Skip to main content

Interaction Between Nanoparticles and Plasma Proteins: Effects on Nanoparticle Biodistribution and Toxicity

  • Chapter
  • First Online:
Book cover Polymer Nanoparticles for Nanomedicines

Abstract

Nanoparticles are increasingly used in biomedical applications as active pharmaceutical ingredients, drug carriers, or medical devices. Nanoparticles interaction with plasma proteins may influence their biodistribution by promoting interaction with and uptake by the circulating and tissue resident phagocytes. Biodistribution to off intended target-sites may lead to decrease in therapeutic efficacy and result in undesirable toxicities. Therefore understanding nanoparticle physicochemical properties, which determine protein binding, and consequences of protein corona on nanoparticle biodistribution and toxicity are important elements of the preclinical development of nanomedicines and nanoparticle-based medical devices. The focus of this chapter is to discuss the most recent data on nanoparticle interactions with blood components and how particle size and surface charge define their compatibility with the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE (2009) Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev 61(6):428–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  CAS  PubMed  Google Scholar 

  • Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P et al (2004) Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol Lung Cell Mol Physiol 286(2):L344–L353

    Article  CAS  PubMed  Google Scholar 

  • Capriotti AL, Cavaliere C, Foglia P, Samperi R, Stampachiacchiere S, Ventura S et al (2014) Multiclass analysis of mycotoxins in biscuits by high performance liquid chromatography-tandem mass spectrometry. Comparison of different extraction procedures. J Chromatogr A 1343:69–78

    Article  CAS  PubMed  Google Scholar 

  • Caron WP, Lay JC, Fong AM, La-Beck NM, Kumar P, Newman SE et al (2013a) Translational studies of phenotypic probes for the mononuclear phagocyte system and liposomal pharmacology. J Pharmacol Exp Ther 347(3):599–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caron WP, Rawal S, Song G, Kumar P, Lay JC, Zamboni WC (2013b) Bidirectional interaction between nanoparticles and cells of the mononuclear phagocytic system. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engoineered nanomaterilas. World Scientific Publishing Co. Pte. Ltd., Singapore, pp 385–416

    Chapter  Google Scholar 

  • Casals E, Puntes VF (2012) Inorganic nanoparticle biomolecular corona: formation, evolution and biological impact. Nanomedicine (Lond) 7(12):1917–1930

    Article  CAS  Google Scholar 

  • Cedervall T, Lynch I, Lindman S, Berggard T, Thulin E, Nilsson H et al (2007) Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci USA 104(7):2050–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chellat F, Grandjean-Laquerriere A, Le Naour R, Fernandes J, Yahia L, Guenounou M et al (2005) Metalloproteinase and cytokine production by THP-1 macrophages following exposure to chitosan-DNA nanoparticles. Biomaterials 26(9):961–970

    Article  CAS  PubMed  Google Scholar 

  • Chonn A, Semple SC, Cullis PR (1992) Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem 267(26):18759–18765

    CAS  PubMed  Google Scholar 

  • Csaba N, Sanchez A, Alonso MJ (2006a) PLGA:poloxamer and PLGA:poloxamine blend nanostructures as carriers for nasal gene delivery. J Control Release 113(2):164–172

    Article  CAS  PubMed  Google Scholar 

  • Csaba N, Garcia-Fuentes M, Alonso MJ (2006b) The performance of nanocarriers for transmucosal drug delivery. Expert Opin Drug Deliv 3(4):463–478

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Mumper RJ (2002) Coating of cationized protein on engineered nanoparticles results in enhanced immune responses. Int J Pharm 238(1–2):229–239

    Article  CAS  PubMed  Google Scholar 

  • Cui Z, Hsu CH, Mumper RJ (2003) Physical characterization and macrophage cell uptake of mannan-coated nanoparticles. Drug Dev Ind Pharm 29(6):689–700

    Article  CAS  PubMed  Google Scholar 

  • Cukalevski R, Lundqvist M, Oslakovic C, Dahlback B, Linse S, Cedervall T (2011) Structural changes in apolipoproteins bound to nanoparticles. Langmuir 27(23):14360–14369

    Article  CAS  PubMed  Google Scholar 

  • Cuna M, Alonso-Sandel M, Remunan-Lopez C, Pivel JP, Alonso-Lebrero JL, Alonso MJ (2006) Development of phosphorylated glucomannan-coated chitosan nanoparticles as nanocarriers for protein delivery. J Nanosci Nanotechnol 6(9–10):2887–2895

    Article  CAS  PubMed  Google Scholar 

  • Dautova Y, Kozlova D, Skepper JN, Epple M, Bootman MD, Proudfoot D (2014) Fetuin-A and albumin alter cytotoxic effects of calcium phosphate nanoparticles on human vascular smooth muscle cells. PLoS ONE 9(5):e97565

    Article  PubMed  PubMed Central  Google Scholar 

  • De Paoli SH, Diduch LL, Tegegn TZ, Orecna M, Strader MB, Karnaukhova E et al (2014) The effect of protein corona composition on the interaction of carbon nanotubes with human blood platelets. Biomaterials 35(24):6182–6194

    Article  PubMed  Google Scholar 

  • Demoy M, Andreux JP, Weingarten C, Gouritin B, Guilloux V, Couvreur P (1999) In vitro evaluation of nanoparticles spleen capture. Life Sci 64(15):1329–1337

    Article  CAS  PubMed  Google Scholar 

  • Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF (2011) Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol 6(1):39–44

    Article  CAS  PubMed  Google Scholar 

  • Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF (2012) Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano 6(10):8962–8969

    Article  CAS  PubMed  Google Scholar 

  • Deng ZJ, Butcher NJ, Mortimer GM, Jia Z, Monteiro MJ, Martin DJ et al (2014) Interaction of human arylamine N-acetyltransferase 1 with different nanomaterials. Drug Metab Dispos 42(3):377–383

    Article  PubMed  Google Scholar 

  • Di Bucchianico S, Fabbrizi MR, Misra SK, Valsami-Jones E, Berhanu D, Reip P et al (2013) Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis 28(3):287–299

    Article  PubMed  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2013a) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466

    Article  CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, McNeil SE (2013b) Immunological properties of engineered nanomaterilas: an introduction. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World scientific Publishing Co. Pte. Ltd., Singapore, pp 1–24

    Chapter  Google Scholar 

  • Dobrovolskaia MA, Patri AK, Zheng J, Clogston JD, Ayub N, Aggarwal P et al (2009) Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5(2):106–117

    CAS  PubMed  Google Scholar 

  • Dobrovolskaia MA, Neun BW, Man S, Ye X, Hansen M, Patri AK et al (2014) Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomedicine 10:1453–1463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM et al (2007) Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 100(1):303–315

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ (2006a) In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Shi B, Hong MH, Pei YY, Chen HZ (2006b) Influence of particle size and MePEG molecular weight on in vitro macrophage uptake and in vivo long circulating of stealth nanoparticles in rats. Yao Xue Xue Bao 41(4):305–312

    CAS  PubMed  Google Scholar 

  • Fleischer CC, Payne CK (2014) Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. J Phys Chem B

    Google Scholar 

  • Franca A, Aggarwal P, Barsov EV, Kozlov SV, Dobrovolskaia MA, Gonzalez-Fernandez A (2011) Macrophage scavenger receptor A mediates the uptake of gold colloids by macrophages in vitro. Nanomedicine (Lond) 6(7):1175–1188

    Article  CAS  Google Scholar 

  • Gessner A, Lieske A, Paulke B, Muller R (2002) Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 54(2):165–170

    Article  CAS  PubMed  Google Scholar 

  • Goppert TM, Muller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13(3):179–187

    Article  PubMed  Google Scholar 

  • Hellstrand E, Boland B, Walsh DM, Linse S (2010) Amyloid beta-protein aggregation produces highly reproducible kinetic data and occurs by a two-phase process. ACS Chem Neurosci 1(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Jansch M, Stumpf P, Graf C, Ruhl E, Muller RH (2012) Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm 428(1–2):125–133

    Article  CAS  PubMed  Google Scholar 

  • Jeong SK, Kwon MS, Lee EY, Lee HJ, Cho SY, Kim H et al (2009) BiomarkerDigger: a versatile disease proteome database and analysis platform for the identification of plasma cancer biomarkers. Proteomics 9(14):3729–3740

    Article  CAS  PubMed  Google Scholar 

  • Jeong YS, Oh WK, Kim S, Jang J (2011) Cellular uptake, cytotoxicity, and ROS generation with silica/conducting polymer core/shell nanospheres. Biomaterials 32(29):7217–7225

    Article  CAS  PubMed  Google Scholar 

  • Karmali PP, Simberg D (2011) Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems. Expert Opin Drug Deliv 8(3):343–357

    Article  CAS  PubMed  Google Scholar 

  • Koutsopoulos S, Patzsch K, Bosker WT, Norde W (2007) Adsorption of trypsin on hydrophilic and hydrophobic surfaces. Langmuir 23(4):2000–2006

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J, Shamenkov D, Petrov V, Ramge P, Cychutek K, Koch-Brandt C et al (2002) Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J Drug Target 10(4):317–325

    Article  CAS  PubMed  Google Scholar 

  • Leroux JC, De Jaeghere F, Anner B, Doelker E, Gurny R (1995) An investigation on the role of plasma and serum opsonins on the internalization of biodegradable poly(d,l-lactic acid) nanoparticles by human monocytes. Life Sci 57(7):695–703

    Article  CAS  PubMed  Google Scholar 

  • Linse S, Cabaleiro-Lago C, Xue WF, Lynch I, Lindman S, Thulin E et al (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci USA 104(21):8691–8696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljubimova JY, Fujita M, Ljubimov AV, Torchilin VP, Black KL, Holler E (2008a) Poly(malic acid) nanoconjugates containing various antibodies and oligonucleotides for multitargeting drug delivery. Nanomedicine (Lond) 3(2):247–265

    Article  CAS  Google Scholar 

  • Ljubimova JY, Fujita M, Khazenzon NM, Lee BS, Wachsmann-Hogiu S, Farkas DL et al (2008b) Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact 171(2):195–203

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist M, Sethson I, Jonsson BH (2004) Protein adsorption onto silica nanoparticles: conformational changes depend on the particles’ curvature and the protein stability. Langmuir 20(24):10639–10647

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson KA (2007) The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century. Adv Colloid Interface Sci 134–135:167–174

    Article  PubMed  Google Scholar 

  • Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M et al (2006) Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther 317(3):1246–1253

    Article  CAS  PubMed  Google Scholar 

  • Milani S, Bombelli FB, Pitek AS, Dawson KA, Radler J (2012) Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona. ACS Nano 6(3):2532–2541

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM (2014) Cancer nanomedicine and the complement system activation paradigm: anaphylaxis and tumour growth. J Control Release 190:556–562

    Article  CAS  PubMed  Google Scholar 

  • Moghimi SM, Farhangrazi ZS (2013) Nanomedicine and the complement paradigm. Nanomedicine 9(4):458–460

    CAS  PubMed  Google Scholar 

  • Moghimi SM, Andersen AJ, Ahmadvand D, Wibroe PP, Andresen TL, Hunter AC (2011) Material properties in complement activation. Adv Drug Deliv Rev 63(12):1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Mohr K, Sommer M, Baier G, Schottler S, Okwieka P, Tenzer S, Landfester K, Mailander V, Schmidt M, Meyer RG (2014) Aggregation behavior of polysterene-nanoparticles in human blood serum and its impact on the in vivo distribution in mice. J Nanomed Nanotechnol 5(2)

    Google Scholar 

  • Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7(12):779–786

    Article  CAS  PubMed  Google Scholar 

  • Monopoli MP, Wan S, Bombelli FB, Mahon E, Dawson KA (2013a) Comparisons of nanoparticle protein corona complexes isolated with different methods. Nano Life 3(4):9

    Article  Google Scholar 

  • Monopoli MP, Pitek AS, Lynch I, Dawson KA (2013b) Formation and characterization of the nanoparticle-protein corona. Methods Mol Biol 1025:137–155

    Article  CAS  PubMed  Google Scholar 

  • Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T (2007a) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342(1–2):215–221

    Article  CAS  PubMed  Google Scholar 

  • Nagayama S, Ogawara K, Minato K, Fukuoka Y, Takakura Y, Hashida M et al (2007b) Fetuin mediates hepatic uptake of negatively charged nanoparticles via scavenger receptor. Int J Pharm 329(1–2):192–198

    Article  CAS  PubMed  Google Scholar 

  • Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8(7):543–557

    Article  CAS  PubMed  Google Scholar 

  • Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T et al (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347

    Article  CAS  PubMed  Google Scholar 

  • Oslakovic C, Cedervall T, Linse S, Dahlback B (2012) Polystyrene nanoparticles affecting blood coagulation. Nanomedicine 8(6):981–986

    CAS  PubMed  Google Scholar 

  • Owens DE 3rd, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102

    Article  CAS  PubMed  Google Scholar 

  • Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE et al (2004) Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv 11(3):169–183

    Article  CAS  PubMed  Google Scholar 

  • Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46(3):255–263

    Article  CAS  PubMed  Google Scholar 

  • Salvador-Morales C, Sim RB (2013) Complement activation. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific Publishing Co. Pte. Ltd., Singapore, pp 357–384

    Chapter  Google Scholar 

  • Salvador-Morales C, Flahaut E, Sim E, Sloan J, Green ML, Sim RB (2006) Complement activation and protein adsorption by carbon nanotubes. Mol Immunol 43(3):193–201

    Article  CAS  PubMed  Google Scholar 

  • Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR et al (2013) Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol 8(2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Shang W, Nuffer JH, Dordick JS, Siegel RW (2007) Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett 7(7):1991–1995

    Article  CAS  PubMed  Google Scholar 

  • Shang W, Nuffer JH, Muniz-Papandrea VA, Colon W, Siegel RW, Dordick JS (2009) Cytochrome C on silica nanoparticles: influence of nanoparticle size on protein structure, stability, and activity. Small 5(4):470–476

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Ramarao P (2012) Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett 213(2):249–259

    Article  CAS  PubMed  Google Scholar 

  • Szebeni J (2005) Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216(2–3):106–121

    Article  CAS  PubMed  Google Scholar 

  • Treuel L, Nienhaus UG (2013) Nanoparticles interaction with plasma proteins and its relates to biodistribution. In: Dobrovolskaia MA, McNeil SE (eds) Handbook of immunological properties of engineered nanomaterials. World Scientific Publishing Co. Pte. Ltd., Singapore, pp 151–172

    Chapter  Google Scholar 

  • Triboulet S, Aude-Garcia C, Armand L, Gerdil A, Diemer H, Proamer F et al (2014) Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach. Nanoscale 6(11):6102–6114

    Article  CAS  PubMed  Google Scholar 

  • Vauthier C, Persson B, Lindner P, Cabane B (2011) Protein adsorption and complement activation for di-block copolymer nanoparticles. Biomaterials 32(6):1646–1656

    Article  CAS  PubMed  Google Scholar 

  • Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20(16):6800–6807

    Article  CAS  PubMed  Google Scholar 

  • Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA (2010) What the cell “sees” in bionanoscience. J Am Chem Soc 132(16):5761–5768

    Article  CAS  PubMed  Google Scholar 

  • Wolfram J, Yang Y, Shen J, Moten A, Chen C, Shen H et al (2014) The nano-plasma interface: implications of the protein corona. Colloids Surf B Biointerfaces 124:17–24

    Article  CAS  PubMed  Google Scholar 

  • Wu WH, Sun X, Yu YP, Hu J, Zhao L, Liu Q et al (2008) TiO2 nanoparticles promote beta-amyloid fibrillation in vitro. Biochem Biophys Res Commun 373(2):315–318

    Article  CAS  PubMed  Google Scholar 

  • Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2(1):85–96

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Gause KT, Kamphuis MM, Ang CS, O’Brien-Simpson NM, Lenzo JC et al (2013) Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano 7(12):10960–10970

    Article  CAS  PubMed  Google Scholar 

  • Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I et al (2010) Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1alpha and IL-1beta. Proc Natl Acad Sci USA 107(45):19449–19454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahr AS, Davis CA, Pishko MV (2006) Macrophage uptake of core–shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 22(19):8178–8185

    Article  CAS  PubMed  Google Scholar 

  • Zaman M, Ahmad E, Qadeer A, Rabbani G, Khan RH (2014) Nanoparticles in relation to peptide and protein aggregation. Int J Nanomed 9:899–912

    Google Scholar 

  • Zamboni WC, Eiseman JL, Strychor S, Rice PM, Joseph E, Zamboni BA et al (2011a) Tumor disposition of pegylated liposomal CKD-602 and the reticuloendothelial system in preclinical tumor models. J Liposome Res 21(1):70–80

    Article  CAS  PubMed  Google Scholar 

  • Zamboni WC, Maruca LJ, Strychor S, Zamboni BA, Ramalingam S, Edwards RP et al (2011b) Bidirectional pharmacodynamic interaction between pegylated liposomal CKD-602 (S-CKD602) and monocytes in patients with refractory solid tumors. J Liposome Res 21(2):158–165

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Souillac PO, Ionescu-Zanetti C, Carter SA, Fink AL (2002) Surface-catalyzed amyloid fibril formation. J Biol Chem 277(52):50914–50922

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project has been funded in whole or in part with Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under contract HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina A. Dobrovolskaia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ilinskaya, A.N., Dobrovolskaia, M.A. (2016). Interaction Between Nanoparticles and Plasma Proteins: Effects on Nanoparticle Biodistribution and Toxicity. In: Vauthier, C., Ponchel, G. (eds) Polymer Nanoparticles for Nanomedicines. Springer, Cham. https://doi.org/10.1007/978-3-319-41421-8_15

Download citation

Publish with us

Policies and ethics