Advertisement

Free Search and Particle Swarm Optimisation Applied to Global Optimisation Numerical Tests from Two to Hundred Dimensions

  • Vesela VasilevaEmail author
  • Kalin Penev
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 657)

Abstract

This article presents an investigation on two real-value methods such as Free Search (FS) and Particle Swarm Optimisation (PSO) applied to global optimisation numerical tests. The objective is to identify how to facilitate assessment of heuristic, evolutionary, adaptive and other optimisation and search algorithms. Particular aim is to assess: (1) probability for success of given method; (2) abilities of given method for entire search space coverage; (3) dependence on initialisation; (4) abilities of given method to escape from trapping in local sub-optima; (5) abilities of explored methods to resolve multidimensional (one hundred dimensions) global optimisation tasks; (6) performance on two and hundred dimensional tasks; (7) minimal number of objective function calculation for resolving hundred dimensional tasks with acceptable level of precision. Achieved experimental results are presented and analysed. Discussion on FS and PSO essential characteristics concludes the article.

Keywords

Global optimisation Multidimensional optimisation Numerical tests Free search Particle swarm optimisation Heuristic methods 

Notes

Acknowledgements

Preparation of this article is supported by Southampton Solent University Research & Enterprise Fund, grant 516/17062011.

I would like to thank also to my students Asim Al Nashwan, Dimitrios Kalfas, Georgius Haritonidis and Michael Borg for the design, implementation and overclocking of desktop PC used for completion of the experiments presented in this article.

References

  1. 1.
    Weisstein, E.: Global Optimisation, WolframMathWorld. http://mathworld.wolfram.com/GlobalOptimisation.html. Accessed 27 Sept 2013
  2. 2.
    Hedar, A.-R.: Global Optimisation, Global Optimisation Methods and Codes, Kyoto University, Japan. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/go.htm. Accessed 27 Sept 2013
  3. 3.
    Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)Google Scholar
  4. 4.
    Eberhart, R., Kennedy, J.: Particle swarm optimisation. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE Press (1995)Google Scholar
  5. 5.
    Shi, Y., Eberhart, R.: A modified PSO optimizer. In: Proceedings of the IEEE, International Conference on Evolutionary Computation, pp. pp. 69–73. IEEE Press, Piscataway (1998)Google Scholar
  6. 6.
    Rechenberg, I.: The evolutionary strategy: a mathematical model of Darwinian evolution. In: Frehlend, E. (ed.) Synergetics: from Microscopic to Macroscopic Order. Springer Series in Synergetics, vol. 22, pp. 122–132 (1984)Google Scholar
  7. 7.
    Price, K., Storn, R.: Differential Evolution—A Simple and Efficient Adaptive Scheme for Global Optimisation over Continuous Spaces. TR-95-012, International Computer Science Institute, 1947 Center Street, Berkeley, CA 94704-1198, Suite 600 (1995)Google Scholar
  8. 8.
    Penev, K.: Free Search of Real Value or How to Make Computers Think, Gegov, A. (ed.). St. Qu pbl., ISBN 978-0955894800, UK (2008)Google Scholar
  9. 9.
    Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numerical global optimisation. In: Proceedings of Swarm Intelligence Symposium, 2005 pp. 68–75 (2005)Google Scholar
  10. 10.
    Gabrys, B., Leiviska, K., Strackeljan, J. (eds.): Do smart adaptive systems exist?—Best Practice for Selection and Combination of Intelligent Methods. Springer series on Studies in Fuzziness and Soft Computing. vol. 173. Springer (2005)Google Scholar
  11. 11.
    Angeline, P.: Evolutionary optimisation versus particle swarm optimisation: philosophy and performance difference. In: The 7th Annual Conference on Evolutionary Programming, San Diego, USA (1998)Google Scholar
  12. 12.
    Igel, C., Toussaint, M.: A no-free-lunch theorem for non-uniform distribution of target functions. J. Math. Modell. Algorithms 3, 313–322 (2004) (© 2004 Kluwer Publications)Google Scholar
  13. 13.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimisation. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  14. 14.
    Keane, A.J.: A brief comparison of some evolutionary optimisation methods. In: Rayward-Smith, V., Osman, I., Reeves, C., Smith, G.D. (eds.) Modern Heuristic Search Methods. Wiley, New York, pp 255–272 (1996). ISBN 0471962805Google Scholar
  15. 15.
    Michalewicz, Z., Fogel, D.: How to Solve It: Modern Heuristics. Springer (2002). ISBN 3-540-66061-5Google Scholar
  16. 16.
    Penev, K., Ruzhekov, A.: Adaptive intelligence applied to numerical optimisation. In: Numerical Methods and Applications. Lecture Notes in Computer Science, vol. 6046, issue no. 1, pp. 280–288. Springer (2010)Google Scholar
  17. 17.
    Brekke, E.F.: Complex Behaviour in Dynamical Systems, The Norwegian University of Science and Technology (2005). http://www.academia.edu/545835/COMPLEX_BEHAVIOR_IN_DYNAMICAL_SYSTEMS pp. 37–38. Accessed 27 Sept 2013
  18. 18.
    Penev, K.: Free Search—a model of adaptive intelligence. In: Proceedings of the 2009 International Conference on Adaptive and Intelligent Systems. IEEE Computer Society Conference Publishing Service, pp. 92–97 (2009). ISBN 278-0-7695-3827-3/09Google Scholar
  19. 19.
    Penev, K.: Free search in tracking time dependent optima. In: Advanced Topics on Evolutionary Computing. WSEAS Press, Bulgaria, pp. 127–132 (2008). ISBN 978 960 6766 58 9Google Scholar
  20. 20.
    Fogel, D.B.: Evolutionary Computation—Toward a New Philosophy of Machine Intelligence. IEEE Press (2000). ISBN 0-7803-5379-XGoogle Scholar
  21. 21.
    Smith, I.F.C.: Mixing Maths with Cases. In: Parmee, I. (ed.) Adaptive Computing in Design and Manufacturing, UK, pp. 13–21 (2004)Google Scholar
  22. 22.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, pp. 15–35. Springer (2003). ISBN 3-540-40184-9Google Scholar
  23. 23.
    Bremermann, H.: Optimisation through evolution and recombination. In: Yovits, M., Jacobi, G., Goldstein, G. (ed.) Self-Organizing Systems, pp. 93–106. Spartan Books, New York (1962)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Technology School Maritime and Technology FacultySouthampton Solent UniversitySouthamptonUK

Personalised recommendations