Skip to main content

Associating Drugs with Polymer Nanoparticles: A Challenge

  • Chapter
  • First Online:
Polymer Nanoparticles for Nanomedicines

Abstract

Conditions to achieve drug association with polymer nanoparticles are examined in this chapter. The different types of interactions and modes of association were considered using examples taken among 12 drugs that were associated with different types of nanoparticles using different approaches. The drugs were selected to represent the various properties of active pharmaceutical ingredient (API) varying from their lipophilicity and hydrophilicity and their low-or high-molecular weights. Strategies developed to enhance performance of drug loading are discussed in relation with the different methods used to associate drugs with polymer nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeylath SC, Amiji MM (2011) “Click” synthesis of dextran macrostructures for combinatorial-designed self-assembled nanoparticles encapsulating diverse anticancer therapeutics. Bioorg Med Chem 19:6167–6173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aboubakar M, Puisieux F, Couvreur P, Deyme M, Vauthier C (1999) Study of the mechanism of insulin encapsulation in poly(isobutylcyanoacrylate) nanocapsules obtained by interfacial polymerization. J Biomed Mater Res 47:568–576

    Google Scholar 

  • Acharya S, Sahoo SK (2011) Sustained targeting of Bcr-Abl+ leukemia cells by synergistic action of dual drug loaded nanoparticles and its implication for leukemia therapy. Biomaterials 32:5643–5662

    Article  CAS  PubMed  Google Scholar 

  • Agüeros M, Ruiz-Gatón L, Vauthier C, Bouchemal K, Espuelas S, Ponchel G et al (2009) Combined hydroxypropyl-beta-cyclodextrin and poly(anhydride) nanoparticles improve the oral permeability of paclitaxel. Eur J Pharm Sci 38:405–413

    Article  PubMed  CAS  Google Scholar 

  • Agüeros M, Espuelas S, Esparza I, Calleja P, Peñuelas I, Ponchel G et al (2011) Cyclodextrin-poly(anhydride) nanoparticles as new vehicles for oral drug delivery. Expert Opin Drug Deliv 8:721–734

    Article  PubMed  CAS  Google Scholar 

  • Akbarzadeh A, Mikaeili H, Zarghami N, Mohammad R, Barkhordari A, Davaran S (2012) Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomed 7:511–526

    CAS  Google Scholar 

  • Aksungur P, Demirbilek M, Denkbaş EB, Vandervoort J, Ludwig A, Unlü N (2011) Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release 151:286–294

    Article  CAS  PubMed  Google Scholar 

  • Al Khouri Fallouh N, Roblot-Treupel L, Fessi H, Devissaguet JP, Puisieux F (1986) Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int J Pharm 28:125–132

    Article  CAS  Google Scholar 

  • Alam N, Khare V, Dubey R, Saneja A, Kushwaha M, Singh G et al (2014) Biodegradable polymeric system for cisplatin delivery: development, in vitro characterization and investigation of toxicity profile. Mater Sci Eng C Mater Biol Appl 1(38):85–93

    Article  CAS  Google Scholar 

  • Albert A (1958) Chemical aspects of selective toxicity. Nature 182:421–423

    Article  CAS  PubMed  Google Scholar 

  • Alhareth K, Vauthier C, Gueutin C, Ponchel G, Moussa F (2011) Doxorubicin loading and in vitro release from poly(alkylcyanoacrylate) nanoparticles produced by redox radical emulsion polymerization. J Appl Polym Sci 119:816–822

    Article  CAS  Google Scholar 

  • Alhareth K, Vauthier C, Bourasset F, Gueutin C, Ponchel G, Moussa F (2012) Conformation of surface-decorating dextran chains affects the pharmacokinetics and biodistribution of doxorubicin-loaded nanoparticles. Eur J Pharm Biopharm 81:453–457

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Kalashnikova I, White MA, Sherman M, Rytting E (2013) Preparation, characterization, and transport of dexamethasone-loaded polymeric nanoparticles across a human placental in vitro model. Int J Pharm 454:149–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anirudhan TS, Sandeep S (2012) Synthesis, characterization, cellular uptake and cytotoxicity of a multi-functional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells. J Mater Chem 22:12888–12899

    Article  CAS  Google Scholar 

  • Ankola DD, Battisti A, Solaro R, Kumar MNVR (2010a) Nanoparticles made of multi-block copolymer of lactic acid and ethylene glycol containing periodic side-chain carboxyl groups for oral delivery of cyclosporine A. J R Soc Interface 7:S475–S481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ankola DD, Durbin EW, Buxton GA, Schäfer J, Bakowsky U, Kumar MNVR (2010b) Preparation, characterization and in silico modeling of biodegradable nanoparticles containing cyclosporine A and coenzyme Q10. Nanotechnology 21:065104

    Article  CAS  PubMed  Google Scholar 

  • Ansell SM, Johnstone SA, Tardi PG, Lo L, Xie S, Shu Y et al (2008) Modulating the therapeutic activity of nanoparticle delivered paclitaxel by manipulating the hydrophobicity of prodrug conjugates. J Med Chem 51:3288–3296

    Article  CAS  PubMed  Google Scholar 

  • Arroo RRJ, Androutsopoulos V, Patel A, Surichan S, Wilsher N, Potter GA (2008) Phytoestrogens as natural prodrugs in cancer prevention: a novel concept. Phytochem Rev 7:431–443

    Article  CAS  Google Scholar 

  • Aryal S, Hu C-MJ, Zhang L (2010) Polymer–cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano 4:251–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  PubMed  Google Scholar 

  • Barichello JM, Morishita M, Takayama K, Nagai T (1999) Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm 25:471–476

    Article  CAS  PubMed  Google Scholar 

  • Belbella A, Vauthier C, Fessi H, Devissaguet J-P, Puisieux F (1996) In vitro degradation of nanospheres from poly(d,l-lactides) of different molecular weights and polydispersities. Int J Pharm 129:95–102

    Article  CAS  Google Scholar 

  • Bonelli P, Tuccillo FM, Federico A, Napolitano M, Borrelli A, Melisi D et al (2012) Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations. Int J Nanomed 7:5683–5691

    Article  CAS  Google Scholar 

  • Cao L, Luo J, Tu K, Wang L-Q, Jiang H (2014) Generation of nano-sized core-shell particles using a coaxial tri-capillary electrospray-template removal method. Colloids Surf B Biointerfaces 115:212–218

    Article  CAS  PubMed  Google Scholar 

  • Cavalli R, Donalisio M, Civra A, Ferruti P, Ranucci E, Trotta F et al (2009) Enhanced antiviral activity of Acyclovir loaded into beta-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles. J Control Release 137:116–122

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury A, Das S (2010) Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech 12:10–20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen S, Zhao D, Li F, Zhuo R-X, Cheng S-X (2012) Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Adv 2:1820–1826. doi:10.1039/C1RA00527H

    Article  CAS  Google Scholar 

  • Chen Y, Yang W, Chang B, Hu H, Fang X, Sha X (2013) In vivo distribution and antitumor activity of doxorubicin-loaded N-isopropylacrylamide-co-methacrylic acid coated mesoporous silica nanoparticles and safety evaluation. Eur J Pharm Biopharm 85(3 Pt A):406–412. doi:10.1016/j.ejpb.2013.06.015

    Article  CAS  PubMed  Google Scholar 

  • Cheng K, Lim L-Y (2004) Insulin-loaded calcium pectinate nanoparticles: effects of pectin molecular weight and formulation pH. Drug Dev Ind Pharm 30:359–367

    Article  CAS  PubMed  Google Scholar 

  • Cheng WP, Gray AI, Tetley L, Hang TLB, Schätzlein AG, Uchegbu IF (2006) Polyelectrolyte nanoparticles with high drug loading enhance the oral uptake of hydrophobic compounds. Biomacromolecules 7:1509–1520

    Article  CAS  PubMed  Google Scholar 

  • Cheow WS, Hadinoto K (2011) Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids Surf, B 85:214–220

    Article  CAS  Google Scholar 

  • Cheow WS, Hadinoto K (2012) Self-assembled amorphous drug-polyelectrolyte nanoparticle complex with enhanced dissolution rate and saturation solubility. J Colloid Interface Sci 367:518–526

    Article  CAS  PubMed  Google Scholar 

  • Cournarie F, Chéron M, Besnard M, Vauthier C (2004) Evidence for restrictive parameters in formulation of insulin-loaded nanocapsules. Eur J Pharm Biopharm 57:171–179

    Article  CAS  PubMed  Google Scholar 

  • Csaba N, Köping-Höggård M, Alonso MJ (2009) Ionically crosslinked chitosan/tripolyphosphate nanoparticles for oligonucleotide and plasmid DNA delivery. Int J Pharm 382:205–214

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Shi K, Zhang L, Tao A, Kawashima Y (2006) Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release 114:242–250

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Xu Q, Chow PK-H, Wang D, Wang C-H (2013) Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials 34:8511–8520. doi:10.1016/j.biomaterials.2013.07.075

    Article  CAS  PubMed  Google Scholar 

  • Cutler JI, Zheng D, Xu X, Giljohann DA, Mirkin CA (2010) Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett 10:1477–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cyrus T, Zhang H, Allen JS, Williams TA, Hu G, Caruthers SD et al (2008) Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury. Arterioscler Thromb Vasc Biol 28:820–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza AJM, Topp EM (2004) Release from polymeric prodrugs: Linkages and their degradation. J Pharm Sci 93:1962–1979

    Article  PubMed  CAS  Google Scholar 

  • da Silveira AM, Ponchel G, Puisieux F, Duchêne D (1998) Combined poly(isobutylcyanoacrylate) and cyclodextrins nanoparticles for enhancing the encapsulation of lipophilic drugs. Pharm Res 15:1051–1055

    Article  Google Scholar 

  • Damgé C, Michel C, Aprahamian M, Couvreur P (1988) New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier. Diabetes 37:246–251

    Article  PubMed  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: An overview of biomedical applications. J Control Release 161:505–522

    Article  CAS  PubMed  Google Scholar 

  • Das N, Dhanawat M, Dash B, Nagarwal RC, Shrivastava SK (2010) Codrug: an efficient approach for drug optimization. Eur J Pharm Sci 23(41):571–588

    Article  CAS  Google Scholar 

  • Das S, Jagan L, Isiah R, Rajesh B, Backianathan S, Subhashini J (2011) Nanotechnology in oncology: characterization and in vitro release kinetics of cisplatin-loaded albumin nanoparticles: implications in anticancer drug delivery. Indian J Pharmacol 43:409–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daus S, Heinze T (2010) Xylan-based nanoparticles: prodrugs for ibuprofen release. Macromol Biosci 10:211–220

    Article  CAS  PubMed  Google Scholar 

  • De Martimprey H, Bertrand J-R, Malvy C, Couvreur P, Vauthier C (2010) New core-shell nanoparticules for the intravenous delivery of siRNA to experimental thyroid papillary carcinoma. Pharm Res 27:498–509

    Article  PubMed  CAS  Google Scholar 

  • De Matos MBC, Piedade AP, Alvarez-Lorenzo C, Concheiro A, Braga MEM, de Sousa HC (2013) Dexamethasone-loaded poly(ε-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition. Int J Pharm 18(456):269–281

    Article  CAS  Google Scholar 

  • de Miguel L, Popa I, Noiray M, Caudron E, Arpinati L, Desmaele D et al (2014) Osteotropic polypeptide nanoparticles with dual hydroxyapatite binding properties and controlled cisplatin delivery. Pharm Res 32:1794–1803

    Article  PubMed  CAS  Google Scholar 

  • De Verdière AC, Dubernet C, Nèmati F, Soma E, Appel M, Fertè J et al (1997) Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles: towards a mechanism of action. Br J Cancer 76:198–205

    Article  PubMed  Google Scholar 

  • Delair T (2011) Colloidal polyelectrolyte complexes of chitosan and dextran sulfate towards versatile nanocarriers of bioactive molecules. Eur J Pharm Biopharm 78:10–18

    Article  CAS  PubMed  Google Scholar 

  • Devi SV, Prakash T (2013) Kinetics of cisplatin release by in-vitro using poly(d,l-lactide) coated Fe3O4 nanocarriers. IEEE Trans Nanobiosci 12:60–63

    Article  Google Scholar 

  • Dian L, Yang Z, Li F, Wang Z, Pan X, Peng X et al (2013) Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomed 8:845–854

    Google Scholar 

  • Ding D, Tang X, Cao X, Wu J, Yuan A, Qiao Q et al (2014) Novel self-assembly endows human serum albumin nanoparticles with an enhanced antitumor efficacy. AAPS PharmSciTech 15:213–222

    Article  CAS  PubMed  Google Scholar 

  • Dosio F, Reddy LH, Ferrero A, Stella B, Cattel L, Couvreur P (2010) Novel nanoassemblies composed of squalenoyl-paclitaxel derivatives: synthesis, characterization, and biological evaluation. Bioconjug Chem 21:1349–1361

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi Shahmabadi H, Movahedi F, Koohi Moftakhari Esfahani M, Alavi SE, Eslamifar A, Mohammadi Anaraki G et al (2014) Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma. Tumour Biol 35:4799–4806. doi:10.1007/s13277-014-1630-9

    Article  CAS  PubMed  Google Scholar 

  • Elkheshen SA, Mobarak DH, Salah S, Essam T (2013) Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: optimization of the formulation variables. J Pharm Res Opin 3:72–81

    CAS  Google Scholar 

  • Etrych T, Šírová M, Starovoytova L, Říhová B, Ulbrich K (2010) HPMA copolymer conjugates of paclitaxel and docetaxel with pH-controlled drug release. Mol Pharm 7:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Fang J-Y, Al-Suwayeh SA (2012) Nanoparticles as delivery carriers for anticancer prodrugs. Expert Opin Drug Deliv 9:657–669

    Article  CAS  PubMed  Google Scholar 

  • Florent J-C, Monneret C (2008) Doxorubicin conjugates for selective delivery to tumors. Top Curr Chem 283:99–140

    Article  CAS  PubMed  Google Scholar 

  • Fratoddi I, Venditti I, Cametti C, Palocci C, Chronopoulou L, Marino M et al (2012) Functional polymeric nanoparticles for dexamethasone loading and release. Colloids Surf B Biointerfaces 93:59–66

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Rodríguez SA, Puel F, Briançon S, Allémann E, Doelker E, Fessi H (2005) Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci 25:357–367

    Article  PubMed  CAS  Google Scholar 

  • Gate L, Vauthier C, Couvreur P, Tew KD, Tapiero H (2001) Glutathione loaded poly-(isobutylcyanoacrylate) nanoparticles and liposomes: Comparative effects in murine erythroleukemia and macrophage-like cells. STP Pharma Sci 11:355–361

    Google Scholar 

  • Gaudana R, Parenky A, Vaishya R, Samanta SK, Mitra AK (2011) Development and characterization of nanoparticulate formulation of a water soluble prodrug of dexamethasone by HIP complexation. J Microencapsul 28:10–20

    Article  CAS  PubMed  Google Scholar 

  • Giger EV, Castagner B, Räikkönen J, Mönkkönen J, Leroux J-C (2013) siRNA transfection with calcium phosphate nanoparticles stabilized with PEGylated chelators. Adv Healthc Mater 2:134–144. doi:10.1002/adhm.201200088

    Article  CAS  PubMed  Google Scholar 

  • Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA (2009) Gene regulation with polyvalent siRNA-nanoparticle conjugates. J Am Chem Soc 131:2072–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gökçe EH, Sandri G, Eğrilmez S, Bonferoni MC, Güneri T, Caramella C (2009) Cyclosporine A-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Curr Eye Res 34:996–1003

    Article  PubMed  CAS  Google Scholar 

  • Gu J, Su S, Zhu M, Li Y, Zhao W, Duan Y et al (2012) Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH-dependent release profile. Microporous Mesoporous Mater 161:160–167

    Article  CAS  Google Scholar 

  • Gu Y, Zhong Y, Meng F, Cheng R, Deng C, Zhong Z (2013) Acetal-linked paclitaxel prodrug micellar nanoparticles as a versatile and potent platform for cancer therapy. Biomacromolecules 14:2772–2780

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Lai Q, Wang W, Wu Y, Zhang C, Liu Y et al (2013a) Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Int J Pharm 451:1–11

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Zhang D, Li C, Jia L, Liu G, Hao L et al (2013b) Self-assembled nanoparticles based on galactosylated O-carboxymethyl chitosan-graft-stearic acid conjugates for delivery of doxorubicin. Int J Pharm 458:31–38. doi:10.1016/j.ijpharm.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Wang Y, Miao L, Xu Z, Lin CM, Zhang Y et al (2013c) Lipid-coated Cisplatin nanoparticles induce neighboring effect and exhibit enhanced anticancer efficacy. ACS Nano 7:9896–9904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Miao L, Wang Y, Huang L (2014) Unmodified drug used as a material to construct nanoparticles: delivery of cisplatin for enhanced anti-cancer therapy. J Control Release 174:137–142. doi:10.1016/j.jconrel.2013.11.019

    Article  CAS  PubMed  Google Scholar 

  • Haddadi A, Elamanchili P, Lavasanifar A, Das S, Shapiro J, Samuel J (2008) Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J Biomed Mater Res A 84:885–898

    Article  PubMed  CAS  Google Scholar 

  • Haroun AA, El-Halawany NR, Loira-Pastoriza C, Maincent P (2014) Synthesis and in vitro release study of ibuprofen-loaded gelatin graft copolymer nanoparticles. Drug Dev Ind Pharm 40:61–65. doi:10.3109/03639045.2012.746359

    Article  CAS  PubMed  Google Scholar 

  • Hasanovic A, Zehl M, Reznicek G, Valenta C (2009) Chitosan-tripolyphosphate nanoparticles as a possible skin drug delivery system for aciclovir with enhanced stability. J Pharm Pharmacol 61:1609–1616

    Article  CAS  PubMed  Google Scholar 

  • He X, Hai L, Su J, Wang K, Wu X (2011) One-pot synthesis of sustained-released doxorubicin silica nanoparticles for aptamer targeted delivery to tumor cells. Nanoscale 3:2936–2942

    Article  CAS  PubMed  Google Scholar 

  • He C, Yin L, Tang C, Yin C (2013) Multifunctional polymeric nanoparticles for oral delivery of TNF-α siRNA to macrophages. Biomaterials 34:2843–2854

    Article  CAS  PubMed  Google Scholar 

  • Hermans K, Weyenberg W, Ludwig A (2010) The effect of HPβCD on Cyclosporine A in-vitro release from PLGA nanoparticles. J Control Release 148:e40–e41

    Article  CAS  PubMed  Google Scholar 

  • Hermans K, Van den Plas D, Everaert A, Weyenberg W, Ludwig A (2012) Full factorial design, physicochemical characterisation and biological assessment of cyclosporine A loaded cationic nanoparticles. Eur J Pharm Biopharm 82:27–35

    Article  CAS  PubMed  Google Scholar 

  • Hillaireau H, Le Doan T, Appel M, Couvreur P (2006) Hybrid polymer nanocapsules enhance in vitro delivery of azidothymidine-triphosphate to macrophages. J Control Release 116:346–352

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Shang J, Jiao C, Jiang P, Xiao H, Luo L et al (2013) A core cross-linked polymeric micellar platium(IV) prodrug with enhanced anticancer efficiency. Macromol Biosci 13:954–965

    Article  CAS  PubMed  Google Scholar 

  • Hua M-Y, Yang H-W, Chuang C-K, Tsai R-Y, Chen W-J, Chuang K-L et al (2010) Magnetic-nanoparticle-modified paclitaxel for targeted therapy for prostate cancer. Biomaterials 31(28):7355–7363

    Article  CAS  PubMed  Google Scholar 

  • Huang TL, Székács A, Uematsu T, Kuwano E, Parkinson A, Hammock BD (1993) Hydrolysis of carbonates, thiocarbonates, carbamates, and carboxylic esters of α-naphthol, β-naphthol, and p-nitrophenol by human, rat, and mouse liver carboxylesterases. Pharm Res 10:639–648

    Article  CAS  PubMed  Google Scholar 

  • Jäger A, Gromadzki D, Jäger E, Giacomelli FC, Kozlowska A, Kobera L et al (2012) Novel “soft” biodegradable nanoparticles prepared from aliphatic based monomers as a potential drug delivery system. Soft Matter 8:4343–4354

    Article  CAS  Google Scholar 

  • Jaracz S, Chen J, Kuznetsova LV, Ojima I (2005) Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem 13:5043–5054

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri AM, Torchilin VP (2014) Multifunctional polymeric micelles for delivery of drugs and siRNA. Front Pharmacol 5:77. doi:10.3389/fphar.2014.00077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang B, Hu L, Gao C, Shen J (2005) Ibuprofen-loaded nanoparticles prepared by a co-precipitation method and their release properties. Int J Pharm 304:220–230

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Sun H-M, Li X-R, Yuan X-B, Wang Y-Q, Zhang S-X et al (2009) Combined rapamycin eye drop in nanometer vector and poly (lactic acid) wafers of cyclosporine A effectively prevents high-risk corneal allograft rejection in rabbits. Zhonghua Yan Ke Za Zhi 45:550–555

    CAS  PubMed  Google Scholar 

  • Jiang X, Xin H, Sha X, Gu J, Jiang Y, Law K et al (2011) PEGylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel for the treatment of advanced glioma: in vitro and in vivo evaluation. Int J Pharm 420:385–394

    Article  CAS  PubMed  Google Scholar 

  • Jin Y (2007) Effect of temperature on the state of the self-assembled nanoparticles prepared from an amphiphilic lipid derivative of acyclovir. Colloids Surf B 54:124–125

    Article  CAS  Google Scholar 

  • Johnstone TC, Lippard SJ (2013) The effect of ligand lipophilicity on the nanoparticle encapsulation of Pt(IV) prodrugs. Inorg Chem 52:9915–9920. doi:10.1021/ic4010642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung SH, Lim DH, Jung SH, Lee JE, Jeong K-S, Seong H et al (2009) Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci 37:313–320

    Article  CAS  PubMed  Google Scholar 

  • Kamel AO, Awad GAS, Geneidi AS, Mortada ND (2009) Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS PharmSciTech 10:1427–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karavana SY, Gökçe EH, Rençber S, Özbal S, Pekçetin C, Güneri P et al (2012) A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations. Int J Nanomed 7:5693–5704

    Article  CAS  Google Scholar 

  • Kenyon NJ, Bratt JM, Lee J, Luo J, Franzi LM, Zeki AA et al (2013) Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS One 8:e77730. doi:10.1371/journal.pone.0077730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kievit FM, Wang FY, Fang C, Mok H, Wang K, Silber JR et al (2011) Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release 152:76–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J-K, Howard MD, Dziubla TD, Rinehart JJ, Jay M, Lu X (2011a) Uniformity of drug payload and its effect on stability of solid lipid nanoparticles containing an ester prodrug. ACS Nano 5:209–216

    Article  CAS  PubMed  Google Scholar 

  • Kim M-S, Kim J-S, Park HJ, Cho WK, Cha K-H, Hwang S-J (2011b) Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int J Nanomed 6:2997–3009

    CAS  Google Scholar 

  • Kopecek J, Kopecková P (2010) HPMA copolymers: origins, early developments, present, and future. Adv Drug Deliv Rev 62:122–149

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Lu Y, Yin Z, Hu F, Wu W (2010) Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles. Int J Nanomed 5:13–23

    CAS  Google Scholar 

  • Lambert G, Fattal E, Pinto-Alphandary H, Gulik A, Couvreur P (2000) Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the delivery of oligonucleotides. Pharm Res 17:707–714

    Article  CAS  PubMed  Google Scholar 

  • Lavasanifar A, Samuel J, Kwon GS (2002) Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 54:169–190

    Article  CAS  PubMed  Google Scholar 

  • Lee W, Park J, Yang EH, Suh H, Kim SH, Chung DS et al (2002) Investigation of the factors influencing the release rates of cyclosporin A-loaded micro- and nanoparticles prepared by high-pressure homogenizer. J Control Release 84:115–123

    Article  CAS  PubMed  Google Scholar 

  • Lee DW, Yun K-S, Ban H-S, Choe W, Lee SK, Lee KY (2009) Preparation and characterization of chitosan/polyguluronate nanoparticles for siRNA delivery. J Control Release 139:146–152

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Graeser R, Kratz F, Geckeler KE (2011) Paclitaxel-loaded polymer nanoparticles for the reversal of multidrug resistance in breast cancer cells. Adv Funct Mater 21:4211–4218

    Article  CAS  Google Scholar 

  • Lee SJ, Hong G-Y, Jeong Y-I, Kang M-S, Oh J-S, Song C-E et al (2012) Paclitaxel-incorporated nanoparticles of hydrophobized polysaccharide and their antitumor activity. Int J Pharm 433:121–128

    Article  CAS  PubMed  Google Scholar 

  • Lee KD, Jeong Y-I, Kim DH, Lim G-T, Choi K-C (2013) Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate) copolymer. Int J Nanomed 8:2835–2845

    Google Scholar 

  • Lehtovaara BC, Verma MS, Gu FX (2012) Synthesis of curdlan-graft-poly(ethylene glycol) and formulation of doxorubicin-loaded core–shell nanoparticles. J Bioact Compat Polym 27:3–17

    Article  CAS  Google Scholar 

  • Leobandung W, Ichikawa H, Fukumori Y, Peppas NA (2002) Preparation of stable insulin-loaded nanospheres of poly(ethylene glycol) macromers and N-isopropyl acrylamide. J Control Release 80:357–363

    Article  CAS  PubMed  Google Scholar 

  • Li F, Sun J, Zhu H, Wen X, Lin C, Shi D (2011) Preparation and characterization novel polymer-coated magnetic nanoparticles as carriers for doxorubicin. Colloids Surf B Biointerfaces 88:58–62

    Article  CAS  PubMed  Google Scholar 

  • Li L, Bai Z, Levkin PA (2013a) Boronate-dextran: an acid-responsive biodegradable polymer for drug delivery. Biomaterials 34(33):8504–8510

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen Y, Wang M, Ma Y, Xia W, Gu H (2013b) A mesoporous silica nanoparticle–PEI–fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials 34:1391–1401

    Article  CAS  PubMed  Google Scholar 

  • Li H, Bian S, Huang Y, Liang J, Fan Y, Zhang X (2014a) High drug loading pH-sensitive pullulan-DOX conjugate nanoparticles for hepatic targeting. J Biomed Mater Res A 102:150–159. doi:10.1002/jbm.a.34680

    Article  PubMed  CAS  Google Scholar 

  • Li N-N, Zheng B-N, Lin J-T, Zhang L-M (2014b) New heparin-indomethacin conjugate with an ester linkage: synthesis, self aggregation and drug delivery behavior. Mater Sci Eng C Mater Biol Appl 34:229–235

    Article  CAS  PubMed  Google Scholar 

  • Lodha A, Lodha M, Patel A, Chaudhuri J, Dalal J, Edwards M et al (2012) Synthesis of mesoporous silica nanoparticles and drug loading of poorly water soluble drug cyclosporin A. J Pharm Bioallied Sci 4(Suppl 1):S92–S94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg BB (2011) Preparation and characterization of polymeric pH-sensitive STEALTH® nanoparticles for tumor delivery of a lipophilic prodrug of paclitaxel. Int J Pharm 408:208–212

    Article  CAS  PubMed  Google Scholar 

  • Lv P-P, Wei W, Yue H, Yang T-Y, Wang L-Y, Ma G-H (2011) Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromolecules 12:4230–4239

    Article  CAS  PubMed  Google Scholar 

  • Lv S, Li M, Tang Z, Song W, Sun H, Liu H et al (2013) Doxorubicin-loaded amphiphilic polypeptide-based nanoparticles as an efficient drug delivery system for cancer therapy. Acta Biomater 9:9330–9342

    Article  CAS  PubMed  Google Scholar 

  • Ma P, Mumper RJ (2013) Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 4:1000164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma X, Teh C, Zhang Q, Borah P, Choong C, Korzh V et al (2014) Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin. Antioxid Redox Signal 21:707–722. doi:10.1089/ars.2012.5076

    Article  CAS  PubMed  Google Scholar 

  • Maksimenko A, Dosio F, Mougin J, Ferrero A, Wack S, Reddy LH et al (2014) A unique squalenoylated and nonpegylated doxorubicin nanomedicine with systemic long-circulating properties and anticancer activity. Proc Natl Acad Sci USA 111:E217–E226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra M, Tomaro-Duchesneau C, Prakash S (2013) Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials 34:1270–1280

    Article  CAS  PubMed  Google Scholar 

  • Mandal B, Bhattacharjee H, Mittal N, Sah H, Balabathula P, Thoma LA et al (2013) Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 9:474–491

    CAS  PubMed  Google Scholar 

  • Mansouri M, Pouretedal HR, Vosoughi V (2011) Preparation and characterization of ibuprofen nanoparticles by using solvent/antisolvent precipitation. Open Conf Proc J 2:88–94

    Article  CAS  Google Scholar 

  • Memişoğlu E, Bochot A, Ozalp M, Sen M, Duchêne D, Hincal AA (2003) Direct formation of nanospheres from amphiphilic beta-cyclodextrin inclusion complexes. Pharm Res 20:117–125

    Article  PubMed  Google Scholar 

  • Meunier B (2008) Hybrid molecules with a dual mode of action: dream or reality?†. Acc Chem Res 41:69–77

    Article  CAS  PubMed  Google Scholar 

  • Mobarak DH, Salah S, Elkheshen SA (2014) Formulation of ciprofloxacin hydrochloride loaded biodegradable nanoparticles: optimization of technique and process variables. Pharm Dev Technol 19:891–900

    Article  CAS  PubMed  Google Scholar 

  • Nahar M, Mishra D, Dubey V, Jain NK (2008) Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine 4(3):252–261

    CAS  PubMed  Google Scholar 

  • Nakarani M, Patel P, Patel J, Patel P, Murthy RSR, Vaghani SS (2010) Cyclosporine A-nanosuspension: formulation, characterization and in vivo comparison with a marketed formulation. Sci Pharm 78:345–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan S, Pavithran M, Viswanath A, Narayanan D, Mohan CC, Manzoor K et al (2014) Sequentially releasing dual-drug-loaded PLGA–casein core/shell nanomedicine: design, synthesis, biocompatibility and pharmacokinetics. Acta Biomater 10:2112–2124

    Article  CAS  PubMed  Google Scholar 

  • Némati F, Dubernet C, Fessi H, Colin de Verdière A, Poupon MF, Puisieux F et al (1996) Reversion of multidrug resistance using nanoparticles in vitro: Influence of the nature of the polymer. Int J Pharm 138:237–246

    Article  Google Scholar 

  • Nikanjam M, Gibbs AR, Hunt CA, Budinger TF, Forte TM (2007) Synthetic nano-LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J Control Release 124:163–171

    Article  CAS  PubMed  Google Scholar 

  • Oberoi HS, Nukolova NV, Kabanov AV, Bronich TK (2013) Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 65:1667–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira RR, Ferreira FS, Cintra ER, Branquinho LC, Bakuzis AF, Lima EM (2012) Magnetic nanoparticles and rapamycin encapsulated into polymeric nanocarriers. J Biomed Nanotechnol 8:193–201

    Article  CAS  PubMed  Google Scholar 

  • Pardeshi C, Rajput P, Belgamwar V, Tekade A, Patil G, Chaudhary K et al (2012) Solid lipid based nanocarriers: an overview. Acta Pharm 62:433–472

    Article  CAS  PubMed  Google Scholar 

  • Park M-J, Balakrishnan P, Yang S-G (2013) Polymeric nanocapsules with SEDDS oil-core for the controlled and enhanced oral absorption of cyclosporine. Int J Pharm 441:757–764

    Article  CAS  PubMed  Google Scholar 

  • Parrott MC, Finniss M, Luft JC, Pandya A, Gullapalli A, Napier ME et al (2012) Incorporation and controlled release of silyl ether prodrugs from PRINT nanoparticles. J Am Chem Soc 134:7978–7982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parveen S, Sahoo SK (2011) Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670:372–383

    Article  CAS  PubMed  Google Scholar 

  • Patel PJ, Gohel MC, Acharya SR (2014) Exploration of statistical experimental design to improve entrapment efficiency of acyclovir in poly(d,l) lactide nanoparticles. Pharm Dev Technol 19:200–212

    Article  CAS  PubMed  Google Scholar 

  • Perret F, Duffour M, Chevalier Y, Parrot-Lopez H (2013) Design, synthesis, and in vitro evaluation of new amphiphilic cyclodextrin-based nanoparticles for the incorporation and controlled release of acyclovir. Eur J Pharm Biopharm 83:25–32

    Article  CAS  PubMed  Google Scholar 

  • Pilapong C, Keereeta Y, Munkhetkorn S, Thongtem S, Thongtem T (2013) Enhanced doxorubicin delivery and cytotoxicity in multidrug resistant cancer cells using multifunctional magnetic nanoparticles. Colloids Surf B Biointerfaces 113C:249–253

    Google Scholar 

  • Pooja D, Panyaram S, Kulhari H, Rachamalla SS, Sistla R (2014) Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydr Polym 110:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rahman Z, Zidan AS, Habib MJ, Khan MA (2010) Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett–Burman design. Int J Pharm 389:186–194

    Article  CAS  PubMed  Google Scholar 

  • Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Järvinen T et al (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270

    Article  CAS  PubMed  Google Scholar 

  • Reix N, Parat A, Seyfritz E, Van der Werf R, Epure V, Ebel N et al (2012) In vitro uptake evaluation in Caco-2 cells and in vivo results in diabetic rats of insulin-loaded PLGA nanoparticles. Int J Pharm 437:213–220

    Article  CAS  PubMed  Google Scholar 

  • Ren F, Chen R, Wang Y, Sun Y, Jiang Y, Li G (2011) Paclitaxel-loaded poly(n-butylcyanoacrylate) nanoparticle delivery system to overcome multidrug resistance in ovarian cancer. Pharm Res 28:897–906

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro TG, Chavez-Fumagalli MA, Valadares DG, Franca JR, Rodrigues LB, Duarte MC et al (2014) Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomed 9:877–890

    Article  CAS  Google Scholar 

  • Roger E, Kalscheuer S, Kirtane A, Guru BR, Grill AE, Whittum-Hudson J et al (2012) Folic acid functionalized nanoparticles for enhanced oral drug delivery. Mol Pharm 9:2103–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saengkrit N, Sanitrum P, Woramongkolchai N, Saesoo S, Pimpha N, Chaleawlert-Umpon S et al (2012) The PEI-introduced CS shell/PMMA core nanoparticle for silencing the expression of E6/E7 oncogenes in human cervical cells. Carbohydr Polym 90:1323–1329

    Article  CAS  PubMed  Google Scholar 

  • Sangster J (1989) Octanol–water partition coefficients of simple organic compounds. J Phys Chem Ref Data 18:1111–1229

    Article  CAS  Google Scholar 

  • Shady SF, Gaines P, Garhwal R, Leahy C, Ellis E, Crawford K et al (2013) Synthesis and characterization of pullulan-polycaprolactone core-shell nanospheres encapsulated with ciprofloxacin. J Biomed Nanotechnol 9:1644–1655

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Goodisman J, Dabrowiak JC (2013) Cyclodextrin capped gold nanoparticles as a delivery vehicle for a prodrug of cisplatin. Inorg Chem 52:9418–9426. doi:10.1021/ic400989v

    Article  CAS  PubMed  Google Scholar 

  • Singh Y, Palombo M, Sinko PJ (2008) Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem 15:1802–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn JS, Jin JI, Hess M, Jo BW (2010) Polymer prodrug approaches applied to paclitaxel. Polym Chem 1:778–792

    Article  CAS  Google Scholar 

  • Soma CE, Dubernet C, Bentolila D, Benita S, Couvreur P (2000) Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 21:1–7

    Article  CAS  PubMed  Google Scholar 

  • Son YJ, Jang J-S, Cho YW, Chung H, Park R-W, Kwon IC et al (2003) Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release 91:135–145

    Article  CAS  PubMed  Google Scholar 

  • Sozio P, D’Aurizio E, Iannitelli A, Cataldi A, Zara S, Cantalamessa F et al (2010) Ibuprofen and lipoic acid diamides as potential codrugs with neuroprotective activity. Arch Pharm (Weinheim) 343:133–142

    Article  CAS  Google Scholar 

  • Sun C-Y, Dou S, Du J-Z, Yang X-Z, Li Y-P, Wang J (2014) Doxorubicin conjugate of poly(ethylene glycol)-block-polyphosphoester for cancer therapy. Adv Healthc Mater 3:261–272. doi:10.1002/adhm.201300091

    Article  CAS  PubMed  Google Scholar 

  • Sung H-W, Sonaje K, Liao Z-X, Hsu L-W, Chuang E-Y (2012) pH-responsive nanoparticles shelled with chitosan for oral delivery of insulin: from mechanism to therapeutic applications. Acc Chem Res 45:619–629

    Article  CAS  PubMed  Google Scholar 

  • Svartz N (1942) Salazopyrin, a new sulfanilamide preparation. A. Therapeutic results in rheumatic polyarthritis. B. Therapeutic results in ulcerative colitis. C. Toxic manifestations in treatment with sulfanilamide preparations. Acta Med Scand 110:577–598

    Article  Google Scholar 

  • Tahara K, Yamamoto H, Hirashima N, Kawashima Y (2010) Chitosan-modified poly(d,l-lactide-co-glycolide) nanospheres for improving siRNA delivery and gene-silencing effects. Eur J Pharm Biopharm 74:421–426

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Li L, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater Weinheim 24(12):1504–1534

    Article  CAS  PubMed  Google Scholar 

  • Theodossiou TA, Sideratou Z, Katsarou ME, Tsiourvas D (2013) Mitochondrial delivery of doxorubicin by triphenylphosphonium-functionalized hyperbranched nanocarriers results in rapid and severe cytotoxicity. Pharm Res 30:2832–2842

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP (2007) Micellar nanocarriers: pharmaceutical perspectives. Pharm Res 24:1–16

    Article  CAS  PubMed  Google Scholar 

  • Toub N, Bertrand J-R, Tamaddon A, Elhamess H, Hillaireau H, Maksimenko A et al (2006) Efficacy of siRNA nanocapsules targeted against the EWS–Fli1 oncogene in Ewing sarcoma. Pharm Res 23:892–900

    Article  CAS  PubMed  Google Scholar 

  • Trivedi R, Kompella UB (2010) Nanomicellar formulations for sustained drug delivery: strategies and underlying principles. Nanomed (Lond) 5:485–505

    Article  CAS  Google Scholar 

  • Tzeng SY, Yang PH, Grayson WL, Green JJ (2011) Synthetic poly(ester amine) and poly(amido amine) nanoparticles for efficient DNA and siRNA delivery to human endothelial cells. Int J Nanomed 6:3309–3322

    CAS  Google Scholar 

  • Uccello-Barretta G, Balzano F, Aiello F, Senatore A, Fabiano A, Zambito Y (2014) Mucoadhesivity and release properties of quaternary ammonium-chitosan conjugates and their nanoparticulate supramolecular aggregates: an NMR investigation. Int J Pharm 461:489–494

    Article  CAS  PubMed  Google Scholar 

  • Van de Ven H, Paulussen C, Feijens PB, Matheeussen A, Rombaut P, Kayaert P et al (2012) PLGA nanoparticles and nanosuspensions with amphotericin B: Potent in vitro and in vivo alternatives to Fungizone and Am Bisome. J Control Release 161:795–803

    Article  PubMed  CAS  Google Scholar 

  • Varenne F, Makky A, Gaucher-Delmas M, Violleau F, Vauthier C (2016) Multimodal dispersion of nanoparticles: a comprehensive evaluation of size distribution with 9 size measurement methods. Pharm Res 33:1220–1234. doi:10.1007/S11095-016-1867-7

    Google Scholar 

  • Vauthier C, Bouchemal K (2009) Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res 26:1025–1058

    Article  CAS  PubMed  Google Scholar 

  • Vauthier C, Zandanel C, Ramon AL (2013) Chitosan-based nanoparticles for in vivo delivery of interfering agents including siRNA. Curr Opin Colloid Interface Sci 18:406–418

    Article  CAS  Google Scholar 

  • Verma RK, Pandya S, Misra A (2011) Loading and release of amphotericin-B from biodegradable poly(lactic-co-glycolic acid) nanoparticles. J Biomed Nanotechnol 7:118–120

    Article  CAS  PubMed  Google Scholar 

  • Vrignaud S, Benoit J-P, Saulnier P (2011) Strategies for the nanoencapsulation of hydrophilic molecules in polymer-based nanoparticles. Biomaterials 32:8593–8604

    Article  CAS  PubMed  Google Scholar 

  • Vrudhula VM, MacMaster JF, Li Z, Kerr DE, Senter PD (2002) Reductively activated disulfide prodrugs of paclitaxel. Bioorg Med Chem Lett 12:3591–3594

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xin D, Liu K, Zhu M, Xiang J (2009) Heparin-paclitaxel conjugates as drug delivery system: synthesis, self-assembly property, drug release, and antitumor activity. Bioconjug Chem 20:2214–2221

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Feng S-S, Wang S, Chen Z-Y (2010) Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment. Int J Pharm 400:194–200

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhang C, Liang XJ, Liang W, Wu Y (2011a) Hydroxypropyl-β-cyclodextrin copolymers and their nanoparticles as doxorubicin delivery system. J Pharm Sci 100:1067–1079. doi:10.1002/jps.22352

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Jiang W, Yan H, Zhang X, Yang L, Deng L et al (2011b) Novel PEG-graft-PLA nanoparticles with the potential for encapsulation and controlled release of hydrophobic and hydrophilic medications in aqueous medium. Int J Nanomed 6:1443–1451

    CAS  Google Scholar 

  • Wang F, Wang Y-C, Dou S, Xiong M-H, Sun T-M, Wang J (2011c) Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 5:3679–3692

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhao Y, Wu Y, Hu Y, Nan K, Nie G et al (2011d) Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 32:8281–8290

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhou F, Ge L, Liu X, Kong F (2012a) Transferrin-PEG-PE modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection. Int J Nanomed 7:2513–2522

    CAS  Google Scholar 

  • Wang X, Chen C, Huo D, Qian H, Ding Y, Hu Y et al (2012b) Synthesis of β-cyclodextrin modified chitosan–poly(acrylic acid) nanoparticles and use as drug carriers. Carbohydr Polym 90:361–369

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu P, Qiu L, Sun Y, Zhu M, Gu L et al (2013) Toxicity and therapy of cisplatin-loaded EGF modified mPEG-PLGA-PLL nanoparticles for SKOV3 cancer in mice. Biomaterials 34:4068–4077

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Zhou F, Ge L, Liu X, Kong F (2014) A promising targeted gene delivery system: folate-modified dexamethasone-conjugated solid lipid nanoparticles. Pharm Biol 52:1039–1044. doi:10.3109/13880209.2013.876655

    Article  CAS  PubMed  Google Scholar 

  • Weber C, Drogoz A, David L, Domard A, Charles M-H, Verrier B, Delair T (2010) Polysaccharide-based vaccine delivery systems: macromolecular assembly, interactions with antigen presenting cells, and in vivo immunomonitoring. J Biomed Mater Res A 93:1322–1334

    PubMed  Google Scholar 

  • Wong HL, Bendayan R, Rauth AM, Wu XY (2006) Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer. J Control Release 116:275–284

    Article  CAS  PubMed  Google Scholar 

  • Woo HN, Chung HK, Ju EJ, Jung J, Kang H-W, Lee S-W, Seo MH, Lee JS, Lee JS, Park HJ, Song SY, Jeong SY, Choi EK (2012) Preclinical evaluation of injectable sirolimus formulated with polymeric nanoparticle for cancer therapy. Int J Nanomed 7:2197–2208

    CAS  Google Scholar 

  • Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie H, She Z-G, Wang S, Sharma G, Smith JW (2012) One-Step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 28:4459–4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Shi H, Li Z, Shen H, Ma K, Li B, Shen S, Jin Y (2013) A multifunctional mesoporous silica nanocomposite for targeted delivery, controlled release of doxorubicin and bioimaging. Colloids Surf B Biointerfaces 110:138–147

    Article  CAS  PubMed  Google Scholar 

  • Xin D, Wang Y, Xiang J (2010) The use of amino acid linkers in the conjugation of paclitaxel with hyaluronic acid as drug delivery system: synthesis, self-assembled property, drug release, and in vitro efficiency. Pharm Res 27:380–389

    Article  CAS  PubMed  Google Scholar 

  • Xing R, Lin H, Jiang P, Qu F (2012) Biofunctional mesoporous silica nanoparticles for magnetically oriented target and pH-responsive controlled release of ibuprofen. Colloids Surf A 403:7–14

    Article  CAS  Google Scholar 

  • Xu W, Gao Q, Xu Y, Wu D, Sun Y, Shen W et al (2009) Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technol 191:13–20

    Article  CAS  Google Scholar 

  • Xu N, Gu J, Zhu Y, Wen H, Ren Q, Chen J (2011) Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice. Int J Nanomed 6:905–913

    Article  CAS  Google Scholar 

  • Xu J, Ma L, Liu Y, Xu F, Nie J, Ma G (2012) Design and characterization of antitumor drug paclitaxel-loaded chitosan nanoparticles by W/O emulsions. Int J Biol Macromol 50:438–443. doi:10.1016/j.ijbiomac.2011.12.034

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Khawly JA, Hainsworth DP, Chen SN, Ashton P, Guo H et al (1998) An intravitreal sustained-release triamcinolone and 5-fluorouracil codrug in the treatment of experimental proliferative vitreoretinopathy. Arch Ophthalmol 116:69–77

    Article  CAS  PubMed  Google Scholar 

  • Yang SC, Ge HX, Hu Y, Jiang XQ, Yang CZ (2000) Doxorubicin-loaded poly(butylcyanoacrylate) nanoparticles produced by emulsifier-free emulsion polymerization. J Appl Polym Sci 78:517–526

    Article  CAS  Google Scholar 

  • Yang X-Z, Dou S, Wang Y-C, Long H-Y, Xiong M-H, Mao C-Q et al (2012) Single-step assembly of cationic lipid-polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano 6:4955–4965

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Pan D, Luo K, Li L, Gu Z (2013) Biodegradable and amphiphilic block copolymer-doxorubicin conjugate as polymeric nanoscale drug delivery vehicle for breast cancer therapy. Biomaterials 34:8430–8443

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Zhang Y, Ramishetti S, Wang Y, Huang L (2013) Turning an antiviral into an anticancer drug: nanoparticle delivery of acyclovir monophosphate. J Control Release 170:414–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yerlikaya F, Ozgen A, Vural I, Guven O, Karaagaoglu E, Khan MA et al (2013) Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach. J Pharm Sci 102:3748–3761

    Article  CAS  PubMed  Google Scholar 

  • Yogasundaram H, Bahniuk MS, Singh H-D, Aliabadi HM, Uludağ H, Unsworth LD (2012) BSA nanoparticles for siRNA delivery: coating effects on nanoparticle properties, plasma protein adsorption, and in vitro siRNA delivery. Int J Biomater 2012:584060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu YH, Kim E, Park DE, Shim G, Lee S, Kim YB et al (2012) Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur J Pharm Biopharm 80(2):268–273

    Article  CAS  PubMed  Google Scholar 

  • Yuan X-B, Yuan Y-B, Jiang W, Liu J, Tian E-J, Shun H-M, Huang DH, Yuan XY, Li H, Sheng J (2008) Preparation of rapamycin-loaded chitosan/PLA nanoparticles for immunosuppression in corneal transplantation. Int J Pharm 349:241–248

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Bao X, Du Y-Z, You J, Hu F-Q (2012) Preparation and evaluation of SiO2-deposited stearic acid-g-chitosan nanoparticles for doxorubicin delivery. Int J Nanomed 7:5119–5128

    Article  CAS  Google Scholar 

  • Yuan L, Chen W, Hu J, Zhang JZ, Yang D (2013) Mechanistic study of the covalent loading of paclitaxel via disulfide linkers for controlled drug release. Langmuir 15(29):734–743

    Article  CAS  Google Scholar 

  • Zawilska JB, Wojcieszak J, Olejniczak AB (2013) Prodrugs: a challenge for the drug development. Pharmacol Rep 65:1–14

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Tian H, He Q (1998) Preparation of acyclovir-polybutylcyanoacrylate-nanoparticles by emulsion polymerization method. Hua Xi Yi Ke Da Xue Xue Bao. 29:329–333

    CAS  PubMed  Google Scholar 

  • Zhang J-Y, He B, Qu W, Cui Z, Wang Y, Zhang H, Wang JC, Zhang Q (2011) Preparation of the albumin nanoparticle system loaded with both paclitaxel and sorafenib and its evaluation in vitro and in vivo. J Microencapsul 28:528–536

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Sun M, Zheng A, Cao D, Bi Y, Sun J (2012) Preparation and characterization of insulin-loaded bioadhesive PLGA nanoparticles for oral administration. Eur J Pharm Sci 45:632–638

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhu B, Jia Y, Hou W, Su C (2013) Preparation of biocompatible carboxymethyl chitosan nanoparticles for delivery of antibiotic drug. Biomed Res Int 2013:236469

    PubMed  PubMed Central  Google Scholar 

  • Zhou W, Wang Y, Jian J, Song S (2013) Self-aggregated nanoparticles based on amphiphilic poly(lactic acid)-grafted-chitosan copolymer for ocular delivery of amphotericin B. Int J Nanomed 8:3715–3728

    Google Scholar 

  • Zweers MLT, Engbers GHM, Grijpma DW, Feijen J (2006) Release of anti-restenosis drugs from poly(ethylene oxide)-poly(dl-lactic-co-glycolic acid) nanoparticles. J Control Release. 114:317–324

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Zandanel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zandanel, C., Charrueau, C. (2016). Associating Drugs with Polymer Nanoparticles: A Challenge. In: Vauthier, C., Ponchel, G. (eds) Polymer Nanoparticles for Nanomedicines. Springer, Cham. https://doi.org/10.1007/978-3-319-41421-8_13

Download citation

Publish with us

Policies and ethics