24. Kogan, M.M.: Solution to the inverse problem of minimax control and worst case disturbance for linear continuous-time systems. IEEE Trans. Autom. Control 43(5), 670–674 (1998)

    Google Scholar 

  25. Yoon, M., Utkin, V., Postletwhite, I.: On the worst-case disturbance of minimax optimal control. Automatica 41(7), 847–855 (2005)

    Google Scholar 

  26. MathWorks.: Using Matlab—LMI Toolbox. The Mathworks Inc, Natick, NJ

    Google Scholar 

  27. MathWorks.: Using Simulink—Version 5. The Mathworks Inc, Natick, NJ

    Google Scholar 

  28. Zadeh, L.A.: Inference in fuzzy logic. IEEE Proc. 68, 124–131 (1980)

    Article  MATH  Google Scholar 

  29. Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Syst. 9(2), 324–332 (2001)

    Article  Google Scholar 

  30. Kolemishevska-Gugulovska, T., Stankovski, M., Rudas, I.J., Jiang, N., Jing, J.: A min-max control synthesis for uncertain nonlinear systems based on fuzzy T-S model. In: Proceedings of the IEEE 6th International Conference on Intelligent Systems, IS 2012, Sofia, Bulgaria, 6–8 Sept 2012, pp. 303–310

    Google Scholar 

Download references

Acknowledgments

The Authors gratefully acknowledge the crucial contribution by Professor Georgi M. Dimirovski in proving the theoretical results reported in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Kolemishevska-Gugulovska .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Proof of Theorem 1

Consider Lyapunov function candidate

$$V = x(t)^{T} P_{1} x(t) + e(t)^{T} P_{2} e(t) = \xi^{T} P\xi ,\,\,P = \left[ {\begin{array}{*{20}c} {P_{1} } & 0 \\ 0 & {P_{2} } \\ \end{array} } \right]$$
(31)

hence \(V_{1} = x(t)^{T} P_{1} x(t)\), \(V_{2} = e(t)^{T} P_{2} e(t)\). Then it follows:

$$\begin{aligned} \dot{V}_{1} (x) & = \dot{x}^{T} P_{1} x + x^{T} P_{1} \dot{x} = \sum\limits_{i = 1}^{q} {\sum\limits_{j = 1}^{q} {h_{i} h_{j} [[(A_{i} - B_{i} K_{j} )x(t) + B_{i} K_{j} e(t) + \bar{D}_{i} W]^{T} P_{1} x} } \\ & \quad + x^{T} P_{1} [(A_{i} - B_{i} K_{j} )x(t) + B_{i} K_{j} e(t) + \bar{D}_{i} W]] = \\ & = \sum\limits_{i = 1}^{q} {\sum\limits_{j = 1}^{q} {h_{i} h_{j} [x^{T} (H_{ij}^{T} P_{1} + P_{1} H_{ij} )x + e^{T} (t)(B_{i} K_{j} )^{T} P_{1} x} (t) + } \\ & \quad + x^{T} (t)P_{1} B_{i} K_{j} e(t) + 2x^{T} (t)P_{1} \bar{D}_{i} W] \\ \end{aligned}$$
(32)

and

$$\dot{V}_{2} (t) = \dot{e}^{T} P_{2} e + e^{T} P_{2} \dot{e} = \sum\limits_{i = 1}^{q} {\sum\limits_{j = 1}^{q} {h_{i} h_{j} [e^{T} (\Sigma _{ij}^{T} P_{2} + P_{2}\Sigma _{ij} )e} } + 2e^{T} (t)P_{2} \bar{D}_{i} W],$$
(33)

where \(H_{ij} = A_{i} - B_{i} K_{j}\). Hence

$$\begin{aligned} \dot{V} & = \dot{V}_{1} + \dot{V}_{2} = \sum\limits_{i = 1}^{q} {} \sum\limits_{j = 1}^{q} {h_{i} h_{j} } [\xi^{T} (t)(\Psi _{ij}^{T} P + P\Psi _{ij}^{{}} )\xi (t) - \\ & \quad - 2x^{T} (t)\,K_{i}^{T} B_{j}^{T} P_{1} \,x(t) + 2e^{T} (t)K_{i}^{T} B_{j}^{T} P_{1} \,x(t) + \\ & \quad + 2x^{T} (t)P_{1} \bar{D}_{i} W + 2e^{T} (t)P_{2} \bar{D}_{i} W] = \\ & = \sum\limits_{i = 1}^{q} {\sum\limits_{j = 1}^{q} {h_{i} h_{j} [\xi^{T} (t)(\Psi _{ij}^{T} P + P\Psi _{ij} )\xi (t) + 2\xi^{T} (t)P\tilde{D}_{i} W - } } \\ & \quad - 2x^{T} (t)K_{i}^{T} B_{j}^{T} P_{1} x(t) + 2e^{T} (t)K_{i}^{T} B_{j}^{T} P_{1} x(t)], \\ \end{aligned}$$
(34)

where \(\Sigma _{ij} = A_{i} - G_{i} C_{j}\),\(\Psi _{ij} = \left[ {\begin{array}{*{20}c} {A_{i} } & 0 \\ 0 & {\Sigma _{ij} } \\ \end{array} } \right]\), \(\tilde{D}_{i} = \left[ {\begin{array}{*{20}c} {\bar{D}_{i} } \\ {\bar{D}_{i} } \\ \end{array} } \right]\).

Next, the following local checking function:

$$\phi (t) = \dot{V} + u^{T} u - W^{T} W$$
(35)

is constructed. Substitution of (34) into the above expression yields

$$\begin{aligned} \varphi (t) & = \sum\limits_{i = 1}^{q} {} \sum\limits_{j = 1}^{q} {h_{i} h_{j} } [\xi^{T} \left[ {\begin{array}{*{20}c} {A_{i}^{T} P_{1} + P_{1} A_{i} } & 0 \\ 0 & {\Sigma _{ij}^{T} P_{2} + P_{2}\Sigma _{ij} } \\ \end{array} } \right]\xi + \\ & \quad + 2u^{T} (t)\,B_{i}^{{}} P_{1} \,x(t) + 2x^{T} (t)\,P_{1} \,\bar{D}_{i} \,W + \\ & \quad + 2e^{T} (t)P_{2} \bar{D}_{i} W + u^{T} u - W^{T} W] \\ \end{aligned}$$
(36)

Thus maximization of (36) about \(W\) yields

$$W^{*} = \sum\limits_{i = 1}^{q} {h_{i} [\bar{D}_{i}^{T} P_{1}^{T} x(t) + } \bar{D}_{i}^{T} P_{2}^{T} e(t)]\,\, = \sum\limits_{i = 1}^{q} {h_{i} } \tilde{D}_{i}^{T} P_{{}}^{T} \xi (t)$$
(37)

Because of \(\frac{{\partial^{2} \phi (t)}}{{\partial W^{2} }} = - 2 < 0\), (37) represents the parametric expression of the worst case disturbance [2426] for system (16)–(17). Substitution of \(W^{ * }\) into (36) gives:

$$\begin{aligned} \mathop {\hbox{max} }\limits_{W} \varphi (t) & = \sum\limits_{i = 1}^{q} {} \sum\limits_{j = 1}^{q} {h_{i} h_{j} } [\xi^{T} \left[ {\begin{array}{*{20}c} {A_{i}^{T} P_{1} + P_{1} A_{i} } & 0 \\ 0 & {\Sigma _{ij}^{T} P_{2} + P_{2}\Sigma _{ij} } \\ \end{array} } \right]\xi + \\ & \quad + 2x^{T} (t)\,P_{1} B_{i}^{{}} \,u(t) + 2x^{T} (t)\,P_{1} \,\bar{D}_{i} \,W + \\ & \quad + \xi^{T} (t)P\tilde{D}_{i} \tilde{D}_{j}^{T} P\xi (t) + u^{T} (t)u(t) \\ & \quad + 2e^{T} (t)P_{2} \bar{D}_{i} W + u^{T} u - W^{T} W] \\ & = \sum\limits_{i = 1}^{q} {\sum\limits_{j = 1}^{q} {h_{i} h_{j} } } [\xi^{T} (t)(\Psi _{ij}^{T} P + P\Psi _{ij}^{{}} )\xi (t) + \\ & \quad + 2x^{T} (t)P_{1} B_{i} u(t) + u^{T} (t)u(t) + \xi^{T} (t)P\tilde{D}_{i} \tilde{D}_{j}^{T} P\xi (t) \\ \end{aligned}$$
(38)

Minimization of the above expression about \(u\) yields

$$u^{*} = - \sum\limits_{i = 1}^{q} {h_{i} } B_{i}^{T} P_{1} x(t)\,\, = - \sum\limits_{i = 1}^{q} {h_{i} } (B_{i}^{T} P_{1} \tilde{x}(t) + B_{i}^{T} P_{1} e(t)).$$
(39)

And for \(\frac{{\partial^{2} (\mathop {\hbox{max} }\limits_{W} \phi (t))}}{{\partial u^{2} }} = I > 0\), the (39) is the parametric expression of min–max controller for system (16)–(17) apparently. Next, the substitution of \(u^{ * }\) into (38) gives

$$\begin{aligned} \mathop {\hbox{min} }\limits_{u} \,\mathop {\hbox{max} }\limits_{W} \varphi (t) & = \sum\limits_{i = 1}^{q} {} \sum\limits_{j = 1}^{q} {h_{i} h_{j} } [\xi^{T} (t)(\Psi _{ij}^{T} P + P\Psi _{ij}^{{}} )\xi (t) - x^{T} (t)\,P_{1}^{T} B_{i} \,B_{j}^{T} P_{1} x(t) + \\ & \quad + \xi^{T} (t)P\tilde{D}_{i} \tilde{D}_{j}^{T} P\xi (t)] \cdots = \sum\limits_{i = 1}^{q} {\sum\limits_{j = 1}^{q} {h_{i} h_{j} \xi^{T} (t)[\Psi _{ij}^{T} P + P\Psi _{ij} - P^{T} \tilde{B}_{i} \tilde{B}_{j}^{T} P + P\tilde{D}_{i} \tilde{D}_{j}^{T} P]\xi (t),} } \\ \end{aligned}$$

where \(\tilde{B}_{i} = \left[ {\begin{array}{*{20}c} {B_{i} } \\ 0 \\ \end{array} } \right]\). Further, let it be denoted

$$\mathop {\hbox{min} }\limits_{u} \mathop {\hbox{max} }\limits_{W} \phi (t) = - \xi^{T} Q\xi (t)$$
(40)

Notice that if the following inequality is satisfied

$$\Psi _{ij}^{T} P + P\Psi _{ij} - P^{T} \tilde{B}_{i} \tilde{B}_{j}^{T} P + P\tilde{D}_{i} \tilde{D}_{j}^{T} P < 0 ,$$
(41)

then \(Q > 0\) holds true. Substitution of (37) and (39) into (34) yields

$$\dot{V} = \sum\limits_{i = 1}^{q} {\sum\limits_{j = 1}^{q} {h_{i} h_{j} \xi^{T} \left( t \right)\left[ {\Psi _{ij}^{T} P + P\Psi _{ij} - 2P^{T} \tilde{B}_{i} \tilde{B}_{j}^{T} P + 2P\tilde{D}_{i} \tilde{D}_{j}^{T} P} \right]} } \xi \left( t \right)$$

In turn, if \(\tilde{D}_{i} \tilde{D}_{j}^{T} - \tilde{B}_{i} \tilde{B}_{j}^{T} < 0\) and (39) hold, then \(\dot{V} < 0\) obviously. Thus the closed-loop system (16)–(17) is asymptotically stable and \(\xi (\infty ) = 0\). Pre- and post- multiplication of both sides of (41) by \(diag(P_{1}^{ - 1} ,P_{2}^{ - 1} )\), and then application of Schur’s complement yields

$$\left[ {\begin{array}{*{20}c} {XA_{i}^{T} + A_{i}^{{}} X +\Gamma } & 0 \\ 0 & {YA_{i}^{T} + A_{i}^{{}} Y - Z - Z^{T} + D_{i} D_{j} } \\ \end{array} } \right] < 0$$
(42)

Apparently, the above expression is equivalent to (18)–(19) in Theorem 1. Now the integral of (42) is calculated; after some appropriate transpose, to give:

$$\begin{aligned} \mathop {\hbox{min} }\limits_{u} \mathop {\hbox{max} }\limits_{v,\omega } J(u,W) & = \mathop {\hbox{min} }\limits_{u} \mathop {\hbox{max} }\limits_{v,\omega } \int_{0}^{\infty } {(\xi^{T} Q\xi + u^{T} u - W^{T} W)dt} \le - \int_{0}^{\infty } {\dot{V}dt} \\ & = V(\xi (0)) - V(\xi (\infty )) = \xi (0)^{T} P\xi (0) \\ \end{aligned}$$
(43)

Therefore, due to Assumption 2 and via considering the expected value of the performance cost, it follows

$$\bar{J} = E\left\{ J \right\} \le E\left\{ {\xi_{0}^{T} P\xi_{0} } \right\} = Trace(P) .$$
(44)

Nonetheless, notice the initial state of a plant system can hardly be accurately measured in real-world practice.

Appendix 2

Proof of Theorem 2

From the proof of Theorem 1 it is seen if the inequality

$$\Psi _{ij}^{T} P + P\Psi _{ij} - 2P^{T} \tilde{B}_{i} \tilde{B}_{j}^{T} P + 2P\tilde{D}_{i} \tilde{D}_{j}^{T} P < 0 ,$$
(45)

is satisfied then apparently \(\dot{V} < 0\). That is, the closed-loop system (16)–(17) is asymptotically stable and \(\xi (\infty ) = 0\). Further, if \(\tilde{D}_{i} \tilde{D}_{j}^{T} -\) \(\tilde{B}_{i} \tilde{B}_{j}^{T} \ge 0\), then

$$\Psi _{ij}^{T} P + P\Psi _{ij} - P^{T} \tilde{B}_{i} \tilde{B}_{j}^{T} P + P\tilde{D}_{i} \tilde{D}_{j}^{T} P < 0 ,$$
(46)

and thus \(Q > 0\) is guaranteed. After pre- and post- multiplication of both sides of (23) by \(diag(P_{1}^{ - 1} ,P_{2}^{ - 1} )\), the application of Schur’s complement yields

$$\left[ {\begin{array}{*{20}c} {XA_{i}^{T} + A_{i}^{{}} X + 2\Gamma } & 0 \\ 0 & {YA_{i}^{T} + A_{i}^{{}} Y - Z - Z^{T} + 2D_{i} D_{j} } \\ \end{array} } \right] < 0 .$$
(47)

As seen, the above expression is equivalent to (21). Now recall the proof of Theorem 1. After the appropriate transposing and then calculating the integral, the investigation of expected value of performance index yields

$$\bar{J} = E\left\{ J \right\} \le E\left\{ {\xi_{0}^{T} P\xi_{0} } \right\} = Trace(P) .$$
(48)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kolemishevska-Gugulovska, T., Stankovski, M., Rudas, I.J., Jiang, N., Jing, J. (2017). Fuzzy T–S Model-Based Design of Min–Max Control for Uncertain Nonlinear Systems. In: Sgurev, V., Yager, R., Kacprzyk, J., Atanassov, K. (eds) Recent Contributions in Intelligent Systems. Studies in Computational Intelligence, vol 657. Springer, Cham. https://doi.org/10.1007/978-3-319-41438-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41438-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41437-9

  • Online ISBN: 978-3-319-41438-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics