Advertisement

The Complex, Clonal, and Controversial Nature of Barrett’s Esophagus

  • James A. EvansEmail author
  • Stuart A. C. McDonald
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 908)

Abstract

Barrett’s esophagus (BO) is a preneoplastic condition described as the replacement of the stratified squamous epithelium of the distal esophagus with one that histologically presents as a diverse mixture of metaplastic glands resembling gastric or intestinal-type columnar epithelium. The clonal origins of BO are still unclear. More recently, we have begun to investigate the relationship between the various metaplastic gland phenotypes observed in BO, how they evolve, and the cancer risk they bestow. Studies have revealed that glands along the BO segment are clonal units containing a single stem cell clone that can give rise to all the differentiated epithelial cell types in glands. Clonal lineage tracing analysis has revealed that Barrett’s glands are capable of bifurcation and this facilitates clonal expansion and competition. In fact, BO in some patients appears to consist of multiple, independently initiated clones that compete with each other for space and possibly resources. This chapter discusses the concepts of clonal competition and expansion in BO and sets out to query what we know about the role of gland diversity and phenotypic evolution within this complex columnar metaplasia.

Keywords

Metaplasia Clonal expansion Field cancerization Niche succession 

References

  1. 1.
    Fitzgerald RC, et al. British Society of Gastroenterology guidelines on the diagnosis and management of Barrett’s oesophagus. Gut. 2014;63(1):7–42.PubMedCrossRefGoogle Scholar
  2. 2.
    Zeki S, Fitzgerald RC. Targeting care in Barrett’s oesophagus. Clin Med. 2014;14 Suppl 6:s78–83.CrossRefGoogle Scholar
  3. 3.
    Hvid-Jensen F, et al. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365(15):1375–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Hardie LJ, et al. p16 expression in Barrett’s esophagus and esophageal adenocarcinoma: association with genetic and epigenetic alterations. Cancer Lett. 2005;217(2):221–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Wong DJ, et al. p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res. 2001;61(22):8284–9.PubMedGoogle Scholar
  6. 6.
    Galipeau PC, et al. Clonal expansion and loss of heterozygosity at chromosomes 9p and 17p in premalignant esophageal (Barrett’s) tissue. J Natl Cancer Inst. 1999;91(24):2087–95.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Li X, et al. Temporal and spatial evolution of somatic chromosomal alterations: a case-cohort study of Barrett’s esophagus. Cancer Prev Res (Phila). 2014;7(1):114–27.CrossRefGoogle Scholar
  8. 8.
    Ross-Innes CS, et al. Whole-genome sequencing provides new insights into the clonal architecture of Barrett’s esophagus and esophageal adenocarcinoma. Nat Genet. 2015;47(9):1038–46.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Weaver JM, et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet. 2014;46(8):837–43.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Stachler MD, et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat Genet. 2015;47(9):1047–55.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    McDonald SA, et al. Barrett oesophagus: lessons on its origins from the lesion itself. Nat Rev Gastroenterol Hepatol. 2015;12(1):50–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Barbera M, et al. The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut. 2015;64(1):11–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Lavery DL, et al. The stem cell organisation, and the proliferative and gene expression profile of Barrett’s epithelium, replicates pyloric-type gastric glands. Gut. 2014;63(12):1854–63.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Baker AM, et al. Characterization of LGR5 stem cells in colorectal adenomas and carcinomas. Sci Rep. 2015;5:8654.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pan Q, et al. Identification of lineage-uncommitted, long-lived, label-retaining cells in healthy human esophagus and stomach, and in metaplastic esophagus. Gastroenterology. 2013;144(4):761–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Hahn HP, et al. Intestinal differentiation in metaplastic, nongoblet columnar epithelium in the esophagus. Am J Surg Pathol. 2009;33(7):1006–15.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gottfried MR, McClave SA, Boyce HW. Incomplete intestinal metaplasia in the diagnosis of columnar lined esophagus (Barrett’s esophagus). Am J Clin Pathol. 1989;92(6):741–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Thompson JJ, Zinsser KR, Enterline HT. Barrett’s metaplasia and adenocarcinoma of the esophagus and gastroesophageal junction. Hum Pathol. 1983;14(1):42–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Going JJ, et al. Zoning of mucosal phenotype, dysplasia, and telomerase activity measured by telomerase repeat assay protocol in Barrett’s esophagus. Neoplasia. 2004;6(1):85–92.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang X, et al. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell. 2011;145(7):1023–35.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Yen TH, Wright NA. The gastrointestinal tract stem cell niche. Stem Cell Rev. 2006;2(3):203–12.PubMedCrossRefGoogle Scholar
  22. 22.
    Leedham SJ, et al. Gastrointestinal stem cells and cancer: bridging the molecular gap. Stem Cell Rev. 2005;1(3):233–41.PubMedCrossRefGoogle Scholar
  23. 23.
    Zeki SS, Graham TA, Wright NA. Stem cells and their implications for colorectal cancer. Nat Rev Gastroenterol Hepatol. 2011;8(2):90–100.PubMedCrossRefGoogle Scholar
  24. 24.
    Kozar S, et al. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell. 2013;13(5):626–33.PubMedCrossRefGoogle Scholar
  25. 25.
    Lopez-Garcia C, et al. Intestinal stem cell replacement follows a pattern of neutral drift. Science. 2010;330(6005):822–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Novelli M, et al. X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc Natl Acad Sci U S A. 2003;100(6):3311–4.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Salk JJ, et al. Clonal expansions in ulcerative colitis identify patients with neoplasia. Proc Natl Acad Sci U S A. 2009;106(49):20871–6.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Maegawa S, et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 2010;20(3):332–40.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Humphries A, et al. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution. Proc Natl Acad Sci U S A. 2013;110(27):E2490–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Taylor RW, et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest. 2003;112(9):1351–60.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    McDonald SA, et al. Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology. 2008;134(2):500–10.PubMedCrossRefGoogle Scholar
  32. 32.
    Nicholson AM, et al. Barrett’s metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor. Gut. 2012;61(10):1380–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Baker AM, et al. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Rep. 2014;8(4):940–7.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cheng H, et al. Crypt production in normal and diseased human colonic epithelium. Anat Rec. 1986;216(1):44–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Gatenby PA, et al. Does the length of the columnar-lined esophagus change with time? Dis Esophagus. 2007;20(6):497–503.PubMedCrossRefGoogle Scholar
  36. 36.
    Moawad FJ, et al. Barrett’s oesophagus length is established at the time of initial endoscopy and does not change over time: results from a large multicentre cohort. Gut. 2015;64(12):1874–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Barrett MT, et al. Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet. 1999;22(1):106–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Leedham SJ, et al. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut. 2008;57(8):1041–8.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Maley CC, et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet. 2006;38(4):468–73.PubMedCrossRefGoogle Scholar
  41. 41.
    Jones S, et al. Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A. 2008;105(11):4283–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lavery DL. et al. Evolution of oesophageal adenocarcinoma from metaplastic columnar epithelium without goblet cells in Barrett’s oesophagus. Gut. 2016;65:907–13.Google Scholar
  43. 43.
    Zeki SS, et al. Clonal selection and persistence in dysplastic Barrett’s esophagus and intramucosal cancers after failed radiofrequency ablation. Am J Gastroenterol. 2013;108(10):1584–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centre for Tumour Biology, Barts Cancer Institute, Queen MaryUniversity of LondonLondonUK

Personalised recommendations