Skip to main content

Toxicological Aspects of Polymer Nanoparticles

  • Chapter
  • First Online:
Polymer Nanoparticles for Nanomedicines

Abstract

This chapter describes the effects of some physico-chemical properties of polymer nanoparticles influencing the development of toxicological effects. More particularly, the effect of some parameters that may control the interaction of polymer nanoparticles with the biological environment (such as their composition, size, surface properties, and biodegradability) and, thus, be key factors of their efficacy and toxicity, is discussed. In addition, the chapter also reviews the toxicity results that have been found in the literature regarding the administration of polymer nanoparticles as delivery systems by different ways of administration including intravenous, oral, pulmonary, nasal, and ophthalmic routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal R, Singh V, Jurney P, Shi L, Sreenivasan SV, Roy K (2013) Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc Natl Acad Sci USA 110(43):17247–17252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhlaghi SP, Saremi S, Ostad SN, Dinarvand R, Atyabi F (2010) Discriminated effects of thiolated chitosan-coated pMMA paclitaxel-loaded nanoparticles on different normal and cancer cell lines. Nanomedicine 6(5):689–697

    CAS  PubMed  Google Scholar 

  • Al-Hanbali O, Rutt KJ, Sarker DK, Hunter AC, Moghimi SM (2006) Concentration dependent structural ordering of poloxamine 908 on polystyrene nanoparticles and their modulatory role on complement consumption. J Nanosci Nanotechnol 6(9–10):3126–3133

    Article  CAS  PubMed  Google Scholar 

  • Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W (2006) Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release 111(1–2):107–116

    Article  CAS  PubMed  Google Scholar 

  • Antunes F, Andrade F, Araujo F, Ferreira D, Sarmento S (2013) Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs. Eur J Pharm Biopharm 83(3):427–435

    Article  CAS  PubMed  Google Scholar 

  • Arbos P, Wirth M, Arangoa MA, Gabor F, Irache JM (2002) Gantrez® AN as a new polymer for the preparation of ligand–nanoparticle conjugates. J Control Release 83(3):321–330

    Article  CAS  PubMed  Google Scholar 

  • Asgharian B, Price OT (2007) Deposition of ultrafine (nano)particles in the human lung. Inhal Toxicol. 19(13):1045–1054

    Article  CAS  PubMed  Google Scholar 

  • Aydın RS (2013) Herceptin-decorated salinomycin-loaded nanoparticles for breast tumor targeting. J Biomed Mater Res A 101(5):1405–1415

    Article  PubMed  CAS  Google Scholar 

  • Azami S, Roa WH, Lobenberg R (2008) Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev 60(8):863–875

    Article  CAS  Google Scholar 

  • Barua S, Yoo JW, Kolhar P, Wakankar A, Gokarn YR, Mitragotri SI (2013) Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci USA 110(9):3270–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett WD (2002) Rapid translocation of nanoparticles from the lung to the bloodstream? Am J Respir Crit Care Med 165(12):1671–1672

    Article  PubMed  Google Scholar 

  • Bertholon I, Vauthier C, Labarre D (2006) Complement activation by core-shell poly(isobutylcyanoacrylate)–polysaccharide nanoparticles: influences of surface morphology, length, and type of polysaccharide. Pharm Res 23(6):1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj V, Ankola DD, Gupta SC, Schneider M, Lehr CM, Ravi Kumar MNV (2009) PLGA nanoparticles stabilized with cationic surfactant: safety studies and application in oral delivery of paclitaxel to treat chemical-induced breast cancer in rat. Pharm Res 26(11):2495–2503

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Kanase N, Gaiser B, Johnston H, Stone V (2014) Inflammation and gene expression in the rat lung after instillation of silica nanoparticles: effect of size, dispersion medium and particle surface charge. Toxicol Lett 224(1):147–156

    Article  CAS  PubMed  Google Scholar 

  • Brzoska M, Langer K, Coester C, Loitsch S, Wagner TOF, Mallinckrodt CV (2004) Incorporation of biodegradable nanoparticles into human airway epithelium cells—in vitro study of the suitability as a vehicle for drug or gene delivery in pulmonary diseases. Biochem Biophys Res Commun 318(2):562–570

    Article  CAS  PubMed  Google Scholar 

  • Calderon-Garciduenas L, Reed W, Maronpot RR, Henríquez-Roldán C, Delgado-Chavez R, Calderón-Garcidueñas A et al (2004) Brain inflammation and Alzheimer’s-like pathology in individuals exposed to severe air pollution. Toxicol Pathol 32(6):650–658

    Article  PubMed  Google Scholar 

  • Campbell MK, Geis I (1995) Biochemistry. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Campbell A, Oldham M, Becaria A, Bondy SC, Meacher D, Sioutas C et al (2005) Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 26(1):133–140

    Article  CAS  PubMed  Google Scholar 

  • Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdlec S, Illum L (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37(6):659–685

    Article  CAS  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenni E, Granchi D, Avnet S, Fotia C, Salerno M, Micieli D et al (2008) Biocompatibility of poly (d, l-lactide-co-glycolide) nanoparticles conjugated with alendronate. Biomaterials 29(10):1400–1411

    Article  CAS  PubMed  Google Scholar 

  • Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K et al (2013) Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro 27(1):330–338

    Article  CAS  PubMed  Google Scholar 

  • Chanan-Khan A, Szebeni J, Savay S, Liebes L, Rafique NM, Alving CR et al (2003) Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol 14(9):1430–1437

    Article  CAS  PubMed  Google Scholar 

  • Chauvierre C, Labarre D, Couvreur P, Vauthier C (2003) Novel polysaccharide-decorated poly(isobutyl cyanoacrylate) nanoparticles. Pharm Res 20(11):1786–1793

    Article  CAS  PubMed  Google Scholar 

  • Chen HW, Su SF, Chien CT, Lin WH, Yu SL, Chou CC et al (2006) Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FASEB J 20(13):2393–2395

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Cheng YC, Yu CH, Chan SW, Cheung MK, Yu PHF (2008) In vitro cytotoxicity, hemolysis assay, and biodegradation behavior of biodegradable poly(3-hydroxybutyrate)–poly(ethylene glycol)–poly(3-hydroxybutyrate) nanoparticles as potential drug carriers. J Biomed Mater Res A 87(2):290–298

    Article  PubMed  CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N et al (2010) Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 28(12):1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Ruiz L, de la Fuente M, García-Vázquez C, Sáez V, Seijo B, Alonso MJ et al (2010) Ocular tolerance to a topical formulation of hyaluronic acid and chitosan-based nanoparticles. Cornea 29(5):550–558

    Article  PubMed  Google Scholar 

  • Dailey LA, Jekel N, Fink L, Gessler T, Schmehl T, Wittmar M et al (2006) Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol 215(1):100–108

    Article  CAS  PubMed  Google Scholar 

  • das Neves J, Michiels J, Ariën KK, Vanham G, Amiji M, Bahia MF, Sarmento B (2012) Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine. Pharm Res 29(6):1468–1484

    Article  PubMed  CAS  Google Scholar 

  • de Campos AM, Diebold Y, Carvalho ELS, Sánchez A, Alonso MJ (2004) Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res 21(5):803–810

    Article  PubMed  Google Scholar 

  • De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    Article  Google Scholar 

  • De la Fuente M, Seijo B, Alonso MJ (2008) Novel hyaluronic acid-chitosan nanoparticles for ocular gene therapy. Invest Ophthalmol Vis Sci 49(5):2016–2024

    Article  PubMed  Google Scholar 

  • Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14(11):1568–1573

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L et al (2002) The pulmonary toxicology of ultrafine particles. J Aerosol Med 15(2):213–220

    Article  CAS  PubMed  Google Scholar 

  • Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360

    Article  CAS  PubMed  Google Scholar 

  • Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J et al (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114(8):1172–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64(2):129–137

    Article  CAS  PubMed  Google Scholar 

  • Enríquez de Salamanca A, Diebold Y, Calonge M, García-Vazquez C, Callejo S, Vila A et al (2006) Chitosan nanoparticles as a potential drug delivery system for the ocular surface: toxicity, uptake mechanism and in vivo tolerance. Invest Ophthalmol Vis Sci 47(4):1416–1425

    Article  PubMed  Google Scholar 

  • Espuelas MS, Legrand P, Campanero MA, Appel M, Chéron M, Gamazo C et al (2003) Polymeric carriers for amphotericin B: in vitro activity, toxicity and therapeutic efficacy against systemic candidiasis in neutropenic mice. J Antimicrob Chemother 52(3):419–427

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Urrusuno R, Fattal E, Porquet D, Feger J, Couvreur P (1995) Evaluation of liver toxicological effects induced by polyalkylcyanoacrylate nanoparticles. Toxicol Appl Pharmacol 130(2):272–279

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Urrusuno R, Fattal E, Féger J, Couvreur P, Thérond P (1997) Evaluation of hepatic antioxidant systems after intravenous administration of polymeric nanoparticles. Biomaterials 18(6):511–517

    Article  PubMed  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5(3):161–171

    Article  CAS  PubMed  Google Scholar 

  • Fischer HC, Chan WCW (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18(6):565–571

    Article  CAS  PubMed  Google Scholar 

  • Fischera D, Lib Y, Ahlemeyerc B, Krieglsteinc J, Kissel T (2003) In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24(7):1121–1131

    Article  Google Scholar 

  • Forbes B, Ehrhardt C (2005) Human respiratory epithelial cell culture for drug delivery applications. Eur J Pharm Biopharm 60(2):193–205

    Article  CAS  PubMed  Google Scholar 

  • Frank M, Fries L (1991) The role of complement in inflammation and phagocytosis. Immunol Today 12(9):322–326

    Article  CAS  PubMed  Google Scholar 

  • Gagliardini E, Conti S, Benigni A, Remuzzi G, Remuzzi A (2010) Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J Am Soc Nephrol 21(12):2081–2089

    Article  PubMed  PubMed Central  Google Scholar 

  • Gajbhiye V, Kumar PV, Tekade RK, Jain NK (2007) Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr Pharm Des 13:415–429

    Article  CAS  Google Scholar 

  • Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102(27):9469–9474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S (2006) Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 27(18):3482–3490

    Article  CAS  PubMed  Google Scholar 

  • Garnett MC, Kallinteri P (2006) Nanomedicines and nanotoxicity: some physiological principles. Occup Med 56(5):307–311

    Article  CAS  Google Scholar 

  • Geiser M (2010) Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv 23(4):207–217

    Article  CAS  PubMed  Google Scholar 

  • Gill S, Löbenberg R, Ku T, Azarmi S, Roa W, Prenner EJ (2007) Nanoparticles: characteristics, mechanisms of action and toxicity in pulmonary drug delivery—a review. J Biomed Nanotechnol 3(2):107–119

    Article  CAS  Google Scholar 

  • Gott RC, Luo Y, Wang Q, Lamp WO (2014) Development of a biopolymer nanoparticle-based method of oral toxicity testing in aquatic invertebrates. Ecotoxicol Environ Saf 104:226–230

    Article  CAS  PubMed  Google Scholar 

  • Grabowski N, Hillaireau H, Vergnaud J, Santiago LA, Kerdine-Romer S, Pallardy M et al (2013) Toxicity of surface-modified PLGA nanoparticles toward lung alveolar epithelial cells. Int J Pharm 454(2):686–694

    Article  CAS  PubMed  Google Scholar 

  • Gref R, Domb A, Quellec P, Blunk T, Muller RH, Verbavatz JM et al (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16(2–3):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamad I, Hunter AC, Szebeni J, Moghimi SM (2008) Poly(ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol Immunol 46(2):225–232

    Article  CAS  PubMed  Google Scholar 

  • Hamad I, Al-Hanbali O, Hunter AC, Rutt KJ, Andresen TL, Moghimi SM (2010) Distinct polymer architecture mediates switching of complement activation pathways at the nanosphere-serum interface: implications for stealth nanoparticle engineering. ACS Nano 4(11):6629–6638

    Article  CAS  PubMed  Google Scholar 

  • He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31(13):3657–3666

    Article  CAS  PubMed  Google Scholar 

  • Hosseinzadeh H, Atyabi F, Dinarvand R, Ostad SN (2012) Chitosan–Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int J Nanomed 7:1851–1863

    Article  CAS  Google Scholar 

  • Huang M, Eugene Khor E, Lim LY (2004) Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21(2):344–353

    Article  CAS  PubMed  Google Scholar 

  • Huong TM, Ishida T, Harashima H, Kiwada H (2001) The complement system enhances the clearance of phosphatidylserine (PS)-liposomes in rat and guinea pig. Int J Pharm 215(1–2):197–205

    Article  CAS  PubMed  Google Scholar 

  • Ilinskaya AN, Dobrovolskaia MA (2013) Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine 8(6):969–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illum L, Davis SS, Muller RH, Mak E, West P (1987) The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a block copolymer-Poloxamine 908. Life Sci 40(4):367–374

    Article  CAS  PubMed  Google Scholar 

  • Jain AK, Swarnakar NK, Godugu C, Singh RP, Jain S (2011) The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 32(2):503–515

    Article  CAS  PubMed  Google Scholar 

  • Johnson RJ (2004) The complement system. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press, Amsterdam, pp 318–328

    Google Scholar 

  • Kazimirova A, Magdolenova Z, Barancokova M, Staruchova M, Volkovova K, Dusinska M (2012) Genotoxicity testing of PLGA-PEO nanoparticles in TK6 cells by the comet assay and the cytokinesis-block micronucleus assay. Mutat Res 748(1–2):42–47

    Article  CAS  PubMed  Google Scholar 

  • Keck CM, Muller RH (2013) Nanotoxicological classification system (NCS)—a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm 84(3):445–448

    Article  CAS  PubMed  Google Scholar 

  • Kemper C, Atkinson JP, Hourcade DE (2010) Properdin: emerging roles of a pattern recognition molecule. Annu Rev Immunol 28:131–155

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Borok Z, Crandall ED (2001) A useful in vitro model for transport studies of alveolar epithelial barrier. Pharm Res 18(3):253–255

    Article  CAS  PubMed  Google Scholar 

  • Klesing J, Wiehe A, Gitter B, Grafe S, Epple M (2010) Positively charged calcium phosphate/polymer nanoparticles for photodynamic therapy. J Mater Sci Mater Med 21(3):887–892

    Article  CAS  PubMed  Google Scholar 

  • Knopf PM, Rivera DS, Hai SH, McMurry J, Martin W, De Groot AS (2008) Novel function of complement C3d as an autologous helper T-cell target. Immunol Cell Biol 86(3):221–225

    Article  CAS  PubMed  Google Scholar 

  • Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA (2013) Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res 36:172–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koziara JM, Oh JJ, Akers WS, Ferraris SP, Mumper RJ (2005) Blood compatibility of cetyl alcohol/polysorbate-based nanoparticles. Pharm Res 22(11):1821–1828

    Article  CAS  PubMed  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Möller W (2006) Health implications of nanoparticles. J Nanopart Res 8:543–562

    Article  CAS  Google Scholar 

  • Labarre D, Vauthier C, Chauvierre C, Petri B, Müller R, Chehimi MM (2005) Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials 26(24):5075–5084

    Article  CAS  PubMed  Google Scholar 

  • Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6(6):651–663

    Article  CAS  PubMed  Google Scholar 

  • Lee DW, Powers K, Baney R (2004) Physicochemical properties and blood compatibility of acylated chitosan nanoparticles. Carbohydr Polym 58(4):371–377

    Article  CAS  Google Scholar 

  • Lekshmi UM, Kishore N, Reddy PN (2011) Sub-acute toxicity assessment of glipizide engineered polymeric nanoparticles. J Biomed Nanotechnol 7(4):578–589

    Article  CAS  PubMed  Google Scholar 

  • Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Muller R et al (2006) Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials 27(1):108–118

    Article  CAS  PubMed  Google Scholar 

  • Lherm C, Müller RH, Puisieux F, Couvreur P (1992) Alkylcyanoacrylate drug carriers: II. Cytotoxicity of cyanoacrylate nanoparticles with different alkyl chain length. Int J Pharm 84(1):13–22

    Article  CAS  Google Scholar 

  • Li X, Radomski A, Corrigan OI, Tajber L, Menezes FS, Endter S et al (2009) Platelet compatibility of PLGA, chitosan and PLGA–chitosan nanoparticles. Nanomedicine 4(7):735–746

    Article  CAS  PubMed  Google Scholar 

  • Liao L, Zhang M, Liu H, Zhang X, Xie Z, Zhang Z et al (2014) Subchronic toxicity and immunotoxicity of MeO-PEG-poly(d, l-lactic-co-glycolic acid)-PEG-OMe triblock copolymer nanoparticles delivered intravenously into rats. Nanotechnology 25(24):245705

    Article  PubMed  CAS  Google Scholar 

  • Lira MC, Santos-Magalhães NS, Nicolas V, Marsaud V, Silva MP, Ponchel G, Vauthier C (2011) Cytotoxicity and cellular uptake of newly synthesized fucoidan-coated nanoparticles. Eur J Pharm Biopharm 79(1):162–170

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li W, Lao F, Liu Y, Wang L, Bai R et al (2011a) Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials 32(32):8291–8303

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Shao X, Chen J, Shen Y, Feng C, Gao X et al (2011b) In vivo toxicity and immunogenicity of wheat germ agglutinin conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal delivery to the brain. Toxicol Appl Pharmacol 251(1):79–84

    Article  CAS  PubMed  Google Scholar 

  • Lu JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9(4):325–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo R, Neu B, Venkatraman SS (2012) Surface functionalization of nanoparticles to control cell interactions and drug release. Small 8(16):2585–2594

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Teng Z, Wang TT, Wang Q (2013) Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate. J Agric Food Chem 61(31):7621–7629

    Article  CAS  PubMed  Google Scholar 

  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174

    Article  PubMed  CAS  Google Scholar 

  • Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 4(9):546–547

    Article  CAS  PubMed  Google Scholar 

  • Maya S, Indulekha S, Sukhithasri V, Smitha KT, Nair SV, Jayakumar R et al (2012) Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. Int J Biol Macromol 51(4):392–399

    Article  CAS  PubMed  Google Scholar 

  • Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merodio M, Irache JM, Valamanesh F, Mirshahi M (2002) Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 23(7):1587–1594

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RN (2004) Innate and adaptive immunity: the immune response to foreign materials. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine. Elsevier Academic Press, Amsterdam, pp 304–318

    Google Scholar 

  • Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN (2007) Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 119(1):77–85

    Article  CAS  PubMed  Google Scholar 

  • Mo Y, Barnett ME, Takemoto D, Davidson H, Kompella UB (2007) Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 13:746–757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moghimi SM, Hunter C, Dadswell CM, Savay S, Alving C, Szebeni J (2004) Causative factors behind poloxamer 188 (Pluronic F68, Flocor)-induced complement activation in human sera. A protective role against poloxamer-mediated complement activation by elevated serum lipoprotein levels. Biochim Biophys Acta 1689(2):103–113

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Andersen AJ, Hashem SH, Lettiero B, Ahmadvand D, Hunter AC et al (2010) Complement activation cascade triggered by PEG-PL engineered nanomedicines and carbon nanotubes: the challenges ahead. J Control Release 146(2):175–181

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi Ghalaei P, Varshosaz J, Sadeghi Aliabadi H (2014) Evaluating cytotoxicity of hyaluronate targeted solid lipid nanoparticles of etoposide on SK-OV-3 cells. J Drug Deliv 2014:746325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moulari B, Béduneau A, Pellequer Y, Lamprecht A (2014) Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J Control Release 188:9–17

    Article  CAS  PubMed  Google Scholar 

  • Muller RH, Lherm C, Herbort J, Couvreur P (1990) In vitro model for the degradation of alkylcyanoacrylate nanoparticles. Biomaterials 11(8):590–595

    Article  CAS  PubMed  Google Scholar 

  • Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(d, l-lactide-co-glycolide) and its derivatives. J Control Release 125(3):193–209

    Article  CAS  PubMed  Google Scholar 

  • Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S et al (2011) Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomed 6:2591–2605

    CAS  Google Scholar 

  • Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T (2007) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342(1–2):215–221

    Article  CAS  PubMed  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627

    Article  CAS  PubMed  Google Scholar 

  • Nemmar A, Hoylaerts MF, Hoet PH, Nemery B (2004) Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicol Lett 149(1–3):243–253

    Article  CAS  PubMed  Google Scholar 

  • Nemmar A, Dhanasekaran S, Yasin J, Ba-Omar H, Fahim MA, Kazzam EE et al (2009) Evaluation of the direct systemic and cardiopulmonary effects of diesel particles in spontaneously hypertensive rats. Toxicology 262(1):50–56

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058–1062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005a) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K et al (2005b) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25

    Article  CAS  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16(6–7):437–445

    Article  PubMed  CAS  Google Scholar 

  • Ojer P, de Cerain AL, Areses P, Penuelas I, Irache JM (2012) Toxicity studies of poly(anhydride) nanoparticles as carriers for oral drug delivery. Pharm Res 29(9):2615–2627

    Article  CAS  PubMed  Google Scholar 

  • Ojer P, Neutsch L, Gabor F, Irache JM, Lopez de Cerain A (2013) Cytotoxicity and cell interaction studies of bioadhesive poly(anhydride) nanoparticles for oral antigen/drug delivery. J Biomed Nanotechnol 9(11):1891–1903

    Article  CAS  PubMed  Google Scholar 

  • Ojer P, Iglesias T, Azqueta A, Irache JM, López de Cerain A (2015) Toxicity evaluation of nanocarriers for the oral delivery of macromolecular drugs. Eur J Pharm Biopharm 97(Pt A):206–217

    Article  CAS  PubMed  Google Scholar 

  • Panagi Z, Beletsi A, Evangelatos G, Livaniou E, Ithakissios DS, Avgoustakis K (2001) Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA-mPEG nanoparticles. Int J Pharm 221(1–2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Pandita D, Kumar S, Lather V (2015) Hybrid poly(lactic-co-glycolic acid) nanoparticles: design and delivery prospective. Drug Discov Today 20(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Panessa-Warren BJ, Maye MM, Warren JB, Crosson KM (2009) Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure. Environ Pollut 157(4):1140–1151

    Article  CAS  PubMed  Google Scholar 

  • Pathak D, Kumar P, Kuppusamy G, Gupta A, Kamble B, Wadhwani A (2014) Physicochemical characterization and toxicological evaluation of plant-based anionic polymers and their nanoparticulated system for ocular delivery. Nanotoxicology 8(8):843–855

    Article  CAS  PubMed  Google Scholar 

  • Peracchia MT, Fattal E, Desmaele D, Besnard M, Noel JP, Gormis JM et al (1999) Stealth PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J Control Release 60(1):121–128

    Article  CAS  PubMed  Google Scholar 

  • Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90(2):296–303

    Article  CAS  PubMed  Google Scholar 

  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51

    Article  CAS  Google Scholar 

  • Prego C, Torres D, Fernandez-Megia E, Novoa-Carballal R, Quiñoá E, Alonso MJ (2006) Chitosan–PEG nanocapsules as new carriers for oral peptide delivery: effect of chitosan pegylation degree. J Control Release 111(3):299–308

    Article  CAS  PubMed  Google Scholar 

  • Prieto E, Puente B, Uixera A, Garcia de Jalon JA, Perez S, Pablo L et al (2012) Gantrez AN nanoparticles for ocular delivery of memantine: in vitro release evaluation in albino rabbits. Ophthalmic Res 48(3):109–117

    Article  CAS  PubMed  Google Scholar 

  • Prow TW, Bhutto I, Kim SY, Grebe R, Merges C, McLeod DS et al (2008) Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 4(4):340–349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi L, Xu Z, Jiang X, Li Y, Wang M (2005) Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg Med Chem Lett 15(5):1397–1399

    Article  CAS  PubMed  Google Scholar 

  • Qi J, Yao P, He F, Yu C, Huang C (2010) Nanoparticles with dextran/chitosan shell and BSA/chitosan core—doxorubicin loading and delivery. Int J Pharm 393(1–2):176–184

    CAS  PubMed  Google Scholar 

  • Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T et al (2005) Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 146(6):882–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reasor MJ, Hastings KL, Ulrich RG (2006) Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 5(4):567–583

    Article  CAS  PubMed  Google Scholar 

  • Reddy ST, van der Vlies AJ, Simeoni E, Angeli V, Randolph GJ, O’Neil CP et al (2007) Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat Biotechnol 25(10):1159–1164

    Article  CAS  PubMed  Google Scholar 

  • Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clarthrin- and caveolae-mediated endocytosis. Biochem J 377(Pt 1):159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rekha MR, Sharma CP (2009) Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. J Control Release 135(2):144–151

    Article  CAS  PubMed  Google Scholar 

  • Ren WH, Chang J, Yan CH, Qian XM, Long LX, He B et al (2010) Development of transferrin functionalized poly(ethylene glycol)/poly(lactic acid) amphiphilic block copolymeric micelles as a potential delivery system targeting brain glioma. J Mater Sci Mater Med 21(9):2673–2681

    Article  CAS  PubMed  Google Scholar 

  • Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46(3):255–263

    Article  CAS  PubMed  Google Scholar 

  • Sahoo SK, Panyam J, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly (d, l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82(1):105–114

    Article  CAS  PubMed  Google Scholar 

  • Schmid O, Möller W, Semmler-Behnke M, Ferron GA, Karg E, Lipka J et al (2009) Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers 14(Suppl 1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Schmitz G, Grandl M (2009) Endolysossomal phospholipidosis and cytosolic lipid droplet storage and release in macrophages. Biochim Biophys Acta 1791(6):524–539

    Article  CAS  PubMed  Google Scholar 

  • Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J et al (2010a) In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine 6(5):662–671

    CAS  PubMed  Google Scholar 

  • Semete B, Booysen LI, Kalombo L, Venter JD, Katata L, Ramalapa B et al (2010b) In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol 249(2):158–165

    Article  CAS  PubMed  Google Scholar 

  • Severino P, Andreani T, Jager A, Chaud W, Santana MH, Silva AM et al (2014) Solid lipid nanoparticles for hydrophilic biotech drugs: optimization and cell viability studies (Caco-2 & HEPG-2 cell lines). Eur J Med Chem 23(81):28–34

    Article  CAS  Google Scholar 

  • Seyfoddin A, Shaw J, Al-Kassas R (2010) Solid lipid nanoparticles for ocular drug delivery. Drug Deliv 17(7):467–489

    Article  CAS  PubMed  Google Scholar 

  • Shah NB, Vercellotti GM, White JG, Fegan A, Wagner CR, Bischof JC (2012) Blood-nanoparticle interactions and in vivo biodistribution: impact of surface PEG and ligand properties. Mol Pharm 9(8):2146–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao X, Liu Q, Zhang C, Zheng X, Chen J, Zha Y et al (2013) Concanavalin A-conjugated poly(ethylene glycol)-poly(lactic acid) nanoparticles for intranasal drug delivery to the cervical lymph nodes. J Microencapsul 30(8):780–786

    Article  CAS  PubMed  Google Scholar 

  • Shrestha N, Shahbazi MA, Araujo F, Zhang H, Makila EM, Kauppila J et al (2014) Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials 35(25):7172–7179

    Article  CAS  PubMed  Google Scholar 

  • Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW (2009) In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials 30(12):2329–2339

    Article  CAS  PubMed  Google Scholar 

  • Stuart D, Löbenberg R, Ku T, Azarmi S, Ely L, Roa W et al (2006) Biophysical investigation of nanoparticle interactions with lung surfactant model systems. J Biomed Nanotechnol 2(3–4):245–252

    Article  CAS  Google Scholar 

  • Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced immune toxicity. Toxicology 216(2–3):106–121

    Article  CAS  PubMed  Google Scholar 

  • Szebeni J, Muggia F, Gabizon A, Barenholz Y (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63(12):1020–1030

    Article  CAS  PubMed  Google Scholar 

  • Tan ML, Choong PF, Dass CR (2010) Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 31(1):184–193

    Article  CAS  PubMed  Google Scholar 

  • Tseng YC, Tabata Y, Hyon SH, Ikada Y (1990a) In vitro toxicity test of 2-cyanoacrylate polymers by cell culture method. J Biomed Mater Res 24(10):1355–1367

    Article  CAS  PubMed  Google Scholar 

  • Tseng YC, Hyon SH, Ikada Y (1990b) Modification of the synthesis and investigation of properties for 2-cyanoacrylates. Biomaterials 11(1):73–79

    Article  CAS  PubMed  Google Scholar 

  • Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55(4):519–548

    Article  CAS  PubMed  Google Scholar 

  • Vauthier C, Lindner P, Cabane B (2009) Configuration of bovine serum albumin adsorbed on polymer particles with grafted dextran corona. Colloids Surf B Biointerfaces 69(2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Vauthier C, Persson B, Lindner P, Cabane B (2011) Protein adsorption and complement activation for di-block copolymer nanoparticles. Biomaterials 32(6):1646–1656

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Vittaz M, Bazile D, Spenlehauer G, Verrecchia T, Veillard M, Puisieux F, Labarre D (1996) Effect of PEO surface density on long circulating PLA-PEO nanoparticles which are very low complement activators. Biomaterials 17(16):1575–1581

    Article  CAS  PubMed  Google Scholar 

  • Vonarbourg A, Passirani C, Saulnier P, Simard P, Leroux JC, Benoit JP (2006) Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake. J Biomed Mater Res A 78(3):620–628

    Article  CAS  PubMed  Google Scholar 

  • Weiss CK, Lorenz MR, Landfester K, Mailänder V (2007) Cellular uptake behavior of unfunctionalized and functionalized PBCA particles prepared in a miniemulsion. Macromol Biosci 7(7):883–896

    Article  CAS  PubMed  Google Scholar 

  • Wen Z, Yan Z, He R, Pang Z, Guo L, Qian Y et al (2011) Brain targeting and toxicity study of odorranalectin-conjugated nanoparticles following intranasal administration. Drug Deliv 18(8):555–561

    Article  CAS  PubMed  Google Scholar 

  • Williams D (2003) Revisiting the definition of biocompatibility. Med Device Technol 14(8):10–13

    Google Scholar 

  • Wing KY, Feng SS (2005) Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26(15):2713–2722

    Article  CAS  Google Scholar 

  • Xu L, Xu X, Chen H, Li X (2013) Ocular biocompatibility and tolerance study of biodegradable polymeric micelles in the rabbit eye. Colloids Surf B Biointerfaces 112:30–34

    Article  CAS  PubMed  Google Scholar 

  • Yacobi NR, Malmstadt N, Fazlollahi F, DeMaio L, Marchelletta R, Hamm-Alvarez SF et al (2010) Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol 42(5):604–614

    Article  CAS  PubMed  Google Scholar 

  • Yadav AK, Mishra P, Jain S, Mishra P, Mishra AK, Agrawal GP (2008) Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin. J Drug Target 16(6):464–478

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Gordon WM, Wang DY (2013) Nasal epithelial repair and remodeling in physical injury, infection, and inflammatory diseases. Curr Opin Otolaryngol Head Neck Surg 21(3):263–270

    Article  PubMed  Google Scholar 

  • Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonaje K, Ho YC et al (2011) Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32(26):6164–6173

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Ding J, He C, Cui L, Tang C et al (2009) Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery. Biomaterials 30(29):5691–5700

    Article  CAS  PubMed  Google Scholar 

  • Yu T, Malugin A, Ghandehari H (2011) The impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 5(7):5717–5728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Huang S, Yu KJ, Clyne AM (2012) Dextran and polymer polyethylene glycol (PEG) coating reduce both 5 and 30 nm iron oxide nanoparticle cytotoxicity in 2D and 3D cell culture. Int J Mol Sci 13(5):5554–5570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaki NM, Hafez MM (2012) Enhanced antibacterial effect of ceftriaxone sodium-loaded chitosan nanoparticles against intracellular Salmonella typhimurium. AAPS PharmSciTech 13(2):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zandanel C, Vauthier C (2012) Poly(isobutylcyanoacrylate) nanoparticles decorated with chitosan: effect of conformation of chitosan chains at the surface on complement activation properties. J Colloid Sci Biotechnol 1:68–81

    Article  CAS  Google Scholar 

  • Zauner W, Farrow NA, Haines AM (2001) In vitro uptake of polystyrene micro spheres: effect of particle size, cell line and cell density. J Control Release 71(1):39–51

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Feng SS (2006) The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)–tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27(21):4025–4033

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Qu G, Sun Y, Yang T, Yao Z, Shen W et al (2008) Biological evaluation of N-octyl-O-sulfate chitosan as a new nano-carrier of intravenous drugs. Eur J Pharm Sci 33(4–5):415–423

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J (2012) Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci 45(5):632–638

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VS (2011) Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano 5(2):1366–1375

    Article  CAS  PubMed  Google Scholar 

  • Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA (2010) Nanoparticles and the immune system. Endocrinology 151(2):458–465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank for support by the European Community´s Seventh Framework Programme via the large project “Alexander” (FP7-2011-NMP-280761).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Irache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Irache, J.M., Martín-Arbella, N., Ojer, P., Azqueta, A., Lopez de Cerain, A. (2016). Toxicological Aspects of Polymer Nanoparticles. In: Vauthier, C., Ponchel, G. (eds) Polymer Nanoparticles for Nanomedicines. Springer, Cham. https://doi.org/10.1007/978-3-319-41421-8_16

Download citation

Publish with us

Policies and ethics