Staging Early Esophageal Cancer

  • O. J. OldEmail author
  • M. Isabelle
  • H. Barr
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 908)


Staging esophageal cancer provides a standardized measure of the extent of disease that can be used to inform decisions about therapy and guide prognosis. For esophageal cancer, the treatment pathways vary greatly depending on stage of disease, and accurate staging is therefore crucial in ensuring the optimal therapy for each patient. For early esophageal cancer (T1 lesions), endoscopic resection can be curative and simultaneously gives accurate staging of depth of invasion. For tumors invading the submucosa or more advanced disease, comprehensive investigation is required to accurately stage the tumor and assess suitability for curative resection. A combined imaging approach of computed tomography (CT), positron emission tomography (PET), and endoscopic ultrasound (EUS) offers complementary diagnostic information and gives the greatest chance of accurate staging. Staging laparoscopy can identify peritoneal disease and small superficial liver lesions that could be missed on CT or PET, and alters management in up to 20 % of patients. Optical diagnostic techniques offer the prospect of further extending the possibilities of endoscopic staging in real time. Optical coherence tomography can image superficial lesions and could provide information on depth of invasion for these lesions. Real-time lymph node analysis using optical diagnostics such as Raman spectroscopy could be used to support immediate endoscopic therapy without waiting for results of cytology or further investigations.


Staging Esophageal cancer Endoscopic resection Endoscopic ultrasound Computed tomography Positron emission tomography Optical coherence tomography Raman spectroscopy 


  1. 1.
    Allum WH, Blazeby JM, Griffin SM, et al. Guidelines for the management of oesophageal and gastric cancer. Gut. 2011;60:1449–72. doi: 10.1136/gut.2010.228254.CrossRefPubMedGoogle Scholar
  2. 2.
    Rice TW, Rusch VW, Ishwaran H, et al. Cancer of the esophagus and esophagogastric junction: data-driven staging for the seventh edition of the American Joint Committee on Cancer/International Union Against Cancer Cancer Staging Manuals. Cancer. 2010;116:3763–73. doi: 10.1002/cncr.25146.CrossRefPubMedGoogle Scholar
  3. 3.
    Rice TW, Blackstone EH, Rusch VW. 7th edition of the AJCC Cancer Staging Manual: esophagus and esophagogastric junction. Ann Surg Oncol. 2010;17:1721–4. doi: 10.1245/s10434-010-1024-1.CrossRefPubMedGoogle Scholar
  4. 4.
    Raimes S. Oesophagogastric surgery. A companion to specialist surgical practice. Fourth. Saunders Elsevier; 2009.Google Scholar
  5. 5.
    Fitzgerald RC, di Pietro M, Ragunath K, et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut. 2014;63:7–42. doi: 10.1136/gutjnl-2013-305372.CrossRefPubMedGoogle Scholar
  6. 6.
    Buskens CJ, Westerterp M, Lagarde SM, et al. Prediction of appropriateness of local endoscopic treatment for high-grade dysplasia and early adenocarcinoma by EUS and histopathologic features. Gastrointest Endosc. 2004;60:703–10. (accessed 13 Jun 2014).CrossRefPubMedGoogle Scholar
  7. 7.
    Westerterp M, Koppert LB, Buskens CJ, et al. Outcome of surgical treatment for early adenocarcinoma of the esophagus or gastro-esophageal junction. Virchows Arch. 2005;446:497–504. doi: 10.1007/s00428-005-1243-1.CrossRefPubMedGoogle Scholar
  8. 8.
    Stein HJ, Feith M, Bruecher BLDM, et al. Early esophageal cancer: pattern of lymphatic spread and prognostic factors for long-term survival after surgical resection. Ann Surg. 2005;242:566–73. doi: 10.1097/01.sla.0000184211.75970.85. discussion 573–5.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu L, Hofstetter WL, Rashid A, et al. Significance of the depth of tumor invasion and lymph node metastasis in superficially invasive (T1) esophageal adenocarcinoma. Am J Surg Pathol. 2005;29:1079–85. (accessed 13 Jun 2014).PubMedGoogle Scholar
  10. 10.
    Sepesi B, Watson TJ, Zhou D, et al. Are endoscopic therapies appropriate for superficial submucosal esophageal adenocarcinoma? An analysis of esophagectomy specimens. J Am Coll Surg. 2010;210:418–27. doi: 10.1016/j.jamcollsurg.2010.01.003.CrossRefPubMedGoogle Scholar
  11. 11.
    Alvarez Herrero L, Pouw RE, van Vilsteren FG, et al. Risk of lymph node metastasis associated with deeper invasion by early adenocarcinoma of the esophagus and cardia: study based on endoscopic resection specimens. Endoscopy. 2010;42:1030–6. doi: 10.1055/s-0030-1255858.CrossRefPubMedGoogle Scholar
  12. 12.
    Barbour AP, Jones M, Brown I, et al. Risk stratification for early esophageal adenocarcinoma: analysis of lymphatic spread and prognostic factors. Ann Surg Oncol. 2010;17:2494–502. doi: 10.1245/s10434-010-1025-0.CrossRefPubMedGoogle Scholar
  13. 13.
    Rice TW, Zuccaro G, Adelstein DJ, et al. Esophageal carcinoma: depth of tumor invasion is predictive of regional lymph node status. Ann Thorac Surg. 1998;65:787–92. doi: 10.1016/S0003-4975(97)01387-8.CrossRefPubMedGoogle Scholar
  14. 14.
    Pech O, May A, Manner H, et al. Long-term efficacy and safety of endoscopic resection for patients with mucosal adenocarcinoma of the esophagus. Gastroenterology. 2014;146:652–60.e1. doi: 10.1053/j.gastro.2013.11.006.CrossRefPubMedGoogle Scholar
  15. 15.
    Prasad GA, Wu TT, Wigle DA, et al. Endoscopic and surgical treatment of mucosal (T1a) esophageal adenocarcinoma in Barrett’s esophagus. Gastroenterology. 2009;137:815–23. doi: 10.1053/j.gastro.2009.05.059.CrossRefPubMedGoogle Scholar
  16. 16.
    Estrella JS, Hofstetter WL, Correa AM, et al. Duplicated muscularis mucosae invasion has similar risk of lymph node metastasis and recurrence-free survival as intramucosal esophageal adenocarcinoma. Am J Surg Pathol. 2011;35:1045–53. doi: 10.1097/PAS.0b013e318219ccef.CrossRefPubMedGoogle Scholar
  17. 17.
    Conio M, Repici A, Cestari R, et al. Endoscopic mucosal resection for high-grade dysplasia and intramucosal carcinoma in Barrett’s esophagus: an Italian experience. World J Gastroenterol. 2005;11:6650–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Seewald S, Akaraviputh T, Seitz U, et al. Circumferential EMR and complete removal of Barrett’s epithelium: a new approach to management of Barrett’s esophagus containing high-grade intraepithelial neoplasia and intramucosal carcinoma. Gastrointest Endosc. 2003;57:854–9. doi: 10.1016/S0016-5107(03)70020-0.CrossRefPubMedGoogle Scholar
  19. 19.
    Ahmad NA, Kochman ML, Long WB, et al. Efficacy, safety, and clinical outcomes of endoscopic mucosal resection: a study of 101 cases. Gastrointest Endosc. 2002;55:390–6. doi: 10.1067/mge.2002.121881.CrossRefPubMedGoogle Scholar
  20. 20.
    Mino-Kenudson M, Brugge WR, Puricelli WP, et al. Management of superficial Barrett’s epithelium-related neoplasms by endoscopic mucosal resection: clinicopathologic analysis of 27 cases. Am J Surg Pathol. 2005;29:680–6. doi: 10.1097/01.pas.0000154129.87219.fa.CrossRefPubMedGoogle Scholar
  21. 21.
    Peters FP, Brakenhoff KPM, Curvers WL, et al. Histologic evaluation of resection specimens obtained at 293 endoscopic resections in Barrett’s esophagus. Gastrointest Endosc. 2008;67:604–9. doi: 10.1016/j.gie.2007.08.039.CrossRefPubMedGoogle Scholar
  22. 22.
    Pouw RE, Seewald S, Gondrie JJ, et al. Stepwise radical endoscopic resection for eradication of Barrett’s oesophagus with early neoplasia in a cohort of 169 patients. Gut. 2010;59:1169–77. doi: 10.1136/gut.2010.210229.CrossRefPubMedGoogle Scholar
  23. 23.
    Konda VJA, Ross AS, Ferguson MK, et al. Is the risk of concomitant invasive esophageal cancer in high-grade dysplasia in Barrett’s esophagus overestimated? Clin Gastroenterol Hepatol. 2008;6:159–64. doi: 10.1016/j.cgh.2007.09.013.CrossRefPubMedGoogle Scholar
  24. 24.
    Khanna LG, Gress FG. Preoperative evaluation of oesophageal adenocarcinoma. Best Pract Res Clin Gastroenterol. 2015;29:179–91. doi: 10.1016/j.bpg.2014.12.005.CrossRefPubMedGoogle Scholar
  25. 25.
    Kelly S, Harris KM, Berry E, et al. A systematic review of the staging performance of endoscopic ultrasound in gastro-oesophageal carcinoma. Gut. 2001;49:534–9. doi: 10.1136/gut.49.4.534.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Young PE, Gentry AB, Acosta RD, et al. Endoscopic ultrasound does not accurately stage early adenocarcinoma or high-grade dysplasia of the esophagus. Clin Gastroenterol Hepatol. 2010;8:1037–41. doi: 10.1016/j.cgh.2010.08.020.CrossRefPubMedGoogle Scholar
  27. 27.
    Larghi A, Lightdale CJ, Memeo L, et al. EUS followed by EMR for staging of high-grade dysplasia and early cancer in Barrett’s esophagus. Gastrointest Endosc. 2005;62:16–23. doi: 10.1016/S0016-5107(05)00319-6.CrossRefPubMedGoogle Scholar
  28. 28.
    Pech O, Günter E, Dusemund F, et al. Accuracy of endoscopic ultrasound in preoperative staging of esophageal cancer: results from a referral center for early esophageal cancer. Endoscopy. 2010;42:456–61. doi: 10.1055/s-0029-1244022.CrossRefPubMedGoogle Scholar
  29. 29.
    Pouw RE, Heldoorn N, Herrero LA, et al. Do we still need EUS in the workup of patients with early esophageal neoplasia? A retrospective analysis of 131 cases. Gastrointest Endosc. 2011;73:662–8. doi: 10.1016/j.gie.2010.10.046.CrossRefPubMedGoogle Scholar
  30. 30.
    Pech O, Günter E, Dusemund F, et al. Value of high-frequency miniprobes and conventional radial endoscopic ultrasound in the staging of early Barrett’s carcinoma. Endoscopy. 2010;42:98–103. doi: 10.1055/s-0029-1243839.CrossRefPubMedGoogle Scholar
  31. 31.
    Catalano MF, Sivak MV, Rice T, et al. Endosonographic features predictive of lymph node metastasis. Gastrointest Endosc. 1994;40:442–6. doi: 10.1016/S0016-5107(94)70206-3.CrossRefPubMedGoogle Scholar
  32. 32.
    Bhutani MS, Hawes RH, Hoffman BJ. A comparison of the accuracy of echo features during endoscopic ultrasound (EUS) and EUS-guided fine-needle aspiration for diagnosis of malignant lymph node invasion. Gastrointest Endosc. 1997;45:474–9. doi: 10.1016/S0016-5107(97)70176-7.CrossRefPubMedGoogle Scholar
  33. 33.
    Rösch T. Endosonographic staging of esophageal cancer: a review of literature results. Gastrointest Endosc Clin N Am. 1995;5:537–47.PubMedGoogle Scholar
  34. 34.
    Räsänen JV, Sihvo EIT, Knuuti MJ, et al. Prospective analysis of accuracy of positron emission tomography, computed tomography, and endoscopic ultrasonography in staging of adenocarcinoma of the esophagus and the esophagogastric junction. Ann Surg Oncol. 2003;10:954–60. doi: 10.1245/ASO.2003.12.002.CrossRefPubMedGoogle Scholar
  35. 35.
    Vazquez-Sequeiros E, Norton ID, Clain JE, et al. Impact of EUS-guided fine-needle aspiration on lymph node staging in patients with esophageal carcinoma. Gastrointest Endosc. 2001;53:751–7. doi: 10.1067/mge.2001.112741.CrossRefPubMedGoogle Scholar
  36. 36.
    Wiersema MJ, Vilmann P, Giovannini M, et al. Endosonography-guided fine-needle aspiration biopsy: diagnostic accuracy and complication assessment. Gastroenterology. 1997;112:1087–95.Google Scholar
  37. 37.
    Sandha GS, Severin D, Postema E, et al. Is positron emission tomography useful in locoregional staging of esophageal cancer? Results of a multidisciplinary initiative comparing CT, positron emission tomography, and EUS. Gastrointest Endosc. 2008;67:402–9. doi: 10.1016/j.gie.2007.09.006.CrossRefPubMedGoogle Scholar
  38. 38.
    Keswani RN, Early DS, Edmundowicz SA, et al. Routine positron emission tomography does not alter nodal staging in patients undergoing EUS-guided FNA for esophageal cancer. Gastrointest Endosc. 2009;69:1210–7. doi: 10.1016/j.gie.2008.08.016.CrossRefPubMedGoogle Scholar
  39. 39.
    Pech O, May A, Günter E, et al. The impact of endoscopic ultrasound and computed tomography on the TNM staging of early cancer in Barrett’s esophagus. Am J Gastroenterol. 2006;101:2223–9. doi: 10.1111/j.1572-0241.2006.00718.x.CrossRefPubMedGoogle Scholar
  40. 40.
    Bergeron EJ, Lin J, Chang AC, et al. Endoscopic ultrasound is inadequate to determine which T1/T2 esophageal tumors are candidates for endoluminal therapies. J Thorac Cardiovasc Surg. 2014;147:765–73. doi: 10.1016/j.jtcvs.2013.10.003.CrossRefPubMedGoogle Scholar
  41. 41.
    Meister T, Domagk D, Heinzow HS, et al. Miniprobe endoscopic ultrasound accurately stages esophageal cancer and guides therapeutic decisions in the era of neoadjuvant therapy: results of a multicenter cohort analysis. Surg Endosc. 2013;27:2813–9. doi: 10.1007/s00464-013-2817-7.CrossRefPubMedGoogle Scholar
  42. 42.
    Bulsiewicz WJ, Dellon ES, Rogers AJ, et al. The impact of endoscopic ultrasound findings on clinical decision making in Barrett’s esophagus with high-grade dysplasia or early esophageal adenocarcinoma. Dis Esophagus. 2014;27:409–17. doi: 10.1111/j.1442-2050.2012.01408.x.CrossRefPubMedGoogle Scholar
  43. 43.
    Godoy MCB, Bruzzi JF, Viswanathan C, et al. Multimodality imaging evaluation of esophageal cancer: staging, therapy assessment, and complications. Abdom Imaging. 2013;38:974–93. doi: 10.1007/s00261-013-9986-7.CrossRefPubMedGoogle Scholar
  44. 44.
    Rice TW. Clinical staging of esophageal carcinoma. CT, EUS, and PET. Chest Surg Clin N Am. 2000;10:471–85.PubMedGoogle Scholar
  45. 45.
    Van Vliet EPM, Heijenbrok-Kal MH, Hunink MGM, et al. Staging investigations for oesophageal cancer: a meta-analysis. Br J Cancer. 2008;98:547–57. doi: 10.1038/sj.bjc.6604200.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Quint LE, Hepburn LM, Francis IR, et al. Incidence and distribution of distant metastases from newly diagnosed esophageal carcinoma. Cancer. 1995;76:1120–5. doi: 10.1002/1097-0142(19951001)76:7<1120::AID-CNCR2820760704>3.0.CO;2-W.CrossRefPubMedGoogle Scholar
  47. 47.
    Lowe VJ, Booya F, Fletcher JG, et al. Comparison of positron emission tomography, computed tomography, and endoscopic ultrasound in the initial staging of patients with esophageal cancer. Mol Imaging Biol. 2005;7:422–30. doi: 10.1007/s11307-005-0017-0.CrossRefPubMedGoogle Scholar
  48. 48.
    Lin J, Kligerman S, Goel R, et al. State-of-the-art molecular imaging in esophageal cancer management : implications for diagnosis, prognosis, and treatment. J Gastrointest Oncol. 2015;6:3–19. doi: 10.3978/j.issn.2078-6891.2014.062.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Erasmus JJ, Munden RF. The role of integrated computed tomography positron-emission tomography in esophageal cancer: staging and assessment of therapeutic response. Semin Radiat Oncol. 2007;17:29–37. doi: 10.1016/j.semradonc.2006.09.005.CrossRefPubMedGoogle Scholar
  50. 50.
    Bruzzi JF, Munden RF, Truong MT, et al. PET/CT of esophageal cancer: its role in clinical management. Radiographics. 2007;27:1635–52. doi: 10.1148/rg.276065742.CrossRefPubMedGoogle Scholar
  51. 51.
    Cuellar SLB, Carter BW, Macapinlac HA, et al. Clinical staging of patients with early esophageal adenocarcinoma. J Thorac Oncol. 2014;9:1202–6. doi: 10.1097/JTO.0000000000000222.CrossRefPubMedGoogle Scholar
  52. 52.
    Kato H, Miyazaki T, Nakajima M, et al. The incremental effect of positron emission tomography on diagnostic accuracy in the initial staging of esophageal carcinoma. Cancer. 2005;103:148–56. doi: 10.1002/cncr.20724.CrossRefPubMedGoogle Scholar
  53. 53.
    Stahl A, Stollfuss J, Ott K, et al. FDG PET and CT in locally advanced adenocarcinomas of the distal oesophagus: clinical relevance of a discordant PET finding. Nuklear Medizin. 2005;44:249–55. doi:05060249 [pii].Google Scholar
  54. 54.
    Al-Taan OS, Eltweri A, Sharpe D, et al. Prognostic value of baseline FDG uptake on PET-CT in esophageal carcinoma. World J Gastrointest Oncol. 2014;6:139–44. doi: 10.4251/wjgo.v6.i5.139.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Vallböhmer D, Hölscher AH, Dietlein M, Bollschweiler E, Baldus SE, Mönig SP, Metzger R, Schicha HSM. [18F]-Fluorodeoxyglucose-positron emission tomography for the assessment of histopathologic response and prognosis after completion of neoadjuvant chemoradiation in esophageal cancer. Ann Surg. 2009;250:888–94.CrossRefPubMedGoogle Scholar
  56. 56.
    Smith A, Finch MD, John TG, et al. Role of laparoscopic ultrasonography in the management of patients with oesophagogastric cancer. Br J Surg. 1999;86:1083–7. doi: 10.1046/j.1365-2168.1999.01190.x.CrossRefPubMedGoogle Scholar
  57. 57.
    Rau B, Hünerbein M. Diagnostic laparoscopy: indications and benefits. Langenbeck’s Arch Surg. 2005;390:187–96. doi: 10.1007/s00423-004-0483-x.CrossRefGoogle Scholar
  58. 58.
    Nath J, Moorthy K, Taniere P, et al. Peritoneal lavage cytology in patients with oesophagogastric adenocarcinoma. Br J Surg. 2008;95:721–6. doi: 10.1002/bjs.6107.CrossRefPubMedGoogle Scholar
  59. 59.
    De Graaf GW, Ayantunde AA, Parsons SL, et al. The role of staging laparoscopy in oesophagogastric cancers. Eur J Surg Oncol. 2007;33:988–92. doi: 10.1016/j.ejso.2007.01.007.CrossRefPubMedGoogle Scholar
  60. 60.
    Compton CC, Byrd DR, Garcia-Aguilar J, et al., editors. AJCC Cancer Staging Atlas. New York, NY: Springer; 2012. doi:  10.1007/978-1-4614-2080-4.Google Scholar
  61. 61.
    Li-Qing Y. New endoscopic diagnosis and treatment options for early esophageal cancer. J Gastrointest Dig Syst. 2012.Google Scholar
  62. 62.
    Pierce MC, Javier DJ, Richards-Kortum R. Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int J Cancer. 2008;123(9):1979–90.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Testoni PA, Mangiavillano B. Optical coherence tomography in detection of dysplasia and cancer of the gastrointestinal tract and bilio-pancreatic ductal system. World J Gastroenterol. 2008;14(42):6444.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tsai T-H, Fujimoto JG, Mashimo H. Endoscopic optical coherence tomography for clinical gastroenterology. Diagnostics. 2014;4(2):57–93.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Isenberg G, et al. Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett’s esophagus: a prospective, double-blinded study. Gastrointest Endosc. 2005;62(6):825–31.CrossRefPubMedGoogle Scholar
  66. 66.
    Evans JA, et al. Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett’s esophagus. Clin Gastroenterol Hepatol. 2006;4(1):38–43.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Qi X, et al. Image analysis for classification of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography. Biomed Optic Express. 2010;1(3):825–47.CrossRefGoogle Scholar
  68. 68.
    Chen Y, et al. Ultrahigh resolution optical coherence tomography of Barrett's esophagus: preliminary descriptive clinical study correlating images with histology. Endoscopy. 2007;39(7):599–605.CrossRefPubMedGoogle Scholar
  69. 69.
    Jäckle S, et al. In vivo endoscopic optical coherence tomography of esophagitis, Barrett's esophagus, and adenocarcinoma of the esophagus. Endoscopy. 2000;32(10):750–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Li XD, et al. Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus. Endoscopy. 2000;32(12):921–30.CrossRefPubMedGoogle Scholar
  71. 71.
    Lightdale CJ. Advanced imaging for GI endoscopy. Gastrointest Endosc Clin N Am. 2013;23(3):xiii–xiv.CrossRefGoogle Scholar
  72. 72.
    Robles LY, Satish S, Fisichella PM. Emerging enhanced imaging technologies of the esophagus: spectroscopy, confocal laser endomicroscopy, and optical coherence tomography. J Surg Res. 2015;195(2):502–14.CrossRefPubMedGoogle Scholar
  73. 73.
    Singh R, Yeap SP. Endoscopic imaging in Barrett’s esophagus. Expert Rev Gastroenterol Hepatol. 2014:1–11Google Scholar
  74. 74.
    Wang KK. Detection and staging of esophageal cancers. Curr Opin Gastroenterol. 2004;20(4):381.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Hatta W, et al. A prospective comparative study of optical coherence tomography and EUS for tumor staging of superficial esophageal squamous cell carcinoma. Gastrointest Endosc. 2012;76(3):548–55.CrossRefPubMedGoogle Scholar
  76. 76.
    Hatta W, et al. Optical coherence tomography for the staging of tumor infiltration in superficial esophageal squamous cell carcinoma. Gastrointest Endosc. 2010;71(6):899–906.CrossRefPubMedGoogle Scholar
  77. 77.
    McLaughlin RA, et al. Imaging of human lymph nodes using optical coherence tomography: potential for staging cancer. Cancer Res. 2010;70(7):2579–84.CrossRefPubMedGoogle Scholar
  78. 78.
    McLaughlin RA, et al. Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results. Selected topics in Quantum electronics. IEEE J. 2012;18(3):1184–91.Google Scholar
  79. 79.
    Standish BA, et al. Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study. Cancer Res. 2008;68(23):9987–95.CrossRefPubMedGoogle Scholar
  80. 80.
    Iftimia NV, et al. Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance. Rev Sci Instrum. 2009;80(2):024302.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Kirtane TS, Wagh MS. Endoscopic optical coherence tomography (OCT): advances in gastrointestinal imaging. Gastroenterol Res Pract. 2014;2014:376367.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Almond LM, et al. Assessment of a custom-built Raman spectroscopic probe for diagnosis of early oesophageal neoplasia. J Biomed Opt. 2012;17(8):0814211–6.CrossRefGoogle Scholar
  83. 83.
    Almond LM, et al. Endoscopic Raman spectroscopy enables objective diagnosis of dysplasia in Barrett's esophagus. Gastrointest Endosc. 2014;79(1):37–45.CrossRefPubMedGoogle Scholar
  84. 84.
    Almond LM, et al. Real-time disease detection using spectroscopic diagnosis. Biomed Spectros Imag. 2014;3(3):197–202.Google Scholar
  85. 85.
    Bergholt MS, et al. In vivo diagnosis of esophageal cancer using image-guided Raman endoscopy and biomolecular modeling. Technol Cancer Res Treat. 2011;10(2):103–12.PubMedGoogle Scholar
  86. 86.
    Bergholt MS et al. Raman endoscopy for objective diagnosis of early cancer in the gastrointestinal system. J Gastroint Dig Syst. 2013;S1:008.Google Scholar
  87. 87.
    Isabelle M, et al. Lymph node pathology using optical spectroscopy in cancer diagnostics. J Spectros. 2008;22(2–3):97–104.CrossRefGoogle Scholar
  88. 88.
    Lloyd GR, et al. Discrimination between benign, primary and secondary malignancies in lymph nodes from the head and neck utilising Raman spectroscopy and multivariate analysis. Analyst. 2013;138(14):3900–8.CrossRefPubMedGoogle Scholar
  89. 89.
    Horsnell JD, et al. Raman spectroscopy—a potential new method for the intra-operative assessment of axillary lymph nodes. Surgeon. 2012;10(3):123–7.CrossRefPubMedGoogle Scholar
  90. 90.
    Horsnell J, et al. Intra-operative Sentinel Lymph Node Assessment-How many patients will avoid a second operation? Eur J Surg Oncol. 2012;38(5):459–60.CrossRefGoogle Scholar
  91. 91.
    Smith J, et al. Raman spectral mapping in the assessment of axillary lymph nodes in breast cancer. Technol Cancer Res Treat. 2003;2(4):327–31.CrossRefPubMedGoogle Scholar
  92. 92.
    Day JCC, Stone N. A subcutaneous Raman needle probe. Appl Spectrosc. 2013;67(3):349–54.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Upper GI Surgery DepartmentGloucestershire Royal HospitalGloucesterUK
  2. 2.Biophotonics Research UnitGloucestershire Royal HospitalGloucesterUK

Personalised recommendations