Skip to main content

Physicochemical Characterization of Polymer Nanoparticles: Challenges and Present Limitations

  • Chapter
  • First Online:

Abstract

The biocompatibility, including aspects such as biodistribution, clearance, and immunotoxicity, of a nanoparticle depends upon its physicochemical properties. Characteristics such as size, charge, and hydrophobicity are well-known parameters influencing the biological compatibility of in vivo administered nanoparticles. Measurement and evaluation of these and other parameters, however, are not always straightforward. This chapter describes six critical areas for nanoparticle characterization, especially as pertaining to polymer nanoparticles intended as therapeutics: starting polymer characterization, nanoparticle size, nanoparticle surface properties, drug loading and release, nanoparticle stability, and batch-to-batch reproducibility. The challenges and limitations of the most common techniques used in assessment of these parameters are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adiseshaiah P, Hall JB, McNeil S (2010) Nanomaterial standards for efficacy and toxicity assessment. WIREs Nanomed Nanobiotechnol 2:99–112

    Article  CAS  Google Scholar 

  • Ambardekar VV, Stern ST (2015) NBCD Pharmacokinetics and drug release methods. In: Crommelin DJA, de Vlieger JSB (eds) Non-biological complex drugs. The science and the regulatory landscape, Springer International Publishing, pp 261–287

    Google Scholar 

  • Anderson W, Kozak D, Coleman VA, Jamting AK, Trau M (2013) A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J Colloid Interface Sci 405:322–330

    Article  CAS  PubMed  Google Scholar 

  • ASTM D5296. Standard test method for molecular weight averages and molecular weight distribution of polystyrene by high performance size-exclusion chromatography

    Google Scholar 

  • Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai JF, Mueller K, Munusamy P, Thevuthasan S, Wang HF, Washton N, Elder A, Baisch BL, Karakoti A, Kuchibhatla SVNT, Moon D (2013) Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J Vac Sci Technol A 31:50820

    Google Scholar 

  • Barman BN, Champion DH, Sjoberg SL (2009) Identification and quantification of polyethylene glycol types in polyethylene glycol methyl ether and polyethylene glycol vinyl ether. J Chromatogr A 1216:6816–6823

    Article  CAS  PubMed  Google Scholar 

  • Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ (2002) Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother 46:834–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berne BJ, Pecora R (2000) Dynamic light scattering with applications to chemistry, biology, and physics. Dover Publications, Mineola

    Google Scholar 

  • Bertrand N, Wu J, Xu XY, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliver Rev 66:2–25

    Article  CAS  Google Scholar 

  • Bootz A, Vogel V, Schubert D, Kreuter J (2004) Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm 57:369–375

    Article  CAS  PubMed  Google Scholar 

  • Buchholz BA, Barron AE (2001) The use of light scattering for precise characterization of polymers for DNA sequencing by capillary electrophoresis. Electrophoresis 22:4118–4128

    Article  CAS  PubMed  Google Scholar 

  • Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS et al (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446:1066–1069

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY (2003) Preparation and characterization of biodegradable PLA polymeric blends. Biomaterials 24:1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Cheng GW, Fan XD, Liu GT, Liu YY (2009) Determination of molecular weight of polyethylene glycol using size-exclusion chromatography with multi-angle laser light scattering and acid-base titration. Polym Test 28:145–149

    Article  Google Scholar 

  • Chow EKH (2013) Ho D. From drug delivery to imaging, Sci Transl Med Cancer Nanomed, p 5

    Google Scholar 

  • Clogston JD, Patri AK (2011) Zeta potential measurement. In: McNeil S (ed) Characterization of nanoparticles intended for drug delivery. Methods in molecular biology, vol 697. Humana Press, New York, pp 63–70

    Chapter  Google Scholar 

  • Clogston JD, Patri AK (2013) Importance of physicochemical characterization prior to immunological studies. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. Frontiers in nanobiomedical research. World Scientific Publishing, Singapore, pp 25–52

    Chapter  Google Scholar 

  • Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP et al (2013) Common pitfalls in nanotechnology: lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr Biol (Camb) 5:66–73

    Article  CAS  Google Scholar 

  • D’Avila Carvalho Erbetta C, José Alves R, Magalhães Resende J, de Souza Fernando, Freitas R, Geraldo de Sousa R (2012) Synthesis and characterization of poly(d, l-lactide-co-glycolide) copolymer. J Biomater Nanobiotechnol 3:208–225

    Article  Google Scholar 

  • Daghestani HN, Day BW (2010) Theory and applications of surface plasmon resonance, resonant mirror, resonant waveguide grating, and dual polarization interferometry biosensors. Sensors (Basel) 10:9630–9646

    Article  CAS  Google Scholar 

  • Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782

    Article  CAS  PubMed  Google Scholar 

  • Delcroix MF, Demoustier-Champagne S, Dupont-Gillain CC (2014) Quartz crystal microbalance study of ionic strength and pH-dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes. Langmuir ACS J Surf Colloids 30:268–277

    Article  CAS  Google Scholar 

  • Dixon MC (2008) Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J Biomol Techn 19:151–158

    Google Scholar 

  • Dobrovolskaia MA, Patri AK, Simak J, Hall JB, Semberova J, De Paoli Lacerda SH et al (2012a) Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol Pharm 9:382–393

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, Patri AK, Potter TM, Rodriguez JC, Hall JB, McNeil SE (2012b) Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine (Lond) 7:245–256

    Article  CAS  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  CAS  PubMed  Google Scholar 

  • Fairhurst D (2013) An overview of the zeta potential—part 2: measurement. Am Pharm Rev Apr 2013

    Google Scholar 

  • Fairhurst D, Lee RW (2011) The zeta potential & its use in pharmaceutical applications—part 1: charged interfaces in polar & non-polar media & the concept of the zeta potential. Drug Dev Deliv 11:60–64

    CAS  Google Scholar 

  • Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nano sight for the measurement of nanoparticles and protein aggregates. Pharm Res 27:796–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freyer MW, Lewis EA (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol 84:79–113

    Article  CAS  PubMed  Google Scholar 

  • Gaborieau M, Castignolles P (2011) Size-exclusion chromatography (SEC) of branched polymers and polysaccharides. Anal Bioanal Chem 399:1413–1423

    Article  CAS  PubMed  Google Scholar 

  • Gatoo MA, Naseem S, Arfat MY, Mahmood Dar A, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014:498420

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaumet M, Vargas A, Gurny R, Delie F (2008) Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 69:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ghai R, Falconer RJ, Collins BM (2012) Applications of isothermal titration calorimetry in pure and applied research—survey of the literature from 2010. J Mol Recognit 25:32–52

    Article  CAS  PubMed  Google Scholar 

  • Godin M, Bryan AK, Burg TP, Babcock K, Manalis SR (2007) Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Appl Phys Lett 91:123121

    Article  Google Scholar 

  • Hackley VA, Clogston JD (2011) Measuring the hydrodynamic size of nanoparticles in aqueous media using batch-mode dynamic light scattering. In: McNeil S (ed) Characterization of nanoparticles intended for drug delivery. Methods in molecular biology, vol 697. Humana Press, New York, pp 35–52

    Chapter  Google Scholar 

  • Hackley VA, Premachandran RS, Malghan SG, Schiller SB (1995) A standard reference material for the measurement of particle mobility by electrophoretic light-scattering. Colloid Surface A 98:209–224

    Article  CAS  Google Scholar 

  • Holgate ST (2010) Exposure, uptake, distribution and toxicity of nanomaterials in humans. J Biomed Nanotechnol 6:1–19

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Jin J, Han YY, Yin JH, Jiang W, Liang HJ (2014) Study of fibrinogen adsorption on poly(ethylene glycol)-modified surfaces using a quartz crystal microbalance with dissipation and a dual polarization interferometry. Rsc Adv 4:7716–7724

    Article  CAS  Google Scholar 

  • Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532

    Article  CAS  PubMed  Google Scholar 

  • Ishii H, Furuse J, Nagase M, Maru Y, Yoshino M, Hayashi T (2003) A Phase i study of hepatic arterial infusion chemotherapy with Zinostatin Stimalamer alone for hepatocellular carcinoma. Jpn J Clin Oncol 33:570–573

    Article  PubMed  Google Scholar 

  • ISO 13320 (2009) Particle size analysis—laser diffraction methods

    Google Scholar 

  • Jain KK (2010) Advances in the field of nanooncology. BMC Med 8:83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi H, Brechbiel MW (2003) Dendrimer-based macromolecular MRI contrast agents: characteristics and application. Mol Imaging 2:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kou DW, Manius G, Zhan SD, Chokshi HP (2009) Size exclusion chromatography with Corona charged aerosol detector for the analysis of polyethylene glycol polymer. J Chromatogr A 1216:5424–5428

    Article  CAS  PubMed  Google Scholar 

  • Kozak D, Anderson W, Vogel R, Chen S, Antaw F, Trau M (2012) Simultaneous size and zeta-potential measurements of individual nanoparticles in dispersion using size-tunable pore sensors. ACS Nano 6:6990–6997

    Article  CAS  PubMed  Google Scholar 

  • Laguna MTR, Medrano R, Plana MP, Tarazona MP (2001) Polymer characterization by size-exclusion chromatography with multiple detection. J Chromatogr A 919:13–19

    Article  CAS  PubMed  Google Scholar 

  • Lal Pal S, Jana U, Manna PK, Mohanta GP, Nanoparticle Manavalan R (2011) An overview of preparation and characterization. J Appl Pharm Sci 1:228–234

    Google Scholar 

  • McNeil SE (2009) Nanoparticle therapeutics: a personal perspective. WIREs Nanomed Nanobiotechnol 1:264–271

    Article  CAS  Google Scholar 

  • Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR (2009) An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Prog Polym Sci 34:351–368

    Article  CAS  Google Scholar 

  • Moghimi SM, Hunter AC, Andresen TL (2012) Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol 52:481–503

    Article  CAS  Google Scholar 

  • NIST & NCL protocol. http://ncl.cancer.gov/working_assay-cascade.asp

  • Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11:169–183

    Article  CAS  PubMed  Google Scholar 

  • Petros RA, De Simone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627

    Article  CAS  PubMed  Google Scholar 

  • Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing–a review. Anal Chim Acta 706:8–24

    Article  CAS  PubMed  Google Scholar 

  • Rabanel JM, Hildgen P, Banquy X (2014) Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J Control Release 185:71–87

    Article  CAS  PubMed  Google Scholar 

  • Roberts GS, Kozak D, Anderson W, Broom MF, Vogel R, Trau M (2010) Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 6:2653–2658

    Article  CAS  PubMed  Google Scholar 

  • Sahin E, Roberts CJ (2012) Size-exclusion chromatography with multi-angle light scattering for elucidating protein aggregation mechanisms. In: Voynov V, Caravella JA (eds) Therapeutic proteins. Methods in molecular biology. Humana Publisher, New York, pp 403–424

    Chapter  Google Scholar 

  • Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonesson AW, Callisen TH, Brismar H, Elofsson UM (2007) A comparison between dual polarization interferometry (DPI) and surface plasmon resonance (SPR) for protein adsorption studies. Colloid Surf B 54:236–240

    Article  CAS  Google Scholar 

  • Stern ST, Zou P, Skoczen S, Xie S, Liboiron B, Harasym T et al (2013) Prediction of nanoparticle prodrug metabolism by pharmacokinetic modeling of biliary excretion. J Control Release 172:558–567

    Article  CAS  PubMed  Google Scholar 

  • Striegel AM, Isenberg SL, Cote GL (2009) An SEC/MALS study of alternan degradation during size-exclusion chromatographic analysis. Anal Bioanal Chem 394:1887–1893

    Article  CAS  PubMed  Google Scholar 

  • Swann MJ, Peel LL, Carrington S, Freeman NJ (2004) Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions. Anal Biochem 329:190–198

    Article  CAS  PubMed  Google Scholar 

  • Trathnigg B (1995) Determination of Mwd and chemical-composition of polymers by chromatographic techniques. Prog Polym Sci 20:615–650

    Article  CAS  Google Scholar 

  • Treuel L, Eslahian KA, Docter D, Lang T, Zellner R, Nienhaus K et al (2014) Physicochemical characterization of nanoparticles and their behavior in the biological environment. Phys Chem Chem Phys 16:15053–15067

    Article  CAS  PubMed  Google Scholar 

  • Troiber C, Kasper JC, Milani S, Scheible M, Martin I, Schaubhut F et al (2013) Comparison of four different particle sizing methods for siRNA polyplex characterization. Eur J Pharm Biopharm 84:255–264

    Article  CAS  PubMed  Google Scholar 

  • U.S. Pharmacopeia General Chapter <429>. Light diffraction measurement of particle size

    Google Scholar 

  • van Vlerken LE, Amiji MM (2006) Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 3:205–216

    Article  PubMed  Google Scholar 

  • Vandijk JAPP, Smit JAM, Kohn FE, Feijen J (1983) Characterization of poly(d,l-lactic acid) by gel-permeation chromatography. J Polym Sci Pol Chem 21:197–208

    Article  CAS  Google Scholar 

  • Walkenhorst R (2001) Determination of polymer structure by gel permeation chromatography. LC GC Europe, 2–4 Nov 2001

    Google Scholar 

  • Willmott GR, Vogel R, Yu SSC, Groenewegen LG, Roberts GS, Kozak D, Anderson W, Trau M (2010) Use of tunable nanopore blockade rates to investigate colloidal dispersions. J Phys Condens Mater 22:454116

    Google Scholar 

  • Xie T, Penelle J, Verraver M (2002) Experimental investigation on the reliability of routine SEC-MALLS for the determination of absolute molecular weights in the oligomeric range. Polymer 43:3973–3977

    Article  CAS  Google Scholar 

  • Xu R (2015) Light scattering: a review of particle characterization applications. Particuology 18:11–21

    Google Scholar 

  • Yohannes G, Jussila M, Hartonen K, Riekkola ML (2011) Asymmetrical flow field-flow fractionation technique for separation and characterization of biopolymers and bioparticles. J Chromatogr A 1218:4104–4116

    Article  CAS  PubMed  Google Scholar 

  • Zhou SB, Deng XM, Li XH, Jia WX, Liu L (2004) Synthesis and characterization of biodegradable low molecular weight aliphatic polyesters and their use in protein-delivery systems. J Appl Polym Sci 91:1848–1856

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project has been funded in whole or in part with Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. McNeil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Clogston, J.D., Crist, R.M., McNeil, S.E. (2016). Physicochemical Characterization of Polymer Nanoparticles: Challenges and Present Limitations. In: Vauthier, C., Ponchel, G. (eds) Polymer Nanoparticles for Nanomedicines. Springer, Cham. https://doi.org/10.1007/978-3-319-41421-8_7

Download citation

Publish with us

Policies and ethics