Skip to main content

Chemical Analysis and Characterization of Biomass for Biorefineries

  • Chapter
  • First Online:

Abstract

The aim of this chapter is to offer different chemical analyses and characterization options for researchers or whoever is looking for an appropriate methodology to analyze results obtained in laboratory tests, especially assuming the challenge to find the best process to achieve bio-products under biorefinery concept. In this way, the information provided will be very useful to evaluate the results and moreover, to improve the research process. That is the reason why analytical techniques to characterize different lignocellulosic biomass are described with detailed data about its principles and methodology, emphasizing either physical or chemical protocols that are followed normally in research laboratories. Taking into account that lignin, cellulose, and hemicelluloses are the principal compounds of these kinds of raw materials, which in general are residues, the information is emphasized with that target of analysis. Nevertheless, as it is possible to obtain a lot of bio-products from biomass, like sugars, alcohols, aromatics, biopolymers and so on, other analytical methods are included.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • AOAC (1995) AOAC official method 973.18. Fibre (acid detergent) and Lignin in animal feed. In: AOAC (ed) AOAC official methods of analysis (vol 1, Chap. 4), 16th edn. AOAC, Rockville, MD, pp 20–21

    Google Scholar 

  • AOAC (2002) AOAC official method 2002.04. Amylase-treated neutral detergent fiber in feeds. In: AOAC (ed) AOAC official methods of analysis, vol 85, number 6, 1st edn. AOAC, Rockville, MD, pp 20–21

    Google Scholar 

  • AOAC (2009) AOAC official methods Ce 2–66. Preparation of methyl esters of fatty acids. Official methods 6a. AOCS, Urbana

    Google Scholar 

  • ASTM D1110-84 (2013) Standard test methods for water solubility of wood. ASTM International, West Conshohocken, PA. www.astm.org

  • Attard TM, Rob Mcelroy C, Rezende CA, Polikarpovc I, Clarka JH, Hunt AJ (2015) Sugarcane waste as a valuable source of lipophilic molecules. Ind Crops Prod 76:95–103

    Article  Google Scholar 

  • Bhattacharya D, Germinario LT, Winter WT (2008) Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr Polym 73:371–377

    Article  Google Scholar 

  • Ballesteros I, Oliva JM, Saez F, Ballesteros M (2001) Ethanol production by simultaneous saccharification and fermentation of olive oil extraction. Appl Biochem Biotechnol 91(93):237–252

    Article  Google Scholar 

  • Bian J, Peng F, Peng X-P, Xiao X, Peng P, Xu F (2014) Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohydr Polym 100:211–217

    Article  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 54:519–546

    Article  Google Scholar 

  • Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crops Prod 28:237–259

    Article  Google Scholar 

  • Cardoen D, Joshi P, Diels L, Sarma PM, Pant D (2015) Agriculture biomass in India: Part 1. Estimation and characterization. Resour Conserv Recy 102:39–48

    Article  Google Scholar 

  • Cataño Rueda EH (2009) Obtención y caracterización de nanofibras de celulosa a partir de desechos agroindustriales. Tesis Ingeniería Química, Facultad de Minas, Escuela de Procesos y Energía, Universidad Nacional de Colombia, Medellín, Colombia, p 13. http://www.bdigital.unal.edu.co/920/1/1017137266_2009.pdf

  • Chaa L, Joly N, Lequart V, Faugeron C, Mollet JC, Martin P, Morvan H (2008) Isolation, characterization and valorization of hemicelluloses from Aristida pungens leaves as biomaterial. Carbohydr Polym 74:597–602

    Article  Google Scholar 

  • Chen J, Lai P, Shen H, Zhen H, Fang R (2013) Effect of extraction methods on polysaccharide of Clitocybe maxima stipe. Adv J Food Sci Technol 5(3):370–373

    Google Scholar 

  • Cody’s G (2016) Solid state NMR facility [Figure] recovery from. https://www.gl.ciw.edu/static/users/gcody/nmr.html

  • Cozzolino D, Fassio A, Fernández E (2003) Use of near infrared reflectance spectroscopy to analyze corn silage quality. Agric Téc 64(3):387–393

    Google Scholar 

  • Del Río JC, Lino AG, Colodette JL, Lima CF, Gutierrez A, Martínez AT, Lu F, Ralph J, Rencoret J (2015) Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenerg 81:322–338

    Article  Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin, p 613

    Google Scholar 

  • Foyle T, Jennings L, Mulcahy P (2007) Compositional analysis of lignocellulosic materials: evaluation of methods used for sugar analysis of waste paper and straw. Bioresour Technol 98:3026–3036

    Article  Google Scholar 

  • García Sánchez A, Ramos Martos N, Ballesteros E (2005) Estudio comparativo de distintas técnicas analíticas (espectroscopía de NIR y RMN y extracción mediante Soxhlet) para la determinación del contenido graso y de humedad en aceitunas y orujo de Jaén. Grasas Aceites 56(3):220–227

    Article  Google Scholar 

  • Godin B, Agneessens R, Gerin PA, Delcarte J (2011) Composition of structural carbohydrates in biomass: precision of a liquid chromatography method using a neutral detergent extraction and a charged aerosol detector. Talanta 85:2014–2026

    Article  Google Scholar 

  • Golander E (2011) Characterization and methods for extraction of extractives in spent sulphite liquor. Master of science thesis, Department of Chemical and Biological Engineering, Chalmers University of Technology, p 8. http://publications.lib.chalmers.se/records/fulltext/142119.pdf

  • Higuchi T (1985) Lignin biosynthesis. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, Orlando, FL, pp 114–160

    Google Scholar 

  • Horwitz W, Latimer GW (2005) Chapter 33: official methods of analysis of AOAC international, 18th edn. AOAC International, Gaithersburg, MD

    Google Scholar 

  • Huang SQ, Li JW, Wang Z, Pan HX, Chen JX, Ning ZX (2010) Optimization of alkaline extraction of polysaccharides from Ganoderma lucidum and their effect on immune function in mice. Molecules 15:3694–3708

    Article  Google Scholar 

  • Kacuráková M, Wilson RH (2001) Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydr Polym 44:291–303

    Article  Google Scholar 

  • Luque de Castro MD, García-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10

    Article  Google Scholar 

  • Luque de Castro MD, Priego-Capote F (2010) Soxhlet extraction: past and present panacea. J Chromatogr A 1217:2383–2389

    Article  Google Scholar 

  • Martín Lara, María Angela. Caracterización y aplicación de biomasa residual a a la eliminación de metales pesados [in line]. Tesis doctoral Ciencia y Tecnología del Medio Ambiente. Granada. Universidad de Granada. Facultad de Ciencias, 2008. 424 p. [consulta: 20 mayo de 2015]. In: http://hera.ugr.es/tesisugr/17514629.pdf

  • McMurry J (2012) Química orgánica 8a edición. Cengage Learning, México DF

    Google Scholar 

  • Morrison RT, Boyd RN (1998) Química Orgánica. Addison Wesley Longman, México

    Google Scholar 

  • MUÑOZ, F. J. Extracción y caracterización de la pectina obtenida a partir del fruto de dos ecotipos de cocona (Solanum sessiliflorum), en diferentes grados de madurez; a nivel de planta piloto. [In line]. Tesis Maestría en Ingeniería Agrícola. Bogotá, Colombia: Universidad Nacional de Colombia, Facultad de Ingeniería, Departamento de Ingeniería Civil y Agrícola, 2011. 18 p. [Consulta: 06 de abril de 2016] In:http://www.bdigital.unal.edu.co/4006/1/822093.2011.pdf

  • Niño Camacho LR (2009) Implementación de diferentes técnicas analíticas para la determinación de biomasa bacterinas de cepas Psudomonas putida biodegradadoras de fenol. [en línea]. Tesis Química. Facultad de Ciencias, Escuela de Quíimica, 12Universidad Industrial de Santander, Santander, Colombia, p 19. http://repositorio.uis.edu.co/jspui/bitstream/123456789/363/2/131320.pdf

  • Oliva Domínguez JM (2003) Efecto de los productos de degradación originados en la explosión por vapor de biomasa de chopo sobre Kluyveromyces marxianus. Tesis doctoral, Madrid, p 166. http://biblioteca.ucm.es/tesis/bio/ucm-t26833.pdf

  • Oliva Dominguez, J. Miguel. Efecto de los productos de degradación originados en la explosión por vapor de biomasa de chopo sobre Kluyveromyces marxianus. [en línea]. Tesis doctoral. Madrid, 2003. 166 p. [consulta: 5 de marzo de 2015]. Disponible en: http://biblioteca.ucm.es/tesis/bio/ucm-t26833.pdf

  • Orellana V, Rogel A (2016) Cromatografía de líquidos de alta resolución. Unidad Académica de Ciencias Químicas de la Salud, Universidad Técnica de Machala. https://issuu.com/toxicologia6/docs/hplc.docx_29f51bdf70a77d

  • Pérez MJ, Quishpi JA (2014) Evaluación cuantitativa de la producción de biodiesel de microalgas de lagunas de tratamiento de agua residual. Tesis Ingeniería Civil. Facultad de ingeniería, Escuela de Ingeniería Civil, Universidad de Cuenca, Cuenca, Ecuador, p 111. http://dspace.ucuenca.edu.ec/bitstream/123456789/20934/3/TESIS.%20PDF.pdf

  • Pinzón ML, Cardona AM (2008) Caracterización de la cáscara de naranja para su uso como material bioadsorbente. Bistua Rev 6(1):28–37

    Google Scholar 

  • Sarkanen KV, Ludwig CH (1971) Lignins: occurence, formation, structure and reactions. Wiley Interscience, New York, NY, p 916

    Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008a) Determination of extractives in biomass. NREL/TP-510-42619. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008b) Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2008c) Determination of ash in biomass. NREL/TP-510-42622. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  • Szcrbowski D, Pitarelo AP, Filho AZ, Pereira L (2014) Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohydr Polym 114:95–101

    Article  Google Scholar 

  • Turrel FM, Fisher PL (1942) The proximate chemical constituents of citrus woods, with special reference to lignin. Plant Physiol 17(4):558–581

    Article  Google Scholar 

  • Pilnik W, Voragen AGJ (1993) Enzymes in food processing, 3rd edn. Copyright 1993 by Academic. 363 3 64. Capítulo 1: pectic enzymes in fruit and vegetable juice manufacture. p 363–392

    Google Scholar 

  • Wychen SV, Laurens LM (2013) Detemination of total solids and ash in alga biomass. Tech Rep NREL/TP:5100–60956

    Google Scholar 

  • Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energ 104:801–809

    Article  Google Scholar 

  • Zhang J, Deng H, Lin L, Sun Y, Pan C, Liu S (2010) Isolation and characterization of wheat straw lignin with a formic acid process. Bioresour Technol 101:2311–2316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Marina Flórez-Pardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Flórez-Pardo, L.M., López-Galán, J.E. (2016). Chemical Analysis and Characterization of Biomass for Biorefineries. In: Vaz Jr., S. (eds) Analytical Techniques and Methods for Biomass. Springer, Cham. https://doi.org/10.1007/978-3-319-41414-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41414-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41413-3

  • Online ISBN: 978-3-319-41414-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics