Skip to main content

Spinal Cord and Peripheral Nerve Regeneration Current Research and Future Possibilities

  • Chapter
  • First Online:
Rehabilitative Surgery

Abstract

Our nervous system is remarkably elegant but also exceedingly complex. These complexities create monumental hurdles to regeneration. The current state of the art in spinal cord and peripheral nerve regeneration are explored. Future possibilities are laid out – aiming ultimately not just to restore function but almost certainly to even enhance it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Akt:

Oncogene of transforming retrovirus AKT8 (also Akt1 and PKB)

ATF-2:

Activating transcription factor 2

ATF-3:

Activating transcription factor 3

BBI:

Brain-to-brain interface

BDNF:

Brain-derived neurotrophic factor

chABC:

Chondroitinase ABC

cAMP:

Cyclic adenosine monophosphate

Caspr:

Contactin-associated protein

CE:

Conformité Européenne

CNS:

Central nervous system

CSPG:

Chondroitin-6-sulfate proteoglycan

DREADDS:

Designer Receptors Exclusively Activated by Designer Drugs

DRG:

Dorsal root ganglia

EMG:

Electromyography

FDA:

Food and Drug Administration

FLAMES:

Floating light-activated microelectrical stimulators

GFAP:

Glial fibrillary acidic protein

GHBP:

Glial hyaluronate-binding protein

HSPG:

Heparin sulfate proteoglycan

IGF-1:

Insulin-like growth factor-1

IL-1:

Interleukin-1

IN-1:

IgM antibody that inhibits axonal growth

KSPG:

Keratin sulfate proteoglycan (KSPG)

MAG:

Myelin-associated glycoprotein

mTOR:

Mammalian target of rapamycin

NED:

Neural Enhancement Divide

NEP1-40:

Peptide 1–40 of Nogo that inhibits NgR

NG2:

Neural/glial antigen 2 (includes CSPG4)

NGC:

Nerve guidance conduit

NgR:

Nogo receptor

NgR1:

Nogo receptor 1

NgR3:

Nogo receptor 3

NMES:

Neuromuscular electrical stimulation

Nogo:

Neuronal growth inhibitory molecule in myelin

Nogo-A:

The A version of Nogo

Nogo-A/Nogo-B:

Nogo-A and Nogo-B genes

NS2.0:

Nervous System 2.0

NTR:

Neurotrophin receptor (p75 receptor)

OmgP:

Oligodendroglial myelin glycoprotein

p75:

75 KD protein

PC12:

Pheochromocytoma 12

PDGF:

Platelet-derived growth factor

PDK1/2:

Phosphoinositide-dependent protein kinase 1 and 2

PI3K:

Phosphoinositol 3 kinase

PIP2:

Phosphoinositol phosphate 2

PIP3:

Phosphoinositol phosphate 3

PKA:

Phosphokinase A

PKB:

Phosphokinase B (also Akt) a serine/threonine protein kinase

PNS:

Peripheral nervous system

PTEN:

Phosphatase tensin homologue

Rheb1:

Ras homologue enriched in brain 1

RhoA:

Rho A

RhoK:

Rho kinase

RPTPsigma:

Receptor protein tyrosine phosphatase sigma

SCI:

Spinal cord injury

STAT3:

Signal transducer and activator of transcription 3

TSC1/2:

Tuberous sclerosis 1 and 2

UCSD:

University of California San Diego

References

  1. Abdo A, Sahin M, Freedman DS, Cevik E, Spuhler PS, Unlu MS. Floating light-activated microelectrical stimulators tested in the rat spinal cord. J Neural Eng. 2015;8:056012.

    Article  Google Scholar 

  2. Abrous N, Guy J, Vigny A, Calas A, Le Moal M, Herman JP. Development of intracerebral dopaminergic grafts: a combined immunohistochemical and autoradiographic study of its time course and environmental influences. J Comp Neurol. 1988;273:26–41.

    Article  CAS  PubMed  Google Scholar 

  3. AbudF EM, Ichiyama RM, Havton LA, Chang HH. Spinal stimulation of the upper lumbar spinal cord modulates urethral sphincter activity in rats after spinal cord injury. Am J Physiol Renal Physiol. 2015;308:F1032–40.

    Article  CAS  Google Scholar 

  4. Alam M, Garcia-Alias G, Shah PK, Gerasimenko Y, Zhong H, Roy RR, Edgerton VR. Evaluation of optimal electrode configurations for epidural spinal cord stimulation in cervical spinal cord injured rats. J Neurosci Methods. 2015;247:50–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alluin O, Delivet-Mongrain H, Gauthier MK, Fehlings MG, Rossignol S, Karimi-Abdolrezaee S. Examination of the combined effects of chondroitinase ABC, growth factors and locomotor training following compressive spinal cord injury on neuroanatomical plasticity and kinematics. PLoS One. 2014;9:e111072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Angeli CA, Edgerton VR, Gerasimenko YP, Harkema SJ. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain. 2014;137:1394–409.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anghelescu N, Petrescu A, Alexandrescu I. Therapy study on the experimental injury of spinal cord. IV. High doses of methyl-prednisolone. Rom J Neurol Psychiatry. 1995;33:241–9.

    CAS  PubMed  Google Scholar 

  8. Angius D, Wang H, Spinner RJ, Gutierrez-Cotto Y, Yaszemski MJ, Windebank AJ. A systematic review of animal models used to study nerve regeneration in tissue-engineered scaffolds. Biomaterials. 2012;33:8034–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azmitia EC, Whitaker PM. Formation of a glial scar following microinjection of fetal neurons into the hippocampus or midbrain of the adult rat: an immunocytochemical study. Neurosci Lett. 1983;38:145–50.

    Article  CAS  PubMed  Google Scholar 

  10. Bajrovic F, Remskar M, Sketelj J. Prior collateral sprouting enhances elongation rate of sensory axons regenerating through acellular distal segment of a crushed peripheral nerve. J Peripher Nerv Syst. 1999;4:5–12.

    CAS  PubMed  Google Scholar 

  11. Bandtlow C, Schiweck W, Tai HH, Schwab ME, Skerra A. The Escherichia coli-derived Fab fragment of the IgM/kappa antibody IN-1 recognizes and neutralizes myelin-associated inhibitors of neurite growth. Eur J Biochem. 1996;241:468–75.

    Article  CAS  PubMed  Google Scholar 

  12. Bandtlow CE, Schwab ME. NI-35/250/nogo-a: a neurite growth inhibitor restricting structural plasticity and regeneration of nerve fibers in the adult vertebrate CNS. Glia. 2000;29:175–81.

    Article  CAS  PubMed  Google Scholar 

  13. Bandtlow CE. Regeneration in the central nervous system. Exp Gerontol. 2003;38:79–86.

    Article  CAS  PubMed  Google Scholar 

  14. Bar-Cohen Y, Loeb GE, Pruetz JD, Silka MJ, Guerra C, Vest AN, Zhou L, Chmait RH. Preclinical testing and optimization of a novel fetal micropacemaker. Heart Rhythm. 2015;12:1683–90.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baranowski AP, Priestley JV, McMahon SB. The consequence of delayed versus immediate nerve repair on the properties of regenerating sensory nerve fibers in the adult rat. Neurosci Lett. 1994;168:197–200.

    Article  CAS  PubMed  Google Scholar 

  16. Barritt AW, Davies M, Marchand F, Hartley R, Grist J, Yip P, McMahon SB, Bradbury EJ. Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci. 2006;26:10856–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barton WA, Liu BP, Tzvetkova D, Jeffrey PD, Fournier AE, Sah D, Cate R, Strittmatter SM, Nikolov DB. Structure and axon outgrowth inhibitor binding of the Nogo-66 receptor and related proteins. EMBO J. 2003;22:3291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartsch U, Bandtlow CE, Schnell L, Bartsch S, Spillmann AA, Rubin BP, Hillenbrand R, Montag D, Schwab ME, Schachner M. Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS. Neuron. 1995;15:1375–81.

    Article  CAS  PubMed  Google Scholar 

  19. Beattie MS, Bresnahan JC, Komon J, Tovar CA, Van Meter M, Anderson DK, Faden AI, Hsu CY, Noble LJ, Salzman S, Young W. Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol. 1997;148:453–63.

    Article  CAS  PubMed  Google Scholar 

  20. Behrman AL, Harkema SJ. Physical rehabilitation as an agent for recovery after spinal cord injury. Phys Med Rehabil Clin N Am. 2007;18:183–202.

    Article  PubMed  Google Scholar 

  21. Belkas SJ, Shoichet SM, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004;26:151–60.

    Article  PubMed  Google Scholar 

  22. Berger TW, Glanzman DL. Toward replacement parts for the brain: implantable biomimetic electronics as neural prostheses. Cambridge: MIT Press; 2005.

    Google Scholar 

  23. Bernstein JJ, Bernstein ME. Effect of glial-ependymal scar and teflon arrest on the regenerative capacity of goldfish spinal cord. Exp Neurol. 1967;19:25–32.

    Article  CAS  PubMed  Google Scholar 

  24. Bignami A. The role of astrocytes in CNS regeneration. J Neurosurg Sci. 1984;28:127–32.

    CAS  PubMed  Google Scholar 

  25. Birch R, Dunkerton M, Bonney G, Jamieson AM. Experience with the free vascularized ulnar nerve graft in repair of supraclavicular lesions of the brachial plexus. Clin Orthop Relat Res. 1988;237:96–104.

    Google Scholar 

  26. Bisby MA, Pollock B. Increased regeneration rate in peripheral nerve axons following double lesions: enhancement of the conditioning lesion phenomenon. J Neurobiol. 1983;14:467–72.

    Article  CAS  PubMed  Google Scholar 

  27. Bisby MA, Keen P. The effect of a conditioning lesion on the regeneration rate of peripheral nerve axons containing substance P. Brain Res. 1985;336:201–6.

    Article  CAS  PubMed  Google Scholar 

  28. Bisby MA, Keen P. Regeneration of primary afferent neurons containing substance P-like immunoreactivity. Brain Res. 1986;365:85–95.

    Article  CAS  PubMed  Google Scholar 

  29. Bolesta MJ, Garrett Jr WE, Ribbeck BM, Glisson RR, Seaber AV, Goldner JL. Immediate and delayed neurorrhaphy in a rabbit model: a functional, histologic, and biochemical comparison. J Hand Surg Am. 1988;13:352–7.

    Article  CAS  PubMed  Google Scholar 

  30. Borgens RB, Roederer E, Cohen MJ. Enhanced spinal cord regeneration in lamprey by applied electric fields. Science. 1981;213:611–7.

    Article  CAS  PubMed  Google Scholar 

  31. Borgens RB, Blight AR, Murphy DJ, Stewart L. Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J Comp Neurol. 1986;250:168–80.

    Article  CAS  PubMed  Google Scholar 

  32. Bottai D, Scesa G, Cigognini D, Adami R, Nicora E, Abrignani S, Di Giulio AM, Gorio A. Third trimester NG2-positive amniotic fluid cells are effective in improving repair in spinal cord injury. Exp Neurol. 2014;254C:121–33.

    Article  CAS  Google Scholar 

  33. Bovolenta P, Wandosell F, Nieto-Sampedro M. Neurite outgrowth over resting and reactive astrocytes. Restor Neurol Neurosci. 1991;2:221–8.

    CAS  PubMed  Google Scholar 

  34. Bovolenta P, Wandosell F, Nieto-Sampedro M. CNS glial scar tissue: a source of molecules which inhibit central neurite outgrowth. Prog Brain Res. 1992;94:367–79.

    Article  CAS  PubMed  Google Scholar 

  35. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–40.

    Article  CAS  PubMed  Google Scholar 

  36. Bregman BS, Kunkel-Bagden E, Schnell L, Dai HN, Gao D, Schwab ME. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature. 1995;378:498–501.

    Article  CAS  PubMed  Google Scholar 

  37. Brittis PA, Flanagan JG. Nogo domains and a Nogo receptor: implications for axon regeneration. Neuron. 2001;30:11–4.

    Article  CAS  PubMed  Google Scholar 

  38. Broggini T, Nitsch R, Savaskan NE. Plasticity-related gene 5 (PRG5) induces filopodia and neurite growth and impedes lysophosphatidic acid- and nogo-A-mediated axonal retraction. Mol Biol Cell. 2010;21:521–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brosamle C, Huber AB, Fiedler M, Skerra A, Schwab ME. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci. 2000;20:8061–8.

    CAS  PubMed  Google Scholar 

  40. Brus-Ramer M, Carmel JB, Chakrabarty S, Martin JH. Electrical stimulation of spared corticospinal axons augments connections with ipsilateral spinal motor circuits after injury. J Neurosci. 2007;27:13793–801.

    Article  CAS  PubMed  Google Scholar 

  41. Brus-Ramer M, Carmel JB, Martin JH. Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. J Neurosci. 2009;29:6196–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buffo A, Zagrebelsky M, Huber AB, Skerra A, Schwab ME, Strata P, Rossi F. Application of neutralizing antibodies against NI-35/250 myelin-associated neurite growth inhibitory proteins to the adult rat cerebellum induces sprouting of uninjured purkinje cell axons. J Neurosci. 2000;20:2275–86.

    CAS  PubMed  Google Scholar 

  43. Bunge MB. Novel combination strategies to repair the injured mammalian spinal cord. J Spinal Cord Med. 2008;31:262–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cafferty WB, Yang SH, Duffy PJ, Li S, Strittmatter SM. Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci. 2007;27:2176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cafferty WB, Duffy P, Huebner E, Strittmatter SM. MAG and OMgp synergize with Nogo-A to restrict axonal growth and neurological recovery after spinal cord trauma. J Neurosci. 2010;30:6825–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cai D, Shen Y, De Bellard M, Tang S, Filbin MT. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron. 1999;22:89–101.

    Article  CAS  PubMed  Google Scholar 

  47. Cai D, Qiu J, Cao Z, McAtee M, Bregman BS, Filbin MT. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci. 2001;21:4731–9.

    CAS  PubMed  Google Scholar 

  48. Canavero S. HEAVEN: The head anastomosis venture Project outline for the first human head transplantation with spinal linkage (GEMINI). Surg Neurol Int. 2013;4 Suppl 1:S335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Carlstedt T, Cullheim S, Risling M, Ulfhake B. Mammalian root-spinal cord regeneration. Prog Brain Res. 1988;8:225–9.

    Article  Google Scholar 

  50. Carlstedt T. Reinnervation of the mammalian spinal cord after neonatal dorsal root crush. J Neurocytol. 1988;17:335–50.

    Article  CAS  PubMed  Google Scholar 

  51. Carmel JB, Berrol LJ, Brus-Ramer M, Martin JH. Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth. J Neurosci. 2010;30:10918–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Carmel JB, Kimura H, Berrol LJ, Martin JH. Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury. Eur J Neurosci. 2013;37:1090–102.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Carmel JB, Kimura H, Martin JH. Electrical stimulation of motor cortex in the uninjured hemisphere after chronic unilateral injury promotes recovery of skilled locomotion through ipsilateral control. J Neurosci. 2014;34:462–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carmel JB, Martin JH. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function. Front Integr Neurosci. 2014;8:51.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Carter LM, McMahon SB, Bradbury EJ. Delayed treatment with chondroitinase ABC reverses chronic atrophy of rubrospinal neurons following spinal cord injury. Exp Neurol. 2011;228:149–56.

    Article  CAS  PubMed  Google Scholar 

  56. Chalecka-Franaszek E, Chuang DM. Lithium activates the serine/threonine kinase Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc Natl Acad Sci U S A. 1999;96:8745–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen MS, Huber AB, van der Haar ME, Frank M, Schnell L, Spillmann AA, Christ F, Schwab ME. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature. 2000;403:434–9.

    Article  CAS  PubMed  Google Scholar 

  58. Chen X, Choo H, Huang XP, Yang X, Stone O, Roth BL, Jin J. The first structure-activity relationship studies for designer receptors exclusively activated by designer drugs. ACS Chem Neurosci. 2015;6:476–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chong MS, Woolf CJ, Haque NS, Anderson PN. Axonal regeneration from injured dorsal roots into the spinal cord of adult rats. J Comp Neurol. 1999;410:42–54.

    Article  CAS  PubMed  Google Scholar 

  60. Chuang DC, Chen KT. The possibility and potential feasibility of putting an extra functioning free muscle transplant onto a normal limb: experimental rat study. Plast Reconstr Surg. 2011;128:853–9.

    Article  CAS  PubMed  Google Scholar 

  61. Clemente CD. Regeneration in the vertebrate central nervous system. Int Rev Neurobiol. 1964;6:257–301.

    Article  CAS  PubMed  Google Scholar 

  62. Colen KL, Choi M, Chiu DT. Nerve grafts and conduits. Plast Reconstr Surg. 2009;124(6 Suppl):e386–94.

    Article  CAS  PubMed  Google Scholar 

  63. Coles CH, Shen Y, Tenney AP, Siebold C, Sutton GC, Lu W, Gallagher JT, Jones EY, Flanagan JG, Aricescu AR. Proteoglycan-specific molecular switch for RPTPsigma clustering and neuronal extension. Science. 2011;332:484–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Connor JR, Bernstein JJ. Astrocytes in rat fetal cerebral cortical homografts following implantation into adult rat spinal cord. Brain Res. 1987;409:62–70.

    Article  CAS  PubMed  Google Scholar 

  65. Courtine G, Harkema SJ, Dy CJ, Gerasimenko YP, Dyhre-Poulsen P. Modulation of multisegmental monosynaptic responses in a variety of leg muscles during walking and running in humans. J Physiol. 2007;582:1125–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dagnelie G. Retinal implants: emergence of a multidisciplinary field. Curr Opin Neurol. 2012;25:67–75.

    Article  PubMed  Google Scholar 

  67. Dahl D, Perides G, Bignami A. Axonal regeneration in old multiple sclerosis plaques. Immunohistochemical study with monoclonal antibodies to phosphorylated and non-phosphorylated neurofilament proteins. Acta Neuropathol. 1989;79:154–9.

    Article  CAS  PubMed  Google Scholar 

  68. Dahlin LB. Stimulation of regeneration of the sciatic nerve by experimentally induced inflammation in rats. Scand J Plast Reconstr Surg Hand Surg. 1992;26:121–5.

    Article  CAS  PubMed  Google Scholar 

  69. Dahlin LB, Kanje M. Conditioning effect induced by chronic nerve compression. An experimental study of the sciatic and tibial nerves of rats. Scand J Plast Reconstr Surg Hand Surg. 1992;26:37–41.

    Article  CAS  PubMed  Google Scholar 

  70. Dahlin LB, Thambert C. Acute nerve compression at low pressures has a conditioning lesion effect on rat sciatic nerves. Acta Orthop Scand. 1993;64:479–81.

    Article  CAS  PubMed  Google Scholar 

  71. Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface. 2012;9:202–21.

    Article  CAS  PubMed  Google Scholar 

  72. Danilov CA, Steward O. Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice. Exp Neurol. 2015;266:147–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Das GD, Ross DT. Neural transplantation: autoradiographic analysis of histogenesis in neocortical transplants. Int J Dev Neurosci. 1986;4:69–79.

    Article  CAS  PubMed  Google Scholar 

  74. David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science. 1981;214:931–3.

    Article  CAS  PubMed  Google Scholar 

  75. Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J. Regeneration of adult axons in white matter tracts of the central nervous system. Nature. 1997;390:680–3.

    CAS  PubMed  Google Scholar 

  76. de la Torre JC, Hill PK, Gonzalez-Carvajal M, Parker Jr JC. Evaluation of transected spinal cord regeneration in the rat. Exp Neurol. 1984;84:188–206.

    Article  PubMed  Google Scholar 

  77. Dechant G, Barde YA. The neurotrophin receptor p75(NTR): novel functions and implications for diseases of the nervous system. Nat Neurosci. 2002;5:1131–6.

    Article  CAS  PubMed  Google Scholar 

  78. Delcroix JD, Averill S, Fernandes K, Tomlinson DR, Priestley JV, Fernyhough P. Axonal transport of activating transcription factor-2 is modulated by nerve growth factor in nociceptive neurons. J Neurosci. 1999;19:RC24.

    CAS  PubMed  Google Scholar 

  79. Deng WP, Yang CC, Yang LY, Chen CW, Chen WH, Yang CB, Chen YH, Lai WF, Renshaw PF. Extracellular matrix-regulated neural differentiation of human multipotent marrow progenitor cells enhances functional recovery after spinal cord injury. Spine J. 2014;14:2488–99.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dickendesher TL, Baldwin KT, Mironova YA, Koriyama Y, Raiker SJ, Askew KL, Wood A, Geoffroy CG, Zheng B, Liepmann CD, Katagiri Y, Benowitz LI, Geller HM, Giger RJ. NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci. 2012;15:703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dill J, Wang H, Zhou F, Li S. Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci. 2008;28:8914–28.

    Article  CAS  PubMed  Google Scholar 

  82. Dimou L, Schnell L, Montani L, Duncan C, Simonen M, Schneider R, Liebscher T, Gullo M, Schwab ME. Nogo-A-deficient mice reveal strain-dependent differences in axonal regeneration. J Neurosci. 2006;26:5591–603.

    Article  CAS  PubMed  Google Scholar 

  83. Dobkin B, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M. Spinal cord injury locomotor trial, g. weight-supported treadmill vs over-ground training for walking after acute incomplete SCI. Neurology. 2006;66:484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dodd DA, Niederoest B, Bloechlinger S, Dupuis L, Loeffler JP, Schwab ME. Nogo-A, −B, and -C are found on the cell surface and interact together in many different cell types. J Biol Chem. 2005;280:12494–502.

    Article  CAS  PubMed  Google Scholar 

  85. Du K, Zheng S, Zhang Q, Li S, Gao X, Wang J, Jiang L, Liu K. Pten deletion promotes regrowth of corticospinal tract axons 1 year after spinal cord injury. J Neurosci. 2015;35:9754–63.

    Article  CAS  PubMed  Google Scholar 

  86. Duan Y, Giger RJ. A new role for RPTPsigma in spinal cord injury: signaling chondroitin sulfate proteoglycan inhibition. Sci Signal. 2010;3:pe6.

    Article  PubMed  CAS  Google Scholar 

  87. Dy CJ, Gerasimenko YP, Edgerton VR, Dyhre-Poulsen P, Courtine G, Harkema SJ. Phase-dependent modulation of percutaneously elicited multisegmental muscle responses after spinal cord injury. J Neurophysiol. 2010;103:2808–20.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dyck SM, Alizadeh A, Santhosh KT, Proulx EH, Wu CL, Karimi-Abdolrezaee S. Chondroitin sulfate proteoglycans negatively modulate spinal cord neural precursor cells by signaling through LAR and RPTPsigma and modulation of the Rho/ROCK pathway. Stem Cells. 2015;33:2550–63.

    Article  CAS  PubMed  Google Scholar 

  89. Ebner FF, Erzurumlu RS, Lee SM. Peripheral nerve damage facilitates functional innervation of brain grafts in adult sensory cortex. Proc Natl Acad Sci U S A. 1989;86:730–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Edgerton VR, Harkema S. Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges. Expert Rev Neurother. 2011;11:1351–3.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Eichhorst H, Naunyn B. Ueber die Regeneration und Veränderungen im Rückenmarke nach streckenweiser totaler Zerstörung desslben. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1874;2:225–53.

    Article  Google Scholar 

  92. Elzinga K, Tyreman N, Ladak A, Savaryn B, Olson J, Gordon T. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats. Exp Neurol. 2015;269:142–53.

    Article  PubMed  Google Scholar 

  93. Esmaeili M, Berry M, Logan A, Ahmed Z. Decorin treatment of spinal cord injury. Neural Regen Res. 2014;9:1653–6.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fakhoury M. Spinal cord injury: overview of experimental approaches used to restore locomotor activity. Rev Neurosci. 2015;26:397–405.

    Article  PubMed  Google Scholar 

  95. Fallon JR. Neurite guidance by non-neuronal cells in culture: preferential outgrowth of peripheral neurites on glial as compared to nonglial cell surfaces. J Neurosci. 1985;5:3169–77.

    CAS  PubMed  Google Scholar 

  96. Fawcett JW. The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease. Prog Brain Res. 2015;218:213–26.

    Article  PubMed  Google Scholar 

  97. Filous AR, Miller JH, Coulson-Thomas YM, Horn KP, Alilain WJ, Silver J. Immature astrocytes promote CNS axonal regeneration when combined with chondroitinase ABC. Dev Neurobiol. 2010;70:826–41.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Fontoura P, Ho PP, DeVoss J, Zheng B, Lee BJ, Kidd BA, Garren H, Sobel RA, Robinson WH, Tessier-Lavigne M, Steinman L. Immunity to the extracellular domain of Nogo-A modulates experimental autoimmune encephalomyelitis. J Immunol. 2004;173:6981–92.

    Article  CAS  PubMed  Google Scholar 

  99. Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T, Pearse DD. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci. 2005;25:1169–78.

    Article  CAS  PubMed  Google Scholar 

  100. Fournier AE, Gould GC, Liu BP, Strittmatter SM. Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin. J Neurosci. 2002;22:8876–83.

    CAS  PubMed  Google Scholar 

  101. Fournier AE, Takizawa BT, Strittmatter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci. 2003;23:1416–23.

    CAS  PubMed  Google Scholar 

  102. Frank M, Schaeren-Wiemers N, Schneider R, Schwab ME. Developmental expression pattern of the myelin proteolipid MAL indicates different functions of MAL for immature Schwann cells and in a late step of CNS myelinogenesis. J Neurochem. 1999;73:587–97.

    Article  CAS  PubMed  Google Scholar 

  103. Frisen J, Haegerstrand A, Fried K, Piehl F, Cullheim S, Risling M. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages. Exp Neurol. 1994;129:183–93.

    Article  CAS  PubMed  Google Scholar 

  104. Fry EJ, Chagnon MJ, Lopez-Vales R, Tremblay ML, David S. Corticospinal tract regeneration after spinal cord injury in receptor protein tyrosine phosphatase sigma deficient mice. Glia. 2010;58:423–33.

    PubMed  Google Scholar 

  105. Fu R, Tang Y, Ling ZM, Li YQ, Cheng X, Song FH, Zhou LH, Wu W. Lithium enhances survival and regrowth of spinal motoneurons after ventral root avulsion. BMC Neurosci. 2014;15:84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Fuss B, Pott U, Fischer P, Schwab ME, Schachner M. Identification of a cDNA clone specific for the oligodendrocyte-derived repulsive extracellular matrix molecule J1-160/180. J Neurosci Res. 1991;29:299–307.

    Article  CAS  PubMed  Google Scholar 

  107. Garcia-Alias G, Barkhuysen S, Buckle M, Fawcett JW. Chondroitinase ABC treatment opens a window of opportunity for task-specific rehabilitation. Nat Neurosci. 2009;12:1145–51.

    Article  CAS  PubMed  Google Scholar 

  108. Garcia-Alias G, Truong K, Shah PK, Roy RR, Edgerton VR. Plasticity of subcortical pathways promote recovery of skilled hand function in rats after corticospinal and rubrospinal tract injuries. Exp Neurol. 2015;266:112–9.

    Article  PubMed  Google Scholar 

  109. Gates MA, Fillmore H, Steindler DA. Chondroitin sulfate proteoglycan and tenascin in the wounded adult mouse neostriatum in vitro: dopamine neuron attachment and process outgrowth. J Neurosci. 1996;16:8005–18.

    CAS  PubMed  Google Scholar 

  110. Gattuso JM, Glasby MA, Gschmeissner SE, Norris RW. A comparison of immediate and delayed repair of peripheral nerves using freeze-thawed autologous skeletal muscle grafts – in the rat. Br J Plast Surg. 1989;42:306–13.

    Article  CAS  PubMed  Google Scholar 

  111. George SC, Boyce DE. An evidence-based structured review to assess the results of common peroneal nerve repair. Plast Reconstr Surg. 2014;134:302e–11.

    Article  CAS  PubMed  Google Scholar 

  112. Giulian D, Li J, Li X, George J, Rutecki PA. The impact of microglia-derived cytokines upon gliosis in the CNS. Dev Neurosci. 1994;16:128–36.

    Article  CAS  PubMed  Google Scholar 

  113. Goldshmit Y, Frisca F, Pinto AR, Pebay A, Tang JK, Siegel AL, Kaslin J, Currie PD. Fgf2 improves functional recovery-decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury. Brain Behav. 2014;4:187–200.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Gonzenbach RR, Zoerner B, Schnell L, Weinmann O, Mir AK, Schwab ME. Delayed anti-nogo-a antibody application after spinal cord injury shows progressive loss of responsiveness. J Neurotrauma. 2012;29:567–78.

    Article  PubMed  Google Scholar 

  115. GrandPre T, Nakamura F, Vartanian T, Strittmatter SM. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature. 2000;403:439–44.

    Article  CAS  PubMed  Google Scholar 

  116. Grimpe B, Silver J. A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. J Neurosci. 2004;24:1393–7.

    Article  CAS  PubMed  Google Scholar 

  117. Guest JD, Hesse D, Schnell L, Schwab ME, Bunge MB, Bunge RP. Influence of IN-1 antibody and acidic FGF-fibrin glue on the response of injured corticospinal tract axons to human Schwann cell grafts. J Neurosci Res. 1997;50:888–905.

    Article  CAS  PubMed  Google Scholar 

  118. Guest JD, Rao A, Olson L, Bunge MB, Bunge RP. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp Neurol. 1997;148:502–22.

    Article  CAS  PubMed  Google Scholar 

  119. Guth L, Albuquerque EX, Deshpande SS, Barrett CP, Donati EJ, Warnick JE. Ineffectiveness of enzyme therapy on regeneration in the transected spinal cord of the rat. J Neurosurg. 1980;52:73–86.

    Article  CAS  PubMed  Google Scholar 

  120. Guth L, Barrett CP, Donati EJ, Deshpande SS, Albuquerque EX. Histopathological reactions and axonal regeneration in the transected spinal cord of Hibernating squirrels. J Comp Neurol. 1981;203:297–308.

    Article  CAS  PubMed  Google Scholar 

  121. Guth L, Barrett CP, Donati EJ, Anderson FD, Smith MV, Lifson M. Essentiality of a specific cellular terrain for growth of axons into a spinal cord lesion. Exp Neurol. 1985;88:1–12.

    Article  CAS  PubMed  Google Scholar 

  122. Gutmann E, Guttmann L, Medawar PB, Young JZ. The rate of regeneration of nerve. J Exp Biol. 1942;19:14–44.

    Google Scholar 

  123. Hall S, Berry M. Electron microscopic study of the interaction of axons and glia at the site of anastomosis between the optic nerve and cellular or acellular sciatic nerve grafts. J Neurocytol. 1989;18:171–84.

    Article  CAS  PubMed  Google Scholar 

  124. Han N, Xu CG, Wang TB, Kou YH, Yin XF, Zhang PX, Xue F. Electrical stimulation does not enhance nerve regeneration if delayed after sciatic nerve injury: the role of fibrosis. Neural Regen Res. 2015;10:90–4.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hanada M, Tsutsumi K, Arima H, Shinjo R, Sugiura Y, Imagama S, Ishiguro N, Matsuyama Y. Evaluation of the effect of tranilast on rats with spinal cord injury. J Neurol Sci. 2014;346:209–15.

    Article  CAS  PubMed  Google Scholar 

  126. Hanell A, Clausen F, Bjork M, Jansson K, Philipson O, Nilsson LN, Hillered L, Weinreb PH, Lee D, McIntosh TK, Gimbel DA, Strittmatter SM, Marklund N. Genetic deletion and pharmacological inhibition of Nogo-66 receptor impairs cognitive outcome after traumatic brain injury in mice. J Neurotrauma. 2010;27:1297–309.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Harkema SJ. Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Res Rev. 2008;57:255–64.

    Article  PubMed  Google Scholar 

  128. Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet. 2011;377:1938–47.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Harkema S, Behrman A, Barbeau H. Evidence-based therapy for recovery of function after spinal cord injury. Handb Clin Neurol. 2012;109:259–74.

    Article  PubMed  Google Scholar 

  130. Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, Bacchetta R, Tsalenko A, Dellinger D, Bruhn L, Porteus MH. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. 2015;33(9):985–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hermanns S, Reiprich P, Muller HW. A reliable method to reduce collagen scar formation in the lesioned rat spinal cord. J Neurosci Methods. 2001;110:141–6.

    Article  CAS  PubMed  Google Scholar 

  132. Hill CE, Beattie MS, Bresnahan JC. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp Neurol. 2001;171:153–69.

    Article  CAS  PubMed  Google Scholar 

  133. Hinckley CA, Alaynick WA, Gallarda BW, Hayashi M, Hilde KL, Driscoll SP, Dekker JD, Tucker HO, Sharpee TO, Pfaff SL. Spinal locomotor circuits develop using hierarchical rules based on motorneuron position and identity. Neuron. 2015;87:1008–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hoffman-Kim D, Mitchel JA, Bellamkonda RV. Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng. 2010;12:203–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Holst HI. Primary peripheral nerve repair in the hand and upper extremity. J Trauma. 1975;15:909–11.

    Article  CAS  PubMed  Google Scholar 

  136. Holz A, Frank M, Copeland NG, Gilbert DJ, Jenkins NA, Schwab ME. Chromosomal localization of the myelin-associated oligodendrocytic basic protein and expression in the genetically linked neurological mouse mutants ducky and tippy. J Neurochem. 1997;69:1801–9.

    Article  CAS  PubMed  Google Scholar 

  137. Holz A, Schwab ME. Developmental expression of the myelin gene MOBP in the rat nervous system. J Neurocytol. 1997;26:467–77.

    Article  CAS  PubMed  Google Scholar 

  138. Hooker D. Studies on regeneration in the spinal cord. III. Reestablishment of anatomical and physiological continuity after transection in frog tadpoles. J Comp Neurol (Philadelphia). 1925;38:315–47; p [1 v.].

    Article  Google Scholar 

  139. Hooker D. Spinal-cord regeneration in the young rainbow fish, Lebistes reticulatus. Jour Comp Neur (Philadelphia). 1932;56(Hooker D):277–97. p [1 v.].

    Article  Google Scholar 

  140. Horner PJ, Gage FH. Regenerating the damaged central nervous system. Nature. 2000;407:963–70.

    Article  CAS  PubMed  Google Scholar 

  141. Hossain-Ibrahim MK, Rezajooi K, Stallcup WB, Lieberman AR, Anderson PN. Analysis of axonal regeneration in the central and peripheral nervous systems of the NG2-deficient mouse. BMC Neurosci. 2007;8:80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Houle JD, Reier PJ. Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord. J Comp Neurol. 1988;269:535–47.

    Article  CAS  PubMed  Google Scholar 

  143. Huber AB, Schwab ME. Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol Chem. 2000;381:407–19.

    Article  CAS  PubMed  Google Scholar 

  144. Hudson AR, Hunter D. Timing of peripheral nerve repair: important local neuropathological factors. Clin Neurosurg. 1977;24:391–405.

    CAS  PubMed  Google Scholar 

  145. Hunanyan AS, Petrosyan HA, Alessi V, Arvanian VL. Combination of chondroitinase ABC and AAV-NT3 promotes neural plasticity at descending spinal pathways after thoracic contusion in rats. J Neurophysiol. 2013;110:1782–92.

    Article  CAS  PubMed  Google Scholar 

  146. Hunt D, Mason MR, Campbell G, Coffin R, Anderson PN. Nogo receptor mRNA expression in intact and regenerating CNS neurons. Mol Cell Neurosci. 2002;20:537–52.

    Article  CAS  PubMed  Google Scholar 

  147. Hunt D, Coffin RS, Anderson PN. The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review. J Neurocytol. 2002;31:93–120.

    Article  CAS  PubMed  Google Scholar 

  148. Hunt D, Coffin RS, Prinjha RK, Campbell G, Anderson PN. Nogo-A expression in the intact and injured nervous system. Mol Cell Neurosci. 2003;24:1083–102.

    Article  CAS  PubMed  Google Scholar 

  149. IJpma FF, Van De Graaf RC, Meek MF. The early history of tubulation in nerve repair. J Hand Surg Eur Vol. 2008;33:581–6.

    Article  CAS  PubMed  Google Scholar 

  150. Ishikawa Y, Imagama S, Ohgomori T, Ishiguro N, Kadomatsu K. A combination of keratan sulfate digestion and rehabilitation promotes anatomical plasticity after rat spinal cord injury. Neurosci Lett. 2015;593:13–8.

    Article  CAS  PubMed  Google Scholar 

  151. Ito Z, Sakamoto K, Imagama S, Matsuyama Y, Zhang H, Hirano K, Ando K, Yamashita T, Ishiguro N, Kadomatsu K. N-acetylglucosamine 6-O-sulfotransferase-1-deficient mice show better functional recovery after spinal cord injury. J Neurosci. 2010;30:5937–47.

    Article  CAS  PubMed  Google Scholar 

  152. Jahan N, Hannila SS. Transforming growth factor beta-induced expression of chondroitin sulfate proteoglycans is mediated through non-Smad signaling pathways. Exp Neurol. 2015;263:372–84.

    Article  CAS  PubMed  Google Scholar 

  153. Jenq CB, Jenq LL, Bear HM, Coggeshall RE. Conditioning lesions of peripheral nerves change regenerated axon numbers. Brain Res. 1988;457:63–9.

    Article  CAS  PubMed  Google Scholar 

  154. Jin WL, Liu YY, Liu HL, Yang H, Wang Y, Jiao XY, Ju G. Intraneuronal localization of Nogo-A in the rat. J Comp Neurol. 2003;458:1–10.

    Article  PubMed  Google Scholar 

  155. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  Google Scholar 

  156. Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 1999;96:25–34.

    Article  CAS  PubMed  Google Scholar 

  157. Jones LL, Yamaguchi Y, Stallcup WB, Tuszynski MH. NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neurosci. 2002;22:2792–803.

    CAS  PubMed  Google Scholar 

  158. Jones LL, Sajed D, Tuszynski MH. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci. 2003;23:9276–88.

    CAS  PubMed  Google Scholar 

  159. Jonsson S, Wiberg R, McGrath AM, Novikov LN, Wiberg M, Novikova LN, Kingham PJ. Effect of delayed peripheral nerve repair on nerve regeneration. Schwann cell function and target muscle recovery. PLoS ONE. 2013;8:e56484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Josephson A, Trifunovski A, Scheele C, Widenfalk J, Wahlestedt C, Brene S, Olson L, Spenger C. Activity-induced and developmental downregulation of the Nogo receptor. Cell Tissue Res. 2003;311:333–42.

    CAS  PubMed  Google Scholar 

  161. Joy MT, Vrbova G, Dhoot GK, Anderson PN. Sulf1 and Sulf2 expression in the nervous system and its role in limiting neurite outgrowth in vitro. Exp Neurol. 2015;263:150–60.

    Article  CAS  PubMed  Google Scholar 

  162. Kaku M. Physics of the impossible: a scientific exploration into the world of phasers, force fields, teleportation, and time travel. 1st ed. New York: Doubleday; 2008.

    Google Scholar 

  163. Kalbermatten DF, Kingham PJ, Mahay D, Mantovani C, Pettersson J, Raffoul W, Balcin H, Pierer G, Terenghi G. Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit. J Plast Reconstr Aesthet Surg. 2008;61:669–75.

    Article  CAS  PubMed  Google Scholar 

  164. Kallioinen MJ, Heikkinen ER, Nystrom S. Histopathological and immunohistochemical changes in neurosurgically resected epileptic foci. Acta Neurochir (Wien). 1987;89:122–9.

    Article  CAS  Google Scholar 

  165. Kaneko A, Matsushita A, Sankai Y. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. Biomed Mater. 2015;10(1):015008.

    Article  PubMed  CAS  Google Scholar 

  166. Kanno H, Pressman Y, Moody A, Berg R, Muir EM, Rogers JH, Ozawa H, Itoi E, Pearse DD, Bunge MB. Combination of engineered schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J Neurosci. 2014;34:1838–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kaplan HM, Mishra P, Kohn J. The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. J Mater Sci Mater Med. 2015;26(8):226.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Schut D, Fehlings MG. Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J Neurosci. 2010;30:1657–76.

    Article  CAS  PubMed  Google Scholar 

  169. Karimi-Abdolrezaee S, Schut D, Wang J, Fehlings MG. Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury. PLoS One. 2012;7:e37589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kartje GL, Schulz MK, Lopez-Yunez A, Schnell L, Schwab ME. Corticostriatal plasticity is restricted by myelin-associated neurite growth inhibitors in the adult rat. Ann Neurol. 1999;45:778–86.

    Article  CAS  PubMed  Google Scholar 

  171. Kim JE, Bonilla IE, Qiu D, Strittmatter SM. Nogo-C is sufficient to delay nerve regeneration. Mol Cell Neurosci. 2003;23:451–9.

    Article  CAS  PubMed  Google Scholar 

  172. Kim JE, Li S, GrandPre T, Qiu D, Strittmatter SM. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron. 2003;38:187–99.

    Article  CAS  PubMed  Google Scholar 

  173. Klapka N, Hermanns S, Straten G, Masanneck C, Duis S, Hamers FP, Muller D, Zuschratter W, Muller HW. Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Eur J Neurosci. 2005;22:3047–58.

    Article  PubMed  Google Scholar 

  174. Kline DG, Hackett ER. Reappraisal of timing for exploration of civilian peripheral nerve injuries. Surgery. 1975;78:54–65.

    CAS  PubMed  Google Scholar 

  175. Knikou M, Angeli CA, Ferreira CK, Harkema SJ. Flexion reflex modulation during stepping in human spinal cord injury. Exp Brain Res. 2009;196:341–51.

    Article  PubMed  Google Scholar 

  176. Knikou M, Angeli CA, Ferreira CK, Harkema SJ. Soleus H-reflex modulation during body weight support treadmill walking in spinal cord intact and injured subjects. Exp Brain Res. 2009;193:397–407.

    Article  PubMed  Google Scholar 

  177. Kose N, Muezzinoglu O, Bilgin S, Karahan S, Isikay I, Bilginer B. Early rehabilitation improves neurofunctional outcome after surgery in children with spinal tumors. Neural Regen Res. 2014;9:129–34.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Krautstrunk M, Scholtes F, Martin D, Schoenen J, Schmitt AB, Plate D, Nacimiento W, Noth J, Brook GA. Increased expression of the putative axon growth-repulsive extracellular matrix molecule, keratan sulphate proteoglycan, following traumatic injury of the adult rat spinal cord. Acta Neuropathol. 2002;104:592–600.

    CAS  PubMed  Google Scholar 

  179. Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int. 2004;28:245–53.

    CAS  PubMed  Google Scholar 

  180. Kuiken TA, Miller LA, Lipschutz RD, Lock BA, Stubblefield K, Marasco PD, Zhou P, Dumanian GA. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet. 2007;369:371–80.

    Article  PubMed  Google Scholar 

  181. Kumar P, Choonara YE, Modi G, Naidoo D, Pillay V. Multifunctional therapeutic delivery strategies for effective neuro-regeneration following traumatic spinal cord injury. Curr Pharm Des. 2015;21:1517–28.

    Article  CAS  PubMed  Google Scholar 

  182. Lang DM, Rubin BP, Schwab ME, Stuermer CA. CNS myelin and oligodendrocytes of the Xenopus spinal cord – but not optic nerve – are nonpermissive for axon growth. J Neurosci. 1995;15:99–109.

    CAS  PubMed  Google Scholar 

  183. Lang BT, Cregg JM, DePaul MA, Tran AP, Xu K, Dyck SM, Madalena KM, Brown BP, Weng YL, Li S, Karimi-Abdolrezaee S, Busch SA, Shen Y, Silver J. Modulation of the proteoglycan receptor PTPsigma promotes recovery after spinal cord injury. Nature. 2015;518:404–8.

    Article  CAS  PubMed  Google Scholar 

  184. Lankford KL, Waxman SG, Kocsis JD. Mechanisms of enhancement of neurite regeneration in vitro following a conditioning sciatic nerve lesion. J Comp Neurol. 1998;391:11–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lau LW, Keough MB, Haylock-Jacobs S, Cua R, Doring A, Sloka S, Stirling DP, Rivest S, Yong VW. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann Neurol. 2012;72:419–32.

    Article  CAS  PubMed  Google Scholar 

  186. Lauren J, Airaksinen MS, Saarma M, Timmusk T. Two novel mammalian Nogo receptor homologs differentially expressed in the central and peripheral nervous systems. Mol Cell Neurosci. 2003;24:581–94.

    Article  CAS  PubMed  Google Scholar 

  187. Lazar DA, Ellegala DB, Avellino AM, Dailey AT, Andrus K, Kliot M. Modulation of macrophage and microglial responses to axonal injury in the peripheral and central nervous systems. Neurosurgery. 1999;45:593–600.

    Article  CAS  PubMed  Google Scholar 

  188. Ledford H. CRISPR, the disruptor. News feature. Nature. 2015;522:20–4.

    Article  CAS  PubMed  Google Scholar 

  189. Lee H, McKeon RJ, Bellamkonda RV. Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci U S A. 2010;107:3340–5.

    Article  CAS  PubMed  Google Scholar 

  190. Lee JK, Geoffroy CG, Chan AF, Tolentino KE, Crawford MJ, Leal MA, Kang B, Zheng B. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron. 2010;66:663–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Levine JM. Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J Neurosci. 1994;14:4716–30.

    CAS  PubMed  Google Scholar 

  192. Lewis PM, Ackland HM, Lowery AJ, Rosenfeld JV. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res. 2015;1595:51–73.

    Article  CAS  PubMed  Google Scholar 

  193. Li S, Strittmatter SM. Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J Neurosci. 2003;23:4219–27.

    CAS  PubMed  Google Scholar 

  194. Li SX, Kim JE, Liu BP, Li MW, Ji BX, Pepinsky B, Relton J, Strittmatter SM. Inhibition of Nogo-66 receptor with its soluble ectodomain promotes axonal regeneration and functional recovery after spinal cord injury. J Neurotrauma. 2003;20:1057.

    Google Scholar 

  195. Li ZW, Li JJ, Wang L, Zhang JP, Wu JJ, Mao XQ, Shi GF, Wang Q, Wang F, Zou J. Epidermal growth factor receptor inhibitor ameliorates excessive astrogliosis and improves the regeneration microenvironment and functional recovery in adult rats following spinal cord injury. J Neuroinflammation. 2014;11:71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Liebscher T, Schnell L, Schnell D, Scholl J, Schneider R, Gullo M, Fouad K, Mir A, Rausch M, Kindler D, Hamers FP, Schwab ME. Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol. 2005;58:706–19.

    Article  CAS  PubMed  Google Scholar 

  197. Liu Y, Himes BT, Moul J, Huang W, Chow SY, Tessler A, Fischer I. Application of recombinant adenovirus for in vivo gene delivery to spinal cord. Brain Res. 1997;768:19–29.

    Article  CAS  PubMed  Google Scholar 

  198. Liu S, Peulve P, Jin O, Boisset N, Tiollier J, Said G, Tadie M. Axonal regrowth through collagen tubes bridging the spinal cord to nerve roots. J Neurosci Res. 1997;49:425–32.

    Article  CAS  PubMed  Google Scholar 

  199. Liu YY, Jin WL, Liu HL, Ju G. Electron microscopic localization of Nogo-A at the postsynaptic active zone of the rat. Neurosci Lett. 2003;346:153–6.

    Article  CAS  PubMed  Google Scholar 

  200. Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci. 2010;13:1075–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Loeb GE. We made the deaf hear. Now what? In: Berger TW, Glanzman DL, editors. Toward replacement parts for the brain: implantable biomimetic electronics as neural prostheses. Cambridge: MIT Press; 2005. p. 3–13.

    Google Scholar 

  202. Loeb GE. Neuroprosthetic interfaces – The reality behind bionics and cyborgs. In: Schleidgen S, Jungert M, Bauer R, Sandow V, editors. Human nature and self-design. Paderborn, Germany: Mentis Verlag GmbH; 2011.

    Google Scholar 

  203. Loeb GE, Zhou L, Zheng K, Nicholson A, Peck RA, Krishnan A, Silka M, Pruetz J, Chmait R, Bar-Cohen Y. Design and testing of a percutaneously implantable fetal pacemaker. Ann Biomed Eng. 2013;41:17–27.

    Article  PubMed  Google Scholar 

  204. de Nó Lorente R. La regeneración de la medula espinal en las larvas de batracio. Trab Lab Invest Biol Univ Madrid. 1921;19:147–83.

    Google Scholar 

  205. Lu P, Jones LL, Tuszynski MH. Axon regeneration through scars and into sites of chronic spinal cord injury. Exp Neurol. 2007;203:8–21.

    Article  CAS  PubMed  Google Scholar 

  206. Lu P, Tuszynski MH. Growth factors and combinatorial therapies for CNS regeneration. Exp Neurol. 2008;209:313–20.

    Article  CAS  PubMed  Google Scholar 

  207. Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell. 2012;150:1264–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lu P, Blesch A, Graham L, Wang Y, Samara R, Banos K, Haringer V, Havton L, Weishaupt N, Bennett D, Fouad K, Tuszynski MH. Motor axonal regeneration after partial and complete spinal cord transection. J Neurosci. 2012;32:8208–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Lu P, Woodruff G, Wang Y, Graham L, Hunt M, Wu D, Boehle E, Ahmad R, Poplawski G, Brock J, Goldstein LS, Tuszynski MH. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron. 2014;83:789–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. MacCreight J. The regeneration of the spinal cord in adult Triturus viridescens. Univ Pittsburgh Bull. 1931;28:7.

    Google Scholar 

  211. Maier IC, Ichiyama RM, Courtine G, Schnell L, Lavrov I, Edgerton VR, Schwab ME. Differential effects of anti-Nogo-A antibody treatment and treadmill training in rats with incomplete spinal cord injury. Brain. 2009;132:1426–40.

    Article  PubMed  Google Scholar 

  212. Mansour H, Asher R, Dahl D, Labkovsky B, Perides G, Bignami A. Permissive and non-permissive reactive astrocytes: immunofluorescence study with antibodies to the glial hyaluronate-binding protein. J Neurosci Res. 1990;25:300–11.

    Article  CAS  PubMed  Google Scholar 

  213. Markets and Markets Report. Nerve repair & regeneration market by xenografts (conduits, protectors), neuromodulation [internal (spinal cord, deep brain), external (transcranial magnetic)], surgery [direct nerve repair, grafting, stem cell] – Global trend & forecast to 2018. By: marketsandmarkets.com. Report Code: BT 2105. Sep 2013.

    Google Scholar 

  214. Matsui F, Oohira A. Proteoglycans and injury of the central nervous system. Congenit Anom (Kyoto). 2004;44:181–8.

    Article  CAS  Google Scholar 

  215. Matthews MA, St Onge MF, Faciane CL, Gelderd JB. Axon sprouting into segments of rat spinal cord adjacent to the site of a previous transection. Neuropathol Appl Neurobiol. 1979;5:181–96.

    Article  CAS  PubMed  Google Scholar 

  216. McAllister RM, Gilbert SE, Calder JS, Smith PJ. The epidemiology and management of upper limb peripheral nerve injuries in modern practice. J Hand Surg Br. 1996;21:4–13.

    Article  CAS  PubMed  Google Scholar 

  217. McEvoy RC, Leung PE. Transplantation of fetal rat islets into the cerebral ventricles of alloxan-diabetic rats. Amelioration of diabetes by syngeneic but not allogeneic islets. Diabetes. 1983;32:852–7.

    Article  CAS  PubMed  Google Scholar 

  218. McGee AW, Strittmatter SM. The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci. 2003;26:193–8.

    Article  CAS  PubMed  Google Scholar 

  219. McKay WB, Ovechkin AV, Vitaz TW, Terson de Paleville DG, Harkema SJ. Long-lasting involuntary motor activity after spinal cord injury. Spinal Cord. 2011;49:87–93.

    Article  CAS  PubMed  Google Scholar 

  220. McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci. 1991;11:3398–411.

    CAS  PubMed  Google Scholar 

  221. Mehta NR, Lopez PH, Vyas AA, Schnaar RL. Gangliosides and Nogo receptors independently mediate myelin-associated glycoprotein inhibition of neurite outgrowth in different nerve cells. J Biol Chem. 2007;282:27875–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Meier S, Brauer AU, Heimrich B, Schwab ME, Nitsch R, Savaskan NE. Molecular analysis of Nogo expression in the hippocampus during development and following lesion and seizure. FASEB J. 2003;17:1153–5.

    Article  CAS  PubMed  Google Scholar 

  223. Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D. Topographic reorganization of somato-sensory cortical areas 3B and 1 in adult monkeys following restricted deafferentation. Neuroscience. 1983;8:33–55.

    Article  CAS  PubMed  Google Scholar 

  224. Miao QL, Ye Q, Zhang XH. Perineuronal net, CSPG receptor and their regulation of neural plasticity. Sheng Li Xue Bao. 2014;66:387–97.

    CAS  PubMed  Google Scholar 

  225. Midha R, Munro CA, Chan S, Nitising A, Xu QG, Gordon T. Regeneration into protected and chronically denervated peripheral nerve stumps. Neurosurgery. 2005;57:1289–99.

    Article  PubMed  Google Scholar 

  226. Milbreta U, von Boxberg Y, Mailly P, Nothias F, Soares S. Astrocytic and vascular remodeling in the injured adult rat spinal cord after chondroitinase ABC treatment. J Neurotrauma. 2014;31:803–18.

    Article  PubMed  PubMed Central  Google Scholar 

  227. Miller S, Scott PD. A model of the spinal locomotor generator in the cat [proceedings]. J Physiol. 1977;269:20P–2.

    CAS  PubMed  Google Scholar 

  228. Miller S, Scott PD. The spinal locomotor generator. Exp Brain Res. 1977;30:387–403.

    CAS  PubMed  Google Scholar 

  229. Ming GL, Song HJ, Berninger B, Holt CE, Tessier-Lavigne M, Poo MM. cAMP-dependent growth cone guidance by netrin-1. Neuron. 1997;19:1225–35.

    Article  CAS  PubMed  Google Scholar 

  230. Mohney G. Doctor aims to perform head transplant in 2017, Experts remain skeptical. ABC News post. 2015. Retrieved Dec 22, 2015, from: http://abcnews.go.com/Health/doctor-aims-perform-head-transplant-2017-experts-remain/story?id=33775323.

  231. Mohseni MA, Pour JS, Pour JG. Primary and delayed repair and nerve grafting for treatment of cut median and ulnar nerves. Pak J Biol Sci. 2010;13:287–92.

    Article  PubMed  Google Scholar 

  232. Mondello SE, Jefferson SC, Tester NJ, Howland DR. Impact of treatment duration and lesion size on effectiveness of chondroitinase treatment post-SCI. Exp Neurol. 2015;267:64–77.

    Article  CAS  PubMed  Google Scholar 

  233. Mullner A, Gonzenbach RR, Weinmann O, Schnell L, Liebscher T, Schwab ME. Lamina-specific restoration of serotonergic projections after Nogo-A antibody treatment of spinal cord injury in rats. Eur J Neurosci. 2008;27:326–33.

    Article  PubMed  Google Scholar 

  234. Nakamae T, Tanaka N, Nakanishi K, Kamei N, Sasaki H, Hamasaki T, Yamada K, Yamamoto R, Mochizuki Y, Ochi M. Chondroitinase ABC promotes corticospinal axon growth in organotypic cocultures. Spinal Cord. 2009;47:161–5.

    Article  CAS  PubMed  Google Scholar 

  235. Nakamae T, Tanaka N, Nakanishi K, Kamei N, Sasaki H, Hamasaki T, Yamada K, Yamamoto R, Izumi B, Ochi M. The effects of combining chondroitinase ABC and NEP1-40 on the corticospinal axon growth in organotypic co-cultures. Neurosci Lett. 2010;476:14–7.

    Article  CAS  PubMed  Google Scholar 

  236. Neumann S, Woolf CJ. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron. 1999;23:83–91.

    Article  CAS  PubMed  Google Scholar 

  237. Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron. 2002;34:885–93.

    Article  CAS  PubMed  Google Scholar 

  238. Neumann S, Skinner K, Basbaum AI. Sustaining intrinsic growth capacity of adult neurons promotes spinal cord regeneration. Proc Natl Acad Sci U S A. 2005;102:16848–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Nghiem BT, Sando IC, Gillespie RB, McLaughlin BL, Gerling GJ, Langhals NB, Urbanchek MG, Cederna PS. Providing a sense of touch to prosthetic hands. Plast Reconstr Surg. 2015;135:1652–63.

    Article  CAS  PubMed  Google Scholar 

  240. Nie DY, Zhou ZH, Ang BT, Teng FY, Xu G, Xiang T, Wang CY, Zeng L, Takeda Y, Xu TL, Ng YK, Faivre-Sarrailh C, Popko B, Ling EA, Schachner M, Watanabe K, Pallen CJ, Tang BL, Xiao ZC. Nogo-A at CNS paranodes is a ligand of Caspr: possible regulation of K(+) channel localization. EMBO J. 2003;22:5666–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Niederost BP, Zimmermann DR, Schwab ME, Bandtlow CE. Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J Neurosci. 1999;19:8979–89.

    CAS  PubMed  Google Scholar 

  242. Novikova L, Novikov L, Kellerth JO. Effects of neurotransplants and BDNF on the survival and regeneration of injured adult spinal motoneurons. Eur J Neurosci. 1997;9:2774–7.

    Article  CAS  PubMed  Google Scholar 

  243. Oblinger MM, Lasek RJ. A conditioning lesion of the peripheral axons of dorsal root ganglion cells accelerates regeneration of only their peripheral axons. J Neurosci. 1984;4:1736–44.

    CAS  PubMed  Google Scholar 

  244. Oertle T, van der Haar ME, Bandtlow CE, Robeva A, Burfeind P, Buss A, Huber AB, Simonen M, Schnell L, Brosamle C, Kaupmann K, Vallon R, Schwab ME. Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J Neurosci. 2003;23:5393–406.

    CAS  PubMed  Google Scholar 

  245. Orlando C, Raineteau O. Integrity of cortical perineuronal nets influences corticospinal tract plasticity after spinal cord injury. Brain Struct Funct. 2015;220(2):1077–91.

    Article  CAS  PubMed  Google Scholar 

  246. Orlando C, Raineteau O. Integrity of cortical perineuronal nets influences corticospinal tract plasticity after spinal cord injury. Brain Struct Funct. 2015;220:1077–91.

    Article  CAS  PubMed  Google Scholar 

  247. Oudega M, Xu XM, Guenard V, Kleitman N, Bunge MB. A combination of insulin-like growth factor-I and platelet-derived growth factor enhances myelination but diminishes axonal regeneration into Schwann cell grafts in the adult rat spinal cord. Glia. 1997;19:247–58.

    Article  CAS  PubMed  Google Scholar 

  248. Pabari A, Lloyd-Hughes H, Seifalian AM, Mosahebi A. Nerve conduits for peripheral nerve surgery. Plast Reconstr Surg. 2014;133:1420–30.

    Article  CAS  PubMed  Google Scholar 

  249. Pei Y, Dong S, Roth BL. Generation of designer receptors exclusively activated by designer drugs (DREADDs) using directed molecular evolution. Curr Protoc Neurosci. 2010;Chapter 4:Unit 4.33.

    PubMed  Google Scholar 

  250. Pellegrino RG, Spencer PS. Schwann cell mitosis in response to regenerating peripheral axons in vivo. Brain Res. 1985;341:16–25.

    Article  CAS  PubMed  Google Scholar 

  251. Pettersson J, Kalbermatten D, Mcgrath A, Novikova LN. Biodegradable fibrin conduit promotes long-term regeneration after peripheral nerve injury in adult rats. J Plast Reconstr Aesthet Surg. 2010;63:1893–9.

    Article  PubMed  Google Scholar 

  252. Pignot V, Hein AE, Barske C, Wiessner C, Walmsley AR, Kaupmann K, Mayeur H, Sommer B, Mir AK, Frentzel S. Characterization of two novel proteins, NgRH1 and NgRH2, structurally and biochemically homologous to the Nogo-66 receptor. J Neurochem. 2003;85:717–28.

    Article  CAS  PubMed  Google Scholar 

  253. Piskin A, Altunkaynak BZ, Citlak A, Sezgin H, Yaziotaciota O, Kaplan S. Immediate versus delayed primary nerve repair in the rabbit sciatic nerve. Neural Regen Res. 2013;8:3410–5.

    PubMed  PubMed Central  Google Scholar 

  254. Possover M. Recovery of sensory and supraspinal control of leg movement in people with chronic paraplegia: a case series. Arch Phys Med Rehabil. 2014;95:610–4.

    Article  PubMed  Google Scholar 

  255. Pot C, Simonen M, Weinmann O, Schnell L, Christ F, Stoeckle S, Berger P, Rulicke T, Suter U, Schwab ME. Nogo-A expressed in Schwann cells impairs axonal regeneration after peripheral nerve injury. J Cell Biol. 2002;159:29–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Prendergast J, Stelzner DJ. Increases in collateral axonal growth rostral to a thoracic hemisection in neonatal and weanling rat. J Comp Neurol. 1976;166:145–61.

    Article  CAS  PubMed  Google Scholar 

  257. Prendergast J, Stelzner DJ. Changes in the magnocellular portion of the red nucleus following thoracic hemisection in the neonatal and adult rat. J Comp Neurol. 1976;166:163–71.

    Article  CAS  PubMed  Google Scholar 

  258. Qi B, Qi Y, Watari A, Yoshioka N, Inoue H, Minemoto Y, Yamashita K, Sasagawa T, Yutsudo M. Pro-apoptotic ASY/Nogo-B protein associates with ASYIP. J Cell Physiol. 2003;196:312–8.

    Article  CAS  PubMed  Google Scholar 

  259. Qiao J, Huang F, Lum H. PKA inhibits RhoA activation: a protection mechanism against endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2003;284:L972–80.

    Article  CAS  PubMed  Google Scholar 

  260. Qiu J, Cafferty WB, McMahon SB, Thompson SW. Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J Neurosci. 2005;25:1645–53.

    Article  CAS  PubMed  Google Scholar 

  261. Raineteau O, Z’Graggen WJ, Thallmair M, Schwab ME. Sprouting and regeneration after pyramidotomy and blockade of the myelin-associated neurite growth inhibitors NI 35/250 in adult rats. Eur J Neurosci. 1999;11:1486–90.

    Article  CAS  PubMed  Google Scholar 

  262. Ramón y Cajal S. Notas preventivas sobre la degeneración y regeneración de las vías nerviosas centrales. Trab Lab Invest Biol Univ Madrid. 1906;4:295–301.

    Google Scholar 

  263. RamónyCajal S. Degeneration and regeneration of the nervous system. London: Oxford Univ. Press; 1928.

    Google Scholar 

  264. Reier PJ. Penetration of grafted astrocytic scars by regenerating optic nerve axons in Xenopus tadpoles. Brain Res. 1979;164:61–8.

    Article  CAS  PubMed  Google Scholar 

  265. Reier PJ, Perlow MJ, Guth L. Development of embryonic spinal cord transplants in the rat. Brain Res. 1983;312:201–19.

    Article  CAS  PubMed  Google Scholar 

  266. Reier PJ. Neural tissue grafts and repair of the injured spinal cord. Neuropathol Appl Neurobiol. 1985;11:81–104.

    Article  CAS  PubMed  Google Scholar 

  267. Reier PJ, Bregman BS, Wujek JR. Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats. J Comp Neurol. 1986;247:275–96.

    Article  CAS  PubMed  Google Scholar 

  268. Reier PJ, Houle JD. The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol. 1988;47:87–138.

    CAS  PubMed  Google Scholar 

  269. Risling M, Linda H, Cullheim S, Franson P. A persistent defect in the blood–brain barrier after ventral funiculus lesion in adult cats: implications for CNS regeneration? Brain Res. 1989;494:13–21.

    Article  CAS  PubMed  Google Scholar 

  270. Ronkko H, Goransson H, Siironen P, Taskinen HS, Vuorinen V, Roytta M. The capacity of the distal stump of peripheral nerve to receive growing axons after two and six months denervation. Scand J Surg. 2011;100:223–9.

    Article  CAS  PubMed  Google Scholar 

  271. Roy RR, Harkema SJ, Edgerton VR. Basic concepts of activity-based interventions for improved recovery of motor function after spinal cord injury. Arch Phys Med Rehabil. 2012;93:1487–97.

    Article  PubMed  Google Scholar 

  272. Rubin BP, Spillmann AA, Bandtlow CE, Hillenbrand R, Keller F, Schwab ME. Inhibition of PC12 cell attachment and neurite outgrowth by detergent solubilized CNS myelin proteins. Eur J Neurosci. 1995;7:2524–9.

    Article  CAS  PubMed  Google Scholar 

  273. Rudge JS, Silver J. Inhibition of neurite outgrowth on astroglial scars in vitro. J Neurosci. 1990;10:3594–603.

    CAS  PubMed  Google Scholar 

  274. Sandrow-Feinberg HR, Houle JD. Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation. Brain Res. 1619;2015:12–21.

    Google Scholar 

  275. Sapieha PS, Duplan L, Uetani N, Joly S, Tremblay ML, Kennedy TE, Di Polo A. Receptor protein tyrosine phosphatase sigma inhibits axon regrowth in the adult injured CNS. Mol Cell Neurosci. 2005;28:625–35.

    Article  CAS  PubMed  Google Scholar 

  276. Sato KL, Johanek LM, Sanada LS, Sluka KA. Spinal cord stimulation reduces mechanical hyperalgesia and glial cell activation in animals with neuropathic pain. Anesth Analg. 2014;118:464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Savio T, Schwab ME. Lesioned corticospinal tract axons regenerate in myelin-free rat spinal cord. Proc Natl Acad Sci U S A. 1990;87:4130–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Sayenko DG, Angeli C, Harkema SJ, Edgerton VR, Gerasimenko YP. Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J Neurophysiol. 2014;111:1088–99.

    Article  PubMed  Google Scholar 

  279. Sceats Jr DJ, Friedman WA, Sypert GW, Ballinger Jr WE. Regeneration in peripheral nerve grafts to the cat spinal cord. Brain Res. 1986;362:149–56.

    Article  PubMed  Google Scholar 

  280. Schaeren-Wiemers N, Schaefer C, Valenzuela DM, Yancopoulos GD, Schwab ME. Identification of new oligodendrocyte- and myelin-specific genes by a differential screening approach. J Neurochem. 1995;65:10–22.

    Article  CAS  PubMed  Google Scholar 

  281. Schiefferdecker P. Ueber Regeneration, Degeneration und Architectur des Rèuckenmarkes. Berlin: Gedruckt bei G. Reimer; 1876. p. 76.

    Google Scholar 

  282. Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347.

    Article  CAS  PubMed  Google Scholar 

  283. Schnell L, Schwab ME. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature. 1990;343:269–72.

    Article  CAS  PubMed  Google Scholar 

  284. Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature. 1994;367:170–3.

    Article  CAS  PubMed  Google Scholar 

  285. Schnell L, Hunanyan AS, Bowers WJ, Horner PJ, Federoff HJ, Gullo M, Schwab ME, Mendell LM, Arvanian VL. Combined delivery of Nogo-A antibody, neurotrophin-3 and the NMDA-NR2d subunit establishes a functional ‘detour’ in the hemisected spinal cord. Eur J Neurosci. 2011;34:1256–67.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Schreyer DJ, Jones EG. Growing corticospinal axons by-pass lesions of neonatal rat spinal cord. Neuroscience. 1983;9:31–40.

    Article  CAS  PubMed  Google Scholar 

  287. Schulz MK, Schnell L, Castro AJ, Schwab ME, Kartje GL. Cholinergic innervation of fetal neocortical transplants is increased after neutralization of myelin-associated neurite growth inhibitors. Exp Neurol. 1998;149:390–7.

    Article  CAS  PubMed  Google Scholar 

  288. Schwab ME. Myelin-associated inhibitors of neurite growth and regeneration in the CNS. Trends Neurosci. 1990;13:452–6.

    Article  CAS  PubMed  Google Scholar 

  289. Schwab ME, Schnell L. Channeling of developing rat corticospinal tract axons by myelin-associated neurite growth inhibitors. J Neurosci. 1991;11:709–21.

    CAS  PubMed  Google Scholar 

  290. Schwab ME. Regeneration of lesioned CNS axons by neutralization of neurite growth inhibitors: a short review. J Neurotrauma. 1992;9 Suppl 1:S219–21.

    CAS  PubMed  Google Scholar 

  291. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev. 1996;76:319–70.

    CAS  PubMed  Google Scholar 

  292. Schwab ME. Structural plasticity of the adult CNS. Negative control by neurite growth inhibitory signals. Int J Dev Neurosci. 1996;14:379–85.

    Article  CAS  PubMed  Google Scholar 

  293. Schwab ME, Brosamle C. Regeneration of lesioned corticospinal tract fibers in the adult rat spinal cord under experimental conditions. Spinal Cord. 1997;35:469–73.

    Article  CAS  PubMed  Google Scholar 

  294. Schwab ME, Strittmatter SM. Nogo limits neural plasticity and recovery from injury. Curr Opin Neurobiol. 2014;27:53–60.

    Article  CAS  PubMed  Google Scholar 

  295. Schwegler G, Schwab ME, Kapfhammer JP. Increased collateral sprouting of primary afferents in the myelin-free spinal cord. J Neurosci. 1995;15:2756–67.

    CAS  PubMed  Google Scholar 

  296. Seijffers R, Allchorne AJ, Woolf CJ. The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci. 2006;32:143–54.

    Article  CAS  PubMed  Google Scholar 

  297. Seijffers R, Mills CD, Woolf CJ. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. J Neurosci. 2007;27:7911–20.

    Article  CAS  PubMed  Google Scholar 

  298. Sharpe AN, Jackson A. Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord. J Neural Eng. 2014;11:016005.

    Article  PubMed  PubMed Central  Google Scholar 

  299. Sicotte M, Tsatas O, Jeong SY, Cai CQ, He Z, David S. Immunization with myelin or recombinant Nogo-66/MAG in alum promotes axon regeneration and sprouting after corticospinal tract lesions in the spinal cord. Mol Cell Neurosci. 2003;23:251–63.

    Article  CAS  PubMed  Google Scholar 

  300. Siegel CS, Fink KL, Strittmatter SM, Cafferty WB. Plasticity of intact rubral projections mediates spontaneous recovery of function after corticospinal tract injury. J Neurosci. 2015;35:1443–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Simonen M, Pedersen V, Weinmann O, Schnell L, Buss A, Ledermann B, Christ F, Sansig G, van der Putten H, Schwab ME. Systemic deletion of the myelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury. Neuron. 2003;38:201–11.

    Article  CAS  PubMed  Google Scholar 

  302. Smith GM, Miller RH, Silver J. Changing role of forebrain astrocytes during development, regenerative failure, and induced regeneration upon transplantation. J Comp Neurol. 1986;251:23–43.

    Article  CAS  PubMed  Google Scholar 

  303. Smith GM, Strunz C. Growth factor and cytokine regulation of chondroitin sulfate proteoglycans by astrocytes. Glia. 2005;52:209–18.

    Article  PubMed  Google Scholar 

  304. Song HJ, Ming GL, Poo MM. cAMP-induced switching in turning direction of nerve growth cones. Nature. 1997;388:275–9.

    Article  CAS  PubMed  Google Scholar 

  305. Spejo AB, Oliveira AL. Synaptic rearrangement following axonal injury: old and new players. Neuropharmacology. 2015;96:113–23.

    Article  CAS  PubMed  Google Scholar 

  306. Spillmann AA, Bandtlow CE, Lottspeich F, Keller F, Schwab ME. Identification and characterization of a bovine neurite growth inhibitor (bNI-220). J Biol Chem. 1998;273:19283–93.

    Article  CAS  PubMed  Google Scholar 

  307. Starkey ML, Bartus K, Barritt AW, Bradbury EJ.Chondroitinase ABC promotes compensatory sprouting of the intact corticospinal tract and recovery of forelimb function following unilateral pyramidotomy in adult mice. Eur J Neurosci. 2012;36:3665–78.

    Article  PubMed  PubMed Central  Google Scholar 

  308. Stocco A, Prat CS, Losey DM, Cronin JA, Wu J, Abernethy JA, et al. Playing 20 Questions with the mind: Collaborative problem solving by humans using a Brain-to-Brain Interface. PLoS One. 2015;10:e0137303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  309. Su H, Yuan Q, Qin D, Yang X, Wong WM, So KF, Wu W. Lithium enhances axonal regeneration in peripheral nerve by inhibiting glycogen synthase kinase 3beta activation. Biomed Res Int. 2014;2014:658753.

    PubMed  PubMed Central  Google Scholar 

  310. Sugar O, Gerard RW. Spinal cord regeneration in the rat. J Neurophysiol. 1940;3:1–19.

    Google Scholar 

  311. Sutendra G, Dromparis P, Wright P, Bonnet S, Haromy A, Hao Z, McMurtry MS, Michalak M, Vance JE, Sessa WC, Michelakis ED. The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med. 2011;3:88ra55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Szynkaruk M, Kemp SW, Wood MD, Gordon T, Borschel GH. Experimental and clinical evidence for use of decellularized nerve allografts in peripheral nerve gap reconstruction. Tissue Eng Part B Rev. 2013;19:83–96.

    Article  CAS  PubMed  Google Scholar 

  313. Tatagiba M, Brosamle C, Schwab ME. Regeneration of injured axons in the adult mammalian central nervous system. Neurosurgery. 1997;40:541–7.

    CAS  PubMed  Google Scholar 

  314. Tator CH, Rivlin AS. Elimination of root regeneration in studies of spinal cord regeneration. Surg Neurol. 1983;19:255–9.

    Article  CAS  PubMed  Google Scholar 

  315. Taylor GI, Ham FJ. The free vascularized nerve graft. A further experimental and clinical application of microvascular techniques. Plast Reconstr Surg. 1976;57:413–26.

    Article  CAS  PubMed  Google Scholar 

  316. Teng FY, Tang BL. Why do Nogo/Nogo-66 receptor gene knockouts result in inferior regeneration compared to treatment with neutralizing agents? J Neurochem. 2005;94:865–74.

    Article  CAS  PubMed  Google Scholar 

  317. Tennant KA. Thinking outside the brain: structural plasticity in the spinal cord promotes recovery from cortical stroke. Exp Neurol. 2014;254:195–9.

    Article  PubMed  Google Scholar 

  318. Tong J, Liu W, Wang X, Han X, Hyrien O, Samadani U, Smith DH, Huang JH. Inhibition of Nogo-66 receptor 1 enhances recovery of cognitive function after traumatic brain injury in mice. J Neurotrauma. 2013;30:247–58.

    Article  PubMed  PubMed Central  Google Scholar 

  319. Tong J, Ren Y, Wang X, Dimopoulos VG, Kesler HN, Liu W, He X, Nedergaard M, Huang JH. Assessment of Nogo-66 receptor 1 function in vivo after spinal cord injury. Neurosurgery. 2014;75:51–60.

    Article  PubMed  PubMed Central  Google Scholar 

  320. Tsai EC, Krassioukov AV, Tator CH. Corticospinal regeneration into lumbar grey matter correlates with locomotor recovery after complete spinal cord transection and repair with peripheral nerve grafts, fibroblast growth factor 1, fibrin glue, and spinal fusion. J Neuropathol Exp Neurol. 2005;64:230–44.

    Article  PubMed  Google Scholar 

  321. van de Meent H, Schwab ME. Regeneration of the lesioned spinal cord. Neurorehabilitation. 1998;10:119–29.

    Article  PubMed  Google Scholar 

  322. Vanek P, Thallmair M, Schwab ME, Kapfhammer JP. Increased lesion-induced sprouting of corticospinal fibres in the myelin-free rat spinal cord. Eur J Neurosci. 1998;10:45–56.

    Article  CAS  PubMed  Google Scholar 

  323. Varga ZM, Schwab ME, Nicholls JG. Myelin-associated neurite growth-inhibitory proteins and suppression of regeneration of immature mammalian spinal cord in culture. Proc Natl Acad Sci U S A. 1995;92:10959–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Vasudeva VS, Abd-El-Barr M, Chi J. Lumbosacral spinal cord epidural stimulation enables recovery of voluntary movement after complete motor spinal cord injury. Neurosurgery. 2014;75:N14–5.

    Article  PubMed  Google Scholar 

  325. Volpe BT, Krebs HI, Hogan N, Edelstein L, Diels C, Aisen M. A novel approach to stroke rehabilitation. Neurology. 2000;54:1938–44.

    Article  CAS  PubMed  Google Scholar 

  326. von Meyenburg J, Brosamle C, Metz GA, Schwab ME. Regeneration and sprouting of chronically injured corticospinal tract fibers in adult rats promoted by NT-3 and the mAb IN-1, which neutralizes myelin-associated neurite growth inhibitors. Exp Neurol. 1998;154:583–94.

    Article  Google Scholar 

  327. Walchli T, Pernet V, Weinmann O, Shiu JY, Guzik-Kornacka A, Decrey G, Yuksel D, Schneider H, Vogel J, Ingber DE, Vogel V, Frei K, Schwab ME. Nogo-A is a negative regulator of CNS angiogenesis. Proc Natl Acad Sci U S A. 2013;110:E1943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Wall A, Borg J, Palmcrantz S. Clinical application of the Hybrid Assistive Limb (HAL) for gait training-a systematic review. Front Syst Neurosci. 2015;9:48.

    Article  PubMed  PubMed Central  Google Scholar 

  329. Wang X, Messing A, David S. Axonal and nonneuronal cell responses to spinal cord injury in mice lacking glial fibrillary acidic protein. Exp Neurol. 1997;148:568–76.

    Article  CAS  PubMed  Google Scholar 

  330. Wang KC, Kim JA, Sivasankaran R, Segal R, He Z. P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature. 2002;420:74–8.

    Article  CAS  PubMed  Google Scholar 

  331. Wang X, Duffy P, McGee AW, Hasan O, Gould G, Tu N, Harel NY, Huang Y, Carson RE, Weinzimmer D, Ropchan J, Benowitz LI, Cafferty WB, Strittmatter SM. Recovery from chronic spinal cord contusion after Nogo receptor intervention. Ann Neurol. 2011;70:805–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Wang D, Ichiyama RM, Zhao R, Andrews MR, Fawcett JW. Chondroitinase combined with rehabilitation promotes recovery of forelimb function in rats with chronic spinal cord injury. J Neurosci. 2011;31:9332–44.

    Article  CAS  PubMed  Google Scholar 

  333. Wanner M, Lang DM, Bandtlow CE, Schwab ME, Bastmeyer M, Stuermer CA. Reevaluation of the growth-permissive substrate properties of goldfish optic nerve myelin and myelin proteins. J Neurosci. 1995;15:7500–8.

    CAS  PubMed  Google Scholar 

  334. Warren PM, Alilain WJ. The challenges of respiratory motor system recovery following cervical spinal cord injury. Prog Brain Res. 2014;212:173–220.

    Article  PubMed  Google Scholar 

  335. Weibel D, Cadelli D, Schwab ME. Regeneration of lesioned rat optic nerve fibers is improved after neutralization of myelin-associated neurite growth inhibitors. Brain Res. 1994;642:259–66.

    Article  CAS  PubMed  Google Scholar 

  336. Weinmann O, Schnell L, Ghosh A, Montani L, Wiessner C, Wannier T, Rouiller E, Mir A, Schwab ME. Intrathecally infused antibodies against Nogo-A penetrate the CNS and downregulate the endogenous neurite growth inhibitor Nogo-A. Mol Cell Neurosci. 2006;32:161–73.

    Article  CAS  PubMed  Google Scholar 

  337. Wenger N, Moraud EM, Raspopovic S, Bonizzato M, DiGiovanna J, Musienko P, Morari M, Micera S, Courtine G. Closed-loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after complete spinal cord injury. Sci Transl Med. 2014;6:255ra133.

    Article  PubMed  CAS  Google Scholar 

  338. Wettels N, Fishel JA, Loeb GE. Multimodal tactile sensor. In: Balasubramanian R, Santos VJ, editors. The human hand as an inspiration for robot hand development, Springer Tracts in Advanced Robotics (STAR) series. Springer: Heidelberg; 2014.

    Google Scholar 

  339. Willand MP, Holmes M, Bain JR, de Bruin H, Fahnestock M. Sensory nerve cross-anastomosis and electrical muscle stimulation synergistically enhance functional recovery of chronically denervated muscle. Plast Reconstr Surg. 2014;134:736e–45.

    Article  CAS  PubMed  Google Scholar 

  340. Willi R, Aloy EM, Yee BK, Feldon J, Schwab ME. Behavioral characterization of mice lacking the neurite outgrowth inhibitor Nogo-A. Genes Brain Behav. 2009;8:181–92.

    Article  CAS  PubMed  Google Scholar 

  341. Williams LR, Longo FM, Powell HC, Lundborg G, Varon S. Spatial-temporal progress of peripheral nerve regeneration within a silicone chamber: parameters for a bioassay. J Comp Neurol. 1983;218:460–70.

    Article  CAS  PubMed  Google Scholar 

  342. Williams G, Wood A, Williams EJ, Gao Y, Mercado ML, Katz A, Joseph-McCarthy D, Bates B, Ling HP, Aulabaugh A, Zaccardi J, Xie Y, Pangalos MN, Walsh FS, Doherty P. Ganglioside inhibition of neurite outgrowth requires Nogo receptor function: identification of interaction sites and development of novel antagonists. J Biol Chem. 2008;283:16641–52.

    Article  CAS  PubMed  Google Scholar 

  343. Windle WF. Recollections of research in spinal cord regeneration. Exp Neurol. 1981;71:1–5.

    Article  CAS  PubMed  Google Scholar 

  344. Wirz M, Dietz V. European Multicenter Study of Spinal Cord Injury, N. Recovery of sensorimotor function and activities of daily living after cervical spinal cord injury: the influence of age. J Neurotrauma. 2015;32:194–9.

    Article  PubMed  Google Scholar 

  345. Wolburg H, Kästner R. Is the architecture of astrocytic membrane crucial for axonal regeneration in the central nervous system? Naturwissenschaften. 1984;71:484–5.

    Article  CAS  PubMed  Google Scholar 

  346. Woolf CJ, Shortland P, Reynolds M, Ridings J, Doubell T, Coggeshall RE. Reorganization of central terminals of myelinated primary afferents in the rat dorsal horn following peripheral axotomy. J Comp Neurol. 1995;360:121–34.

    Article  CAS  PubMed  Google Scholar 

  347. Worter V, Schweigreiter R, Kinzel B, Mueller M, Barske C, Bock G, Frentzel S, Bandtlow CE. Inhibitory activity of myelin-associated glycoprotein on sensory neurons is largely independent of NgR1 and NgR2 and resides within Ig-Like domains 4 and 5. e5218. 2009;4.

    Google Scholar 

  348. Wu P, Spinner RJ, Gu Y, Yaszemski MJ, Windebank AJ, Wang H. Delayed repair of the peripheral nerve: a novel model in the rat sciatic nerve. J Neurosci Methods. 2013;214:37–44.

    Article  PubMed  Google Scholar 

  349. Wu P, Chawla A, Spinner RJ, Yu C, Yaszemski MJ, Windebank AJ, Wang H. Key changes in denervated muscles and their impact on regeneration and reinnervation. Neural Regen Res. 2014;9:1796–809.

    Article  PubMed  PubMed Central  Google Scholar 

  350. Xu C, Kou Y, Zhang P, Han N, Yin X, Deng J, Chen B, Jiang B. Electrical stimulation promotes regeneration of defective peripheral nerves after delayed repair intervals lasting under one month. PLoS One. 2014;9:e105045.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  351. Xu B, Park D, Ohtake Y, Li H, Hayat U, Liu J, Selzer ME, Longo FM, Li S. Role of CSPG receptor LAR phosphatase in restricting axon regeneration after CNS injury. Neurobiol Dis. 2015;73:36–48.

    Article  CAS  PubMed  Google Scholar 

  352. Yang YS, Harel NY, Strittmatter SM. Reticulon-4A (Nogo-A) redistributes protein disulfide isomerase to protect mice from SOD1-dependent amyotrophic lateral sclerosis. J Neurosci. 2009;29:13850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Yang ML, Li JJ, So KF, Chen JY, Cheng WS, Wu J, Wang ZM, Gao F, Young W. Efficacy and safety of lithium carbonate treatment of chronic spinal cord injuries: a double-blind, randomized, placebo-controlled clinical trial. Spinal Cord. 2012;50:141–6.

    Article  CAS  PubMed  Google Scholar 

  354. Yick LW, So KF, Cheung PT, Wu WT. Lithium chloride reinforces the regeneration-promoting effect of chondroitinase ABC on rubrospinal neurons after spinal cord injury. J Neurotrauma. 2004;21:932–43.

    Article  PubMed  Google Scholar 

  355. Young W. Review of lithium effects on brain and blood. Cell Transplant. 2009;18:951–75.

    Article  PubMed  Google Scholar 

  356. Young W. Spinal cord regeneration. Cell Transplant. 2014;23:573–611.

    Article  PubMed  Google Scholar 

  357. Young W. Electrical stimulation and motor recovery. Cell Transplant. 2015;24:429–46.

    Article  PubMed  Google Scholar 

  358. Yu J, Fernandez-Hernando C, Suarez Y, Schleicher M, Hao Z, Wright PL, DiLorenzo A, Kyriakides TR, Sessa WC. Reticulon 4B (Nogo-B) is necessary for macrophage infiltration and tissue repair. Proc Natl Acad Sci U S A. 2009;106:17511–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Yu Z, Yu P, Chen H, Geller HM. Targeted inhibition of KCa3.1 attenuates TGF-beta-induced reactive astrogliosis through the Smad2/3 signaling pathway. J Neurochem. 2014;130:41–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Yuan J, Zou M, Xiang X, Zhu H, Chu W, Liu W, Chen F, Lin J. Curcumin improves neural function after spinal cord injury by the joint inhibition of the intracellular and extracellular components of glial scar. J Surg Res. 2015;195:235–45.

    Article  CAS  PubMed  Google Scholar 

  361. Zagrebelsky M, Buffo A, Skerra A, Schwab ME, Strata P, Rossi F. Retrograde regulation of growth-associated gene expression in adult rat Purkinje cells by myelin-associated neurite growth inhibitory proteins. J Neurosci. 1998;18:7912–29.

    CAS  PubMed  Google Scholar 

  362. Zagrebelsky M, Schweigreiter R, Bandtlow CE, Schwab ME, Korte M. Nogo-A stabilizes the architecture of hippocampal neurons. J Neurosci. 2010;30:13220–34.

    Article  CAS  PubMed  Google Scholar 

  363. Zemmar A, Weinmann O, Kellner Y, Yu X, Vicente R, Gullo M, Kasper H, Lussi K, Ristic Z, Luft AR, Rioult-Pedotti M, Zuo Y, Zagrebelsky M, Schwab ME. Neutralization of Nogo-A enhances synaptic plasticity in the rodent motor cortex and improves motor learning in vivo. J Neurosci. 2014;34:8685–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  364. Zhang D, Utsumi T, Huang HC, Gao L, Sangwung P, Chung C, Shibao K, Okamoto K, Yamaguchi K, Groszmann RJ, Jozsef L, Hao Z, Sessa WC, Iwakiri Y. Reticulon 4B (Nogo-B) is a novel regulator of hepatic fibrosis. Hepatology. 2011;53:1306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Zhang L, Kaneko S, Kikuchi K, Sano A, Maeda M, Kishino A, Shibata S, Mukaino M, Toyama Y, Liu M, Kimura T, Okano H, Nakamura M. Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition. Mol Brain. 2014;7:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Zhao RR, Muir EM, Alves JN, Rickman H, Allan AY, Kwok JC, Roet KC, Verhaagen J, Schneider BL, Bensadoun JC, Ahmed SG, Yanez-Munoz RJ, Keynes RJ, Fawcett JW, Rogers JH. Lentiviral vectors express chondroitinase ABC in cortical projections and promote sprouting of injured corticospinal axons. J Neurosci Methods. 2011;201:228–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Zhao RR, Fawcett JW. Combination treatment with chondroitinase ABC in spinal cord injury – breaking the barrier. Neurosci Bull. 2013;29:477–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Zhou HX, Li XY, Li FY, Liu C, Liang ZP, Liu S, Zhang B, Wang TY, Chu TC, Lu L, Ning GZ, Kong XH, Feng SQ. Targeting RPTPsigma with lentiviral shRNA promotes neurites outgrowth of cortical neurons and improves functional recovery in a rat spinal cord contusion model. Brain Res. 2014;1586:46–63.

    Article  CAS  PubMed  Google Scholar 

  369. Zhu H, Feng YP, Young W, You SW, Shen XF, Liu YS, Ju G. Early neurosurgical intervention of spinal cord contusion: an analysis of 30 cases. Chin Med J (Engl). 2008;121:2473–8.

    Google Scholar 

  370. Zhu Z, Kremer P, Tadmori I, Ren Y, Sun D, He X, Young W. Lithium suppresses astrogliogenesis by neural stem and progenitor cells by inhibiting STAT3 pathway independently of glycogen synthase kinase 3 beta. PLoS One. 2011;6:e23341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wise Young MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Young, W., Kaplan, H.M. (2017). Spinal Cord and Peripheral Nerve Regeneration Current Research and Future Possibilities. In: Elkwood, A., Kaufman, M., Schneider, L. (eds) Rehabilitative Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-41406-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41406-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41404-1

  • Online ISBN: 978-3-319-41406-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics