Recapitulating Human Gastric Cancer Pathogenesis: Experimental Models of Gastric Cancer

  • Lin Ding
  • Mohamad El Zaatari
  • Juanita L. MerchantEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 908)


This review focuses on the various experimental models to study gastric cancer pathogenesis, with the role of genetically engineered mouse models (GEMMs) used as the major examples. We review differences in human stomach anatomy compared to the stomachs of the experimental models, including the mouse and invertebrate models such as Drosophila and C. elegans. The contribution of major signaling pathways, e.g., Notch, Hedgehog, AKT/PI3K is discussed in the context of their potential contribution to foregut tumorigenesis. We critically examine the rationale behind specific GEMMs, chemical carcinogens, dietary promoters, Helicobacter infection, and direct mutagenesis of relevant oncogenes and tumor suppressor that have been developed to study gastric cancer pathogenesis. Despite species differences, more efficient and effective models to test specific genes and pathways disrupted in human gastric carcinogenesis have yet to emerge. As we better understand these species differences, “humanized” versions of mouse models will more closely approximate human gastric cancer pathogenesis. Towards that end, epigenetic marks on chromatin, the gut microbiota, and ways of manipulating the immune system will likely move center stage, permitting greater overlap between rodent and human cancer phenotypes thus providing a unified progression model.


GEMMs Notch Hedgehog Gastrin INS-GAS gp130 MNU SPEM 



We would like to acknowledge support from NIH Grant P01-DK64041 (to JLM).


  1. 1.
    Correa P, Haenszel W, Cuello C, Tannenbaum S, Archer M. A model for gastric cancer epidemiology. Lancet. 1975;2:58–60.PubMedCrossRefGoogle Scholar
  2. 2.
    Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer. J Clin Invest. 2007;117:60–9.PubMedCrossRefGoogle Scholar
  3. 3.
    McPeak E, Warren S. Histologic features of carcinoma of the cardio-esophageal junction and cardia. Am J Pathol. 1948;24:971–1001.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Camargo MC, Anderson WF, King JB, Correa P, Thomas CC, Rosenberg PS, Eheman CR, Rabkin CS. Divergent trends for gastric cancer incidence by anatomical subsite in US adults. Gut. 2011;60:1644–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Dixon MF, Mapstone NP, Neville PM, Moayyedi P, Axon AT. Bile reflux gastritis and intestinal metaplasia at the cardia. Gut. 2002;51:351–5.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Nam KT, Lee HJ, Sousa JF, Weis VG, O’Neal RL, Finke PE, Romero-Gallo J, Shi G, Mills JC, Peek Jr RM, et al. Mature chief cells are cryptic progenitors for metaplasia in the stomach. Gastroenterology. 2010;139:2028–37. e2029.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Goldenring JR, Nam KT, Wang TC, Mills JC, Wright NA. Spasmolytic polypeptide-expressing metaplasia and intestinal metaplasia: time for reevaluation of metaplasias and the origins of gastric cancer. Gastroenterology. 2010;138:2207–10. 2210 e2201.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Gonzalez CA, Sanz-Anquela JM, Gisbert JP, Correa P. Utility of subtyping intestinal metaplasia as marker of gastric cancer risk. A review of the evidence. Int J Cancer. 2013;133:1023–32.PubMedCrossRefGoogle Scholar
  9. 9.
    Rugge M, Capelle LG, Fassan M. Individual risk stratification of gastric cancer: evolving concepts and their impact on clinical practice. Best Pract Res Clin Gastroenterol. 2014;28:1043–53.PubMedCrossRefGoogle Scholar
  10. 10.
    Stange DE, Koo BK, Huch M, Sibbel G, Basak O, Lyubimova A, Kujala P, Bartfeld S, Koster J, Geahlen JH, et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell. 2013;155:357–68.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Chen D, Aihara T, Zhao CM, Hakanson R, Okabe S. Differentiation of the gastric mucosa. I. Role of histamine in control of function and integrity of oxyntic mucosa: understanding gastric physiology through disruption of targeted genes. Am J Physiol Gastrointest Liver Physiol. 2006;291:G539–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Walsh JH. Gastrointestinal Hormones. In: Johnson LR, Alpers DH, Christensen J, Jacobson ED, Walsh JH, editors. Physiology of the gastrointestinal tract. New York: Raven; 1994. p. 1–128.Google Scholar
  13. 13.
    Bachwich D, Merchant J, Brand SJ. Identification of a cis-regulatory element mediating somatostatin inhibition of epidermal growth factor-stimulated gastrin gene transcription. Mol Endocrinol. 1992;6:1175–84.PubMedGoogle Scholar
  14. 14.
    Dockray GJ, Varro A, Dimaline R. Gastric endocrine cells: gene expression, processing, and targeting of active products. Physiol Rev. 1996;76:767–98.PubMedGoogle Scholar
  15. 15.
    Saqui-Salces M, Dowdle WE, Reiter JF, Merchant JL. A high-fat diet regulates gastrin and acid secretion through primary cilia. FASEB J. 2012;26:3127–39.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Wang TC, Dangler CA, Chen D, Goldenring JR, Koh T, Raychowdhury R, Coffey RJ, Ito S, Varro A, Dockray GJ, et al. Synergistic interaction between hypergastrinemia and Helicobacter infection in a mouse model of gastric cancer. Gastroenterology. 2000;118:36–47.PubMedCrossRefGoogle Scholar
  17. 17.
    Stolte M. Helicobacter pylori gastritis and gastric MALT-lymphoma. Lancet. 1992;339:745–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Kidd M, Gustafsson B, Modlin IM. Gastric carcinoids (neuroendocrine neoplasms). Gastroenterol Clin North Am. 2013;42:381–97.PubMedCrossRefGoogle Scholar
  19. 19.
    Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.PubMedGoogle Scholar
  20. 20.
    Network TCGAR. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.CrossRefGoogle Scholar
  21. 21.
    Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, Siu HC, Deng S, Chu KM, Law S, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, Liu J, Yue YG, Wang J, Yu K, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21:449–56.PubMedCrossRefGoogle Scholar
  23. 23.
    McNulty M, Puljung M, Jefford G, Dubreuil RR. Evidence that a copper-metallothionein complex is responsible for fluorescence in acid-secreting cells of the Drosophila stomach. Cell Tissue Res. 2001;304:383–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Filshie BK, Poulson DF, Waterhouse DF. Ultrastructure of the copper-accumulating region of the Drosophila larval midgut. Tissue Cell. 1971;3:77–102.PubMedCrossRefGoogle Scholar
  25. 25.
    Dubreuil RR, Grushko T, Baumann O. Differential effects of a labial mutation on the development, structure, and function of stomach acid-secreting cells in Drosophila melanogaster larvae and adults. Cell Tissue Res. 2001;306:167–78.PubMedCrossRefGoogle Scholar
  26. 26.
    Dubreuil RR. Copper cells and stomach acid secretion in the Drosophila midgut. Int J Biochem Cell Biol. 2004;36:745–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Strand M, Micchelli CA. Quiescent gastric stem cells maintain the adult Drosophila stomach. Proc Natl Acad Sci U S A. 2011;108:17696–701.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Strand M, Micchelli CA. Regional control of Drosophila gut stem cell proliferation: EGF establishes GSSC proliferative set point & controls emergence from quiescence. PLoS One. 2013;8:e80608.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Oka T, Yamamoto R, Futai M. Multiple genes for vacuolar-type ATPase proteolipids in Caenorhabditis elegans. A new gene, vha-3, has a distinct cell-specific distribution. J Biol Chem. 1998;273:22570–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Xia D, Zhang Y, Huang X, Sun Y, Zhang H, The C. elegans CBFbeta homolog, BRO-1, regulates the proliferation, differentiation and specification of the stem cell-like seam cell lineages. Dev Biol. 2007;309:259–72.PubMedCrossRefGoogle Scholar
  31. 31.
    Quante M, Bhagat G, Abrams JA, Marache F, Good P, Lee MD, Lee Y, Friedman R, Asfaha S, Dubeykovskaya Z, et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell. 2012;21:36–51.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Quante M, Abrams JA, Lee Y, Wang TC. Barrett esophagus: what a mouse model can teach us about human disease. Cell Cycle. 2012;11:4328–38.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Ming SC. Cellular and molecular pathology of gastric carcinoma and precursor lesions: A critical review. Gastric Cancer. 1998;1:31–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Matkar SS, Durham A, Brice A, Wang TC, Rustgi AK, Hua X. Systemic activation of K-ras rapidly induces gastric hyperplasia and metaplasia in mice. Am J Cancer Res. 2011;1:432–45.PubMedGoogle Scholar
  35. 35.
    Nomura S, Settle SH, Leys CM, Means AL, Peek Jr RM, Leach SD, Wright CV, Coffey RJ, Goldenring JR. Evidence for repatterning of the gastric fundic epithelium associated with Menetrier’s disease and TGFalpha overexpression. Gastroenterology. 2005;128:1292–305.PubMedCrossRefGoogle Scholar
  36. 36.
    Kidd S, Lockett TJ, Young MW. The Notch locus of Drosophila melanogaster. Cell. 1983;34:421–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Tao J, Chen S, Lee B. Alteration of Notch signaling in skeletal development and disease. Ann N Y Acad Sci. 2010;1192:257–68.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Katoh M, Katoh M. Notch signaling in gastrointestinal tract (review). Int J Oncol. 2007;30:247–51.PubMedGoogle Scholar
  39. 39.
    Penon D, Cito L, Giordano A. Novel findings about management of gastric cancer: a summary from 10th IGCC. World J Gastroenterol. 2014;20:8986–92.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Carulli AJ, Keeley TM, Demitrack ES, Chung J, Maillard I, Samuelson LC. Notch receptor regulation of intestinal stem cell homeostasis and crypt regeneration. Dev Biol. 2015;402:98–108.Google Scholar
  41. 41.
    Tsai YH, VanDussen KL, Sawey ET, Wade AW, Kasper C, Rakshit S, Bhatt RG, Stoeck A, Maillard I, Crawford HC, et al. ADAM10 regulates Notch function in intestinal stem cells of mice. Gastroenterology. 2014;147:822–34. e813.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Du X, Cheng Z, Wang YH, Guo ZH, Zhang SQ, Hu JK, Zhou ZG. Role of Notch signaling pathway in gastric cancer: a meta-analysis of the literature. World J Gastroenterol. 2014;20:9191–9.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang Z, Da Silva TG, Jin K, Han X, Ranganathan P, Zhu X, Sanchez-Mejias A, Bai F, Li B, Fei DL, et al. Notch signaling drives stemness and tumorigenicity of esophageal adenocarcinoma. Cancer Res. 2014;74:6364–74.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509:91–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Jia Y, Wang Y, Xie J. The Hedgehog pathway: role in cell differentiation, polarity and proliferation. Arch Toxicol. 2015;89:179–91.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Damhofer H, Ebbing EA, Steins A, Welling L, Tol JA, Krishnadath KK, van Leusden T, van de Vijver M, Besselink M, Busch OR, et al. Establishment of patient-derived xenograft models and cell lines for malignancies of the upper gastrointestinal tract. J Transl Med. 2015;13:115.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Saqui-Salces M, Merchant JL. Hedgehog signaling and gastrointestinal cancer. Biochim Biophys Acta. 2010;1803:786–95.PubMedCrossRefGoogle Scholar
  48. 48.
    Kolterud A, Grosse AS, Zacharias WJ, Walton KD, Kretovich KE, Madison BB, Waghray M, Ferris JE, Hu C, Merchant JL, et al. Paracrine Hedgehog signaling in stomach and intestine: new roles for hedgehog in gastrointestinal patterning. Gastroenterology. 2009;137:618–28.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Merchant JL. Hedgehog signalling in gut development, physiology and cancer. J Physiol. 2012;590:421–32.PubMedCrossRefGoogle Scholar
  50. 50.
    van den Brink GR. Hedgehog signaling in development and homeostasis of the gastrointestinal tract. Physiol Rev. 2007;87:1343–75.PubMedCrossRefGoogle Scholar
  51. 51.
    Waghray M, Zavros Y, Saqui-Salces M, El-Zaatari M, Alamelumangapuram CB, Todisco A, Eaton KA, Merchant JL. Interleukin-1beta promotes gastric atrophy through suppression of Sonic Hedgehog. Gastroenterology. 2010;138:562–72. 572 e561–562.PubMedCrossRefGoogle Scholar
  52. 52.
    Dimmler A, Brabletz T, Hlubek F, Hafner M, Rau T, Kirchner T, Faller G. Transcription of sonic hedgehog, a potential factor for gastric morphogenesis and gastric mucosa maintenance, is up-regulated in acidic conditions. Lab Invest. 2003;83:1829–37.PubMedCrossRefGoogle Scholar
  53. 53.
    Stepan V, Ramamoorthy S, Nitsche H, Zavros Y, Merchant JL, Todisco A. Regulation and function of the sonic hedgehog signal transduction pathway in isolated gastric parietal cells. J Biol Chem. 2005;280:15700–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Zavros Y, Waghray M, Tessier A, Bai L, Todisco A, Gumucio DL, Samuelson LC, Dlugosz A, Merchant JL. Reduced pepsin a processing of sonic hedgehog in parietal cells precedes gastric atrophy and transformation. J Biol Chem. 2007;282:33265–74.PubMedCrossRefGoogle Scholar
  55. 55.
    El-Zaatari M, Zavros Y, Tessier A, Waghray M, Lentz S, Gumucio D, Todisco A, Merchant JL. Intracellular calcium release and protein kinase C activation stimulate sonic hedgehog gene expression during gastric acid secretion. Gastroenterology. 2010;139:2061–71. e2062.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Schumacher MA, Donnelly JM, Engevik AC, Xiao C, Yang L, Kenny S, Varro A, Hollande F, Samuelson LC, Zavros Y. Gastric Sonic Hedgehog acts as a macrophage chemoattractant during the immune response to Helicobacter pylori. Gastroenterology. 2012;142:1150–9. e1156.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Donnelly JM, Chawla A, Houghton J, Zavros Y. Sonic hedgehog mediates the proliferation and recruitment of transformed mesenchymal stem cells to the stomach. PLoS One. 2013;8:e75225.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Donnelly JM, Engevik A, Feng R, Xiao C, Boivin GP, Li J, Houghton J, Zavros Y. Mesenchymal stem cells induce epithelial proliferation within the inflamed stomach. Am J Physiol Gastrointest Liver Physiol. 2014;306:G1075–88.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Martin J, Donnelly JM, Houghton J, Zavros Y. The role of sonic hedgehog reemergence during gastric cancer. Dig Dis Sci. 2010;55:1516–24.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    El-Zaatari M, Kao JY, Tessier A, Bai L, Hayes MM, Fontaine C, Eaton KA, Merchant JL. Gli1 deletion prevents helicobacter-induced gastric metaplasia and expansion of myeloid cell subsets. PLoS One. 2013;8:e58935.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Berman DM, Karhadkar SS, Maitra A, Montes De Oca R, Gerstenblith MR, Briggs K, Parker AR, Shimada Y, Eshleman JR, Watkins DN, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature. 2003;425:846–51.PubMedCrossRefGoogle Scholar
  62. 62.
    Xie K, Abbruzzese JL. Developmental biology informs cancer: the emerging role of the hedgehog signaling pathway in upper gastrointestinal cancers. Cancer Cell. 2003;4:245–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Fukaya M, Isohata N, Ohta H, Aoyagi K, Ochiya T, Saeki N, Yanagihara K, Nakanishi Y, Taniguchi H, Sakamoto H, et al. Hedgehog signal activation in gastric pit cell and in diffuse-type gastric cancer. Gastroenterology. 2006;131:14–29.PubMedCrossRefGoogle Scholar
  64. 64.
    Hashimoto T, Ogawa R, Matsubara A, Taniguchi H, Sugano K, Ushiama M, Yoshida T, Kanai Y, Sekine S. Familial adenomatous polyposis-associated and sporadic pyloric gland adenomas of the upper gastrointestinal tract share common genetic features. Histopathology. 2015;67(5):689–98.PubMedCrossRefGoogle Scholar
  65. 65.
    Fox JG, Dangler CA, Whary MT, Edelman W, Kucherlapati R, Wang TC. Mice carrying a truncated Apc gene have diminished gastric epithelial proliferation, gastric inflammation, and humoral immunity in reponse to Helicobacter felis infection. Cancer Res. 1997;57:3972–8.PubMedGoogle Scholar
  66. 66.
    Staal SP. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A. 1987;84:5034–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Davis WJ, Lehmann PZ, Li W. Nuclear PI3K signaling in cell growth and tumorigenesis. Front Cell Dev Biol. 2015;3:24.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Shi J, Yao D, Liu W, Wang N, Lv H, Zhang G, Ji M, Xu L, He N, Shi B, et al. Highly frequent PIK3CA amplification is associated with poor prognosis in gastric cancer. BMC Cancer. 2012;12:50.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Soutto M, Peng D, Katsha A, Chen Z, Piazuelo MB, Washington MK, Belkhiri A, Correa P, El-Rifai W. Activation of beta-catenin signalling by TFF1 loss promotes cell proliferation and gastric tumorigenesis. Gut. 2014;64(7):1028–39.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Simmers MH, Ibsen KH, Berk JE. Concerning the incidence of “spontaneous” stomach cancer in Praomys (Mastomys) natalensis. Cancer Res. 1968;28:1573–6.PubMedGoogle Scholar
  71. 71.
    Nakata H, Matsui T, Ito M, Chiba T. Gastrin/CCK-B receptors on brain, gastric parietal cells and ECL carcinoid tumor of Mastomys natalensis. Kobe J Med Sci. 1993;39:161–70.PubMedGoogle Scholar
  72. 72.
    Martinsen TC, Kawase S, Hakanson R, Torp SH, Fossmark R, Qvigstad G, Sandvik AK, Waldum HL. Spontaneous ECL cell carcinomas in cotton rats: natural course and prevention by a gastrin receptor antagonist. Carcinogenesis. 2003;24:1887–96.PubMedCrossRefGoogle Scholar
  73. 73.
    Saito T, Inokuchi K, Takayama S, Sugimura T. Sequential morphological changes in N-methyl-N′-nitro-N-nitrosoguanidine carcinogenesis in the glandular stomach of rats. J Natl Cancer Inst. 1970;44:769–83.PubMedGoogle Scholar
  74. 74.
    Abe M, Yamashita S, Kuramoto T, Hirayama Y, Tsukamoto T, Ohta T, Tatematsu M, Ohki M, Takato T, Sugimura T, et al. Global expression analysis of N-methyl-N′-nitro-N-nitrosoguanidine-induced rat stomach carcinomas using oligonucleotide microarrays. Carcinogenesis. 2003;24:861–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Tatematsu M, Ogawa K, Hoshiya T, Shichino Y, Kato T, Imaida K, Ito N. Induction of adenocarcinomas in the glandular stomach of BALB/c mice treated with N-methyl-N-nitrosourea. Jpn J Cancer Res. 1992;83:915–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Tatematsu M, Yamamoto M, Iwata H, Fukami H, Yuasa H, Tezuka N, Masui T, Nakanishi H. Induction of glandular stomach cancers in C3H mice treated with N-methyl-N-nitrosourea in the drinking water. Jpn J Cancer Res. 1993;84:1258–64.PubMedCrossRefGoogle Scholar
  77. 77.
    Yamachika T, Nakanishi H, Inada K, Tsukamoto T, Shimizu N, Kobayashi K, Fukushima S, Tatematsu M. N-methyl-N-nitrosourea concentration-dependent, rather than total intake-dependent, induction of adenocarcinomas in the glandular stomach of BALB/c mice. Jpn J Cancer Res. 1998;89:385–91.PubMedCrossRefGoogle Scholar
  78. 78.
    Lin SH, Li YH, Leung K, Huang CY, Wang XR. Salt processed food and gastric cancer in a Chinese population. Asian Pac J Cancer Prev. 2014;15:5293–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Gaddy JA, Radin JN, Loh JT, Zhang F, Washington MK, Peek Jr RM, Algood HM, Cover TL. High dietary salt intake exacerbates Helicobacter pylori-induced gastric carcinogenesis. Infect Immun. 2013;81:2258–67.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Furihata C, Ohta H, Katsuyama T. Cause and effect between concentration-dependent tissue damage and temporary cell proliferation in rat stomach mucosa by NaCl, a stomach tumor promoter. Carcinogenesis. 1996;17:401–6.PubMedCrossRefGoogle Scholar
  81. 81.
    Sorbye H, Svanes C, Stangeland L, Kvinnsland S, Svanes K. Epithelial restitution and cellular proliferation after gastric mucosal damage caused by hypertonic NaCl in rats. Virchows Arch A Pathol Anat Histopathol. 1988;413:445–55.PubMedCrossRefGoogle Scholar
  82. 82.
    Bergin IL, Sheppard BJ, Fox JG. Helicobacter pylori infection and high dietary salt independently induce atrophic gastritis and intestinal metaplasia in commercially available outbred Mongolian gerbils. Dig Dis Sci. 2003;48:475–85.PubMedCrossRefGoogle Scholar
  83. 83.
    Fox JG, Dangler CA, Taylor NS, King A, Koh TJ, Wang TC. High-salt diet induces gastric epithelial hyperplasia and parietal cell loss, and enhances Helicobacter pylori colonization in C57BL/6 mice. Cancer Res. 1999;59:4823–8.PubMedGoogle Scholar
  84. 84.
    Kodama M, Kodama T, Suzuki H, Kondo K. Effect of rice and salty rice diets on the structure of mouse stomach. Nutr Cancer. 1984;6:135–47.PubMedCrossRefGoogle Scholar
  85. 85.
    Tatematsu M, Takahashi M, Fukushima S, Hananouchi M, Shirai T. Effects in rats of sodium chloride on experimental gastric cancers induced by N-methyl-N-nitro-N-nitrosoguanidine or 4-nitroquinoline-1-oxide. J Natl Cancer Inst. 1975;55:101–6.PubMedGoogle Scholar
  86. 86.
    Takahashi M, Kokubo T, Furukawa F, Kurokawa Y, Tatematsu M, Hayashi Y. Effect of high salt diet on rat gastric carcinogenesis induced by N-methyl-N′-nitro-N-nitrosoguanidine. Gan. 1983;74:28–34.PubMedGoogle Scholar
  87. 87.
    Takahashi M, Nishikawa A, Furukawa F, Enami T, Hasegawa T, Hayashi Y. Dose-dependent promoting effects of sodium chloride (NaCl) on rat glandular stomach carcinogenesis initiated with N-methyl-N′-nitro-N-nitrosoguanidine. Carcinogenesis. 1994;15:1429–32.PubMedCrossRefGoogle Scholar
  88. 88.
    Toyoda T, Tsukamoto T, Yamamoto M, Ban H, Saito N, Takasu S, Shi L, Saito A, Ito S, Yamamura Y, et al. Gene expression analysis of a Helicobacter pylori-infected and high-salt diet-treated mouse gastric tumor model: identification of CD177 as a novel prognostic factor in patients with gastric cancer. BMC Gastroenterol. 2013;13:122.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kobayashi K, Shimizu N, Tsukamoto T, Inada K, Nakanishi H, Goto K, Mutai M, Tatematsu M. Dose-dependent promoting effects of catechol on glandular stomach carcinogenesis in BALB/c mice initiated with N-methyl-N-nitrosourea. Jpn J Cancer Res. 1997;88:1143–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Kobayashi K, Inada K, Furihata C, Tsukamoto T, Ikehara Y, Yamamoto M, Tatematsu M. Effects of low dose catechol on glandular stomach carcinogenesis in BALB/c mice initiated with N-methyl-N-nitrosourea. Cancer Lett. 1999;139:167–72.PubMedCrossRefGoogle Scholar
  91. 91.
    Hirose M, Fukushima S, Tanaka H, Asakawa E, Takahashi S, Ito N. Carcinogenicity of catechol in F344 rats and B6C3F1 mice. Carcinogenesis. 1993;14:525–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Tanaka H, Hirose M, Hagiwara A, Imaida K, Shirai T, Ito N. Rat strain differences in catechol carcinogenicity to the stomach. Food Chem Toxicol. 1995;33:93–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Ito N, Fukushima S, Hagiwara A, Shibata M, Ogiso T. Carcinogenicity of butylated hydroxyanisole in F344 rats. J Natl Cancer Inst. 1983;70:343–52.PubMedGoogle Scholar
  94. 94.
    Ito N, Fukushima S, Tsuda H. Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit Rev Toxicol. 1985;15:109–50.PubMedCrossRefGoogle Scholar
  95. 95.
    Masui T, Hirose M, Imaida K, Fukushima S, Tamano S, Ito N. Sequential changes of the forestomach of F344 rats, Syrian golden hamsters, and B6C3F1 mice treated with butylated hydroxyanisole. Jpn J Cancer Res. 1986;77:1083–90.PubMedGoogle Scholar
  96. 96.
    Moch RW. Forestomach lesions induced by butylated hydroxyanisole and ethylene dibromide: a scientific and regulatory perspective. Toxicol Pathol. 1988;16:172–83.PubMedCrossRefGoogle Scholar
  97. 97.
    Ehlers S, Warrelmann M, Hahn H. In search of an animal model for experimental Campylobacter pylori infection: administration of Campylobacter pylori to rodents. Zentralbl Bakteriol Mikrobiol Hyg A. 1988;268:341–6.PubMedGoogle Scholar
  98. 98.
    Cantorna MT, Balish E. Inability of human clinical strains of Helicobacter pylori to colonize the alimentary tract of germfree rodents. Can J Microbiol. 1990;36:237–41.PubMedCrossRefGoogle Scholar
  99. 99.
    Lee A, O’Rourke J, De Ungria MC, Robertson B, Daskalopoulos G, Dixon MF. A standardized mouse model of Helicobacter pylori infection: introducing the Sydney strain. Gastroenterology. 1997;112:1386–97.PubMedCrossRefGoogle Scholar
  100. 100.
    Wang X, Willen R, Svensson M, Ljungh A, Wadstrom T. Two-year follow-up of Helicobacter pylori infection in C57BL/6 and Balb/cA mice. APMIS. 2003;111:514–22.PubMedCrossRefGoogle Scholar
  101. 101.
    Lee A, Fox JG, Otto G, Murphy J. A small animal model of human Helicobacter pylori active chronic gastritis. Gastroenterology. 1990;99:1315–23.PubMedCrossRefGoogle Scholar
  102. 102.
    Lee A, Chen M, Coltro N, O’Rourke J, Hazell S, Hu P, Li Y. Long term infection of the gastric mucosa with Helicobacter species does induce atrophic gastritis in an animal model of Helicobacter pylori infection. Zentralbl Bakteriol. 1993;280:38–50.PubMedCrossRefGoogle Scholar
  103. 103.
    Sakagami T, Dixon M, O’Rourke J, Howlett R, Alderuccio F, Vella J, Shimoyama T, Lee A. Atrophic gastric changes in both Helicobacter felis and Helicobacter pylori infected mice are host dependent and separate from antral gastritis. Gut. 1996;39:639–48.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Wang TC, Goldenring JR, Dangler C, Ito S, Mueller A, Jeon WK, Koh TJ, Fox JG. Mice lacking secretory phospholipase A2 show altered apoptosis and differentiation with Helicobacter felis infection. Gastroenterology. 1998;114:675–89.PubMedCrossRefGoogle Scholar
  105. 105.
    Fox JG, Sheppard BJ, Dangler CA, Whary MT, Ihrig M, Wang TC. Germ-line p53-targeted disruption inhibits helicobacter-induced premalignant lesions and invasive gastric carcinoma through down- regulation of Th1 proinflammatory responses. Cancer Res. 2002;62:696–702.PubMedGoogle Scholar
  106. 106.
    Mohammadi M, Redline R, Nedrud J, Czinn S. Role of the host in pathogenesis of Helicobacter-associated gastritis: H. felis infection of inbred and congenic mouse strains. Infect Immun. 1996;64:238–45.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Thompson LJ, Danon SJ, Wilson JE, O’Rourke JL, Salama NR, Falkow S, Mitchell H, Lee A. Chronic Helicobacter pylori infection with Sydney strain 1 and a newly identified mouse-adapted strain (Sydney strain 2000) in C57BL/6 and BALB/c mice. Infect Immun. 2004;72:4668–79.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kuipers EJ, Nelis GF, Klinkenberg-Knol EC, Snel P, Goldfain D, Kolkman JJ, Festen HP, Dent J, Zeitoun P, Havu N, et al. Cure of Helicobacter pylori infection in patients with reflux oesophagitis treated with long term omeprazole reverses gastritis without exacerbation of reflux disease: results of a randomised controlled trial. Gut. 2004;53:12–20.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Mera R, Fontham ET, Bravo LE, Bravo JC, Piazuelo MB, Camargo MC, Correa P. Long term follow up of patients treated for Helicobacter pylori infection. Gut. 2005;54:1536–40.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Fuccio L, Zagari RM, Eusebi LH, Laterza L, Cennamo V, Ceroni L, Grilli D, Bazzoli F. Meta-analysis: can Helicobacter pylori eradication treatment reduce the risk for gastric cancer? Ann Intern Med. 2009;151:121–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Schenk BE, Kuipers EJ, Nelis GF, Bloemena E, Thijs JC, Snel P, Luckers AE, Klinkenberg-Knol EC, Festen HP, Viergever PP, et al. Effect of Helicobacter pylori eradication on chronic gastritis during omeprazole therapy. Gut. 2000;46:615–21.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ley C, Mohar A, Guarner J, Herrera-Goepfert R, Figueroa LS, Halperin D, Johnstone I, Parsonnet J. Helicobacter pylori eradication and gastric preneoplastic conditions: a randomized, double-blind, placebo-controlled trial. Cancer Epidemiol Biomarkers Prev. 2004;13:4–10.PubMedCrossRefGoogle Scholar
  113. 113.
    Cai X, Carlson J, Stoicov C, Li H, Wang TC, Houghton J. Helicobacter felis eradication restores normal architecture and inhibits gastric cancer progression in C57BL/6 mice. Gastroenterology. 2005;128:1937–52.PubMedCrossRefGoogle Scholar
  114. 114.
    Lee CW, Rickman B, Rogers AB, Ge Z, Wang TC, Fox JG. Helicobacter pylori eradication prevents progression of gastric cancer in hypergastrinemic INS-GAS mice. Cancer Res. 2008;68:3540–8.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zhang S, Lee DS, Morrissey R, Aponte-Pieras JR, Rogers AB, Moss SF. Early or late antibiotic intervention prevents Helicobacter pylori-induced gastric cancer in a mouse model. Cancer Lett. 2014;355:106–12.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Fox JG, Beck P, Dangler CA, Whary MT, Wang TC, Shi HN, Nagler-Anderson C. Concurrent enteric helminth infection modulates inflammation and gastric immune responses and reduces helicobacter-induced gastric atrophy. Nat Med. 2000;6:536–42.PubMedCrossRefGoogle Scholar
  117. 117.
    Whary MT, Muthupalani S, Ge Z, Feng Y, Lofgren J, Shi HN, Taylor NS, Correa P, Versalovic J, Wang TC, et al. Helminth co-infection in Helicobacter pylori infected INS-GAS mice attenuates gastric premalignant lesions of epithelial dysplasia and glandular atrophy and preserves colonization resistance of the stomach to lower bowel microbiota. Microbes Infect. 2014;16:345–55.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Stoicov C, Whary M, Rogers AB, Lee FS, Klucevsek K, Li H, Cai X, Saffari R, Ge Z, Khan IA, et al. Coinfection modulates inflammatory responses and clinical outcome of Helicobacter felis and Toxoplasma gondii infections. J Immunol. 2004;173:3329–36.PubMedCrossRefGoogle Scholar
  119. 119.
    Campbell DI, Warren BF, Thomas JE, Figura N, Telford JL, Sullivan PB. The African enigma: low prevalence of gastric atrophy, high prevalence of chronic inflammation in West African adults and children. Helicobacter. 2001;6:263–7.PubMedCrossRefGoogle Scholar
  120. 120.
    Holcombe C. Helicobacter pylori: the African enigma. Gut. 1992;33:429–31.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Takada K. Epstein-Barr virus and gastric carcinoma. Mol Pathol. 2000;53:255–61.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    van Beek J, Zur Hausen A, Klein Kranenbarg E, van de Velde CJ, Middeldorp JM, van den Brule AJ, Meijer CJ, Bloemena E. EBV-positive gastric adenocarcinomas: a distinct clinicopathologic entity with a low frequency of lymph node involvement. J Clin Oncol. 2004;22:664–70.PubMedCrossRefGoogle Scholar
  123. 123.
    Lynch HT, Grady W, Suriano G, Huntsman D. Gastric cancer: new genetic developments. J Surg Oncol. 2005;90:114–33. discussion 133.PubMedCrossRefGoogle Scholar
  124. 124.
    Oh ST, Cha JH, Shin DJ, Yoon SK, Lee SK. Establishment and characterization of an in vivo model for Epstein-Barr virus positive gastric carcinoma. J Med Virol. 2007;79:1343–8.PubMedCrossRefGoogle Scholar
  125. 125.
    Oh ST, Seo JS, Moon UY, Kang KH, Shin DJ, Yoon SK, Kim WH, Park JG, Lee SK. A naturally derived gastric cancer cell line shows latency I Epstein-Barr virus infection closely resembling EBV-associated gastric cancer. Virology. 2004;320:330–6.PubMedCrossRefGoogle Scholar
  126. 126.
    Wang TC, Brand SJ. Function and regulation of gastrin in transgenic mice: a review. Yale J Biol Med. 1992;65:705–13.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Goldenring JR, Ray GS, Soroka CJ, Smith J, Modlin IM, Meise KS, Coffey Jr RJ. Overexpression of transforming growth factor-alpha alters differentiation of gastric cell lineages. Dig Dis Sci. 1996;41:773–84.PubMedCrossRefGoogle Scholar
  128. 128.
    Miyazaki Y, Shinomura Y, Tsutsui S, Zushi S, Higashimoto Y, Kanayama S, Higashiyama S, Taniguchi N, Matsuzawa Y. Gastrin induces heparin-binding epidermal growth factor-like growth factor in rat gastric epithelial cells transfected with gastrin receptor. Gastroenterology. 1999;116:78–89.PubMedCrossRefGoogle Scholar
  129. 129.
    Cui G, Takaishi S, Ai W, Betz KS, Florholmen J, Koh TJ, Houghton J, Pritchard DM, Wang TC. Gastrin-induced apoptosis contributes to carcinogenesis in the stomach. Lab Invest. 2006;86:1037–51.PubMedCrossRefGoogle Scholar
  130. 130.
    Fox JG, Rogers AB, Ihrig M, Taylor NS, Whary MT, Dockray G, Varro A, Wang TC. Helicobacter pylori-associated gastric cancer in INS-GAS mice is gender specific. Cancer Res. 2003;63:942–50.PubMedGoogle Scholar
  131. 131.
    Lofgren JL, Whary MT, Ge Z, Muthupalani S, Taylor NS, Mobley M, Potter A, Varro A, Eibach D, Suerbaum S, et al. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology. 2011;140:210–20.PubMedCrossRefGoogle Scholar
  132. 132.
    Lertpiriyapong K, Whary MT, Muthupalani S, Lofgren JL, Gamazon ER, Feng Y, Ge Z, Wang TC, Fox JG. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut. 2014;63:54–63.PubMedCrossRefGoogle Scholar
  133. 133.
    El-Zaatari M, Tobias A, Grabowska AM, Kumari R, Scotting PJ, Kaye P, Atherton J, Clarke PA, Powe DG, Watson SA. De-regulation of the sonic hedgehog pathway in the InsGas mouse model of gastric carcinogenesis. Br J Cancer. 2007;96:1855–61.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Takaishi S, Cui G, Frederick DM, Carlson JE, Houghton J, Varro A, Dockray GJ, Ge Z, Whary MT, Rogers AB, et al. Synergistic inhibitory effects of gastrin and histamine receptor antagonists on helicobacter-induced gastric cancer. Gastroenterology. 2005;128:1965–83.PubMedCrossRefGoogle Scholar
  135. 135.
    Friis-Hansen L, Sundler F, Li Y, Gillespie PJ, Saunders TL, Greenson JK, Owyang C, Rehfeld JF, Samuelson LC. Impaired gastric acid secretion in gastrin-deficient mice. Am J Physiol. 1998;274:G561–8.PubMedGoogle Scholar
  136. 136.
    Zavros Y, Eaton KA, Kang W, Rathinavelu S, Katukuri V, Kao JY, Samuelson LC, Merchant JL. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene. 2005;24:2354–66.PubMedCrossRefGoogle Scholar
  137. 137.
    Zavros Y, Rieder G, Ferguson A, Samuelson LC, Merchant JL. Genetic or chemical hypochlorhydria is associated with inflammation that modulates parietal and G-cell populations in mice. Gastroenterology. 2002;122:119–33.PubMedCrossRefGoogle Scholar
  138. 138.
    Howlett M, Giraud AS, Lescesen H, Jackson CB, Kalantzis A, Van Driel IR, Robb L, Van der Hoek M, Ernst M, Minamoto T, et al. The interleukin-6 family cytokine interleukin-11 regulates homeostatic epithelial cell turnover and promotes gastric tumor development. Gastroenterology. 2009;136:967–77.PubMedCrossRefGoogle Scholar
  139. 139.
    Kang W, Saqui-Salces M, Zavros Y, Merchant JL. Induction of follistatin precedes gastric transformation in gastrin deficient mice. Biochem Biophys Res Commun. 2008;376:573–7.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Saqui-Salces M, Coves-Datson E, Veniaminova NA, Waghray M, Syu LJ, Dlugosz AA, Merchant JL. Inflammation and Gli2 suppress gastrin gene expression in a murine model of antral hyperplasia. PLoS One. 2012;7:e48039.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Takaishi S, Tu S, Dubeykovskaya ZA, Whary MT, Muthupalani S, Rickman BH, Rogers AB, Lertkowit N, Varro A, Fox JG, et al. Gastrin is an essential cofactor for helicobacter-associated gastric corpus carcinogenesis in C57BL/6 mice. Am J Pathol. 2009;175:365–75.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Beckler AD, Roche JK, Harper JC, Petroni G, Frierson Jr HF, Moskaluk CA, El-Rifai W, Powell SM. Decreased abundance of trefoil factor 1 transcript in the majority of gastric carcinomas. Cancer. 2003;98:2184–91.PubMedCrossRefGoogle Scholar
  143. 143.
    Fujimoto J, Yasui W, Tahara H, Tahara E, Kudo Y, Yokozaki H. DNA hypermethylation at the pS2 promoter region is associated with early stage of stomach carcinogenesis. Cancer Lett. 2000;149:125–34.PubMedCrossRefGoogle Scholar
  144. 144.
    Carvalho R, Kayademir T, Soares P, Canedo P, Sousa S, Oliveira C, Leistenschneider P, Seruca R, Gott P, Blin N, et al. Loss of heterozygosity and promoter methylation, but not mutation, may underlie loss of TFF1 in gastric carcinoma. Lab Invest. 2002;82:1319–26.PubMedCrossRefGoogle Scholar
  145. 145.
    Lefebvre O, Chenard MP, Masson R, Linares J, Dierich A, LeMeur M, Wendling C, Tomasetto C, Chambon P, Rio MC. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science. 1996;274:259–62.PubMedCrossRefGoogle Scholar
  146. 146.
    Thiel A, Narko K, Heinonen M, Hemmes A, Tomasetto C, Rio MC, Haglund C, Makela TP, Ristimaki A. Inhibition of cyclooxygenase-2 causes regression of gastric adenomas in trefoil factor 1 deficient mice. Int J Cancer. 2012;131:1032–41.PubMedCrossRefGoogle Scholar
  147. 147.
    Howlett M, Menheniott TR, Judd LM, Giraud AS. Cytokine signalling via gp130 in gastric cancer. Biochim Biophys Acta. 2009;1793:1623–33.PubMedCrossRefGoogle Scholar
  148. 148.
    Tebbutt NC, Giraud AS, Inglese M, Jenkins B, Waring P, Clay FJ, Malki S, Alderman BM, Grail D, Hollande F, et al. Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat Med. 2002;8:1089–97.PubMedCrossRefGoogle Scholar
  149. 149.
    Judd LM, Alderman BM, Howlett M, Shulkes A, Dow C, Moverley J, Grail D, Jenkins BJ, Ernst M, Giraud AS. Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology. 2004;126:196–207.PubMedCrossRefGoogle Scholar
  150. 150.
    Judd LM, Bredin K, Kalantzis A, Jenkins BJ, Ernst M, Giraud AS. STAT3 activation regulates growth, inflammation, and vascularization in a mouse model of gastric tumorigenesis. Gastroenterology. 2006;131:1073–85.PubMedCrossRefGoogle Scholar
  151. 151.
    Howlett M, Judd LM, Jenkins B, La Gruta NL, Grail D, Ernst M, Giraud AS. Differential regulation of gastric tumor growth by cytokines that signal exclusively through the coreceptor gp130. Gastroenterology. 2005;129:1005–18.PubMedCrossRefGoogle Scholar
  152. 152.
    Spicer Z, Miller ML, Andringa A, Riddle TM, Duffy JJ, Doetschman T, Shull GE. Stomachs of mice lacking the gastric H, K-ATPase alpha -subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia. J Biol Chem. 2000;275:21555–65.PubMedCrossRefGoogle Scholar
  153. 153.
    Judd LM, Andringa A, Rubio CA, Spicer Z, Shull GE, Miller ML. Gastric achlorhydria in H/K-ATPase-deficient (Atp4a(−/−)) mice causes severe hyperplasia, mucocystic metaplasia and upregulation of growth factors. J Gastroenterol Hepatol. 2005;20:1266–78.PubMedCrossRefGoogle Scholar
  154. 154.
    Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD, Brandenburg SA, Litzi TJ, Bunton TE, Limb C, et al. Targeted disruption of the kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest. 2000;106:1447–55.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Kobayashi T, Tonai S, Ishihara Y, Koga R, Okabe S, Watanabe T. Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptor-deficient mice. J Clin Invest. 2000;105:1741–9.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Wang WH, Huang JQ, Zheng GF, Lam SK, Karlberg J, Wong BC. Non-steroidal anti-inflammatory drug use and the risk of gastric cancer: a systematic review and meta-analysis. J Natl Cancer Inst. 2003;95:1784–91.PubMedCrossRefGoogle Scholar
  157. 157.
    Dannenberg AJ, Subbaramaiah K. Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell. 2003;4:431–6.PubMedCrossRefGoogle Scholar
  158. 158.
    Hahm KB, Song YJ, Oh TY, Lee JS, Surh YJ, Kim YB, Yoo BM, Kim JH, Han SU, Nahm KT, et al. Chemoprevention of Helicobacter pylori-associated gastric carcinogenesis in a mouse model: is it possible? J Biochem Mol Biol. 2003;36:82–94.PubMedCrossRefGoogle Scholar
  159. 159.
    Leung WK, Wu KC, Wong CY, Cheng AS, Ching AK, Chan AW, Chong WW, Go MY, Yu J, To KF, et al. Transgenic cyclooxygenase-2 expression and high salt enhanced susceptibility to chemical-induced gastric cancer development in mice. Carcinogenesis. 2008;29:1648–54.PubMedCrossRefGoogle Scholar
  160. 160.
    Hu PJ, Yu J, Zeng ZR, Leung WK, Lin HL, Tang BD, Bai AH, Sung JJ. Chemoprevention of gastric cancer by celecoxib in rats. Gut. 2004;53:195–200.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Oshima H, Oshima M, Inaba K, Taketo MM. Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice. EMBO J. 2004;23:1669–78.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Oshima M, Oshima H, Matsunaga A, Taketo MM. Hyperplastic gastric tumors with spasmolytic polypeptide-expressing metaplasia caused by tumor necrosis factor-alpha-dependent inflammation in cyclooxygenase-2/microsomal prostaglandin E synthase-1 transgenic mice. Cancer Res. 2005;65:9147–51.PubMedCrossRefGoogle Scholar
  163. 163.
    Yashiro M, Nishioka N, Hirakawa K. K-ras mutation influences macroscopic features of gastric carcinoma. J Surg Res. 2005;124:74–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Watari J, Tanaka A, Tanabe H, Sato R, Moriichi K, Zaky A, Okamoto K, Maemoto A, Fujiya M, Ashida T, et al. K-ras mutations and cell kinetics in Helicobacter pylori associated gastric intestinal metaplasia: a comparison before and after eradication in patients with chronic gastritis and gastric cancer. J Clin Pathol. 2007;60:921–6.PubMedCrossRefGoogle Scholar
  165. 165.
    Brembeck FH, Schreiber FS, Deramaudt TB, Craig L, Rhoades B, Swain G, Grippo P, Stoffers DA, Silberg DG, Rustgi AK. The mutant K-ras oncogene causes pancreatic periductal lymphocytic infiltration and gastric mucous neck cell hyperplasia in transgenic mice. Cancer Res. 2003;63:2005–9.PubMedGoogle Scholar
  166. 166.
    Okumura T, Ericksen RE, Takaishi S, Wang SS, Dubeykovskiy Z, Shibata W, Betz KS, Muthupalani S, Rogers AB, Fox JG, et al. K-ras mutation targeted to gastric tissue progenitor cells results in chronic inflammation, an altered microenvironment, and progression to intraepithelial neoplasia. Cancer Res. 2010;70:8435–45.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Ray KC, Bell KM, Yan J, Gu G, Chung CH, Washington MK, Means AL. Epithelial tissues have varying degrees of susceptibility to Kras(G12D)-initiated tumorigenesis in a mouse model. PLoS One. 2011;6:e16786.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Kuzushita N, Rogers AB, Monti NA, Whary MT, Park MJ, Aswad BI, Shirin H, Koff A, Eguchi H, Moss SF. p27kip1 deficiency confers susceptibility to gastric carcinogenesis in Helicobacter pylori-infected mice. Gastroenterology. 2005;129:1544–56.PubMedCrossRefGoogle Scholar
  169. 169.
    Shirin H, Sordillo EM, Kolevska TK, Hibshoosh H, Kawabata Y, Oh SH, Kuebler JF, Delohery T, Weghorst CM, Weinstein IB, et al. Chronic Helicobacter pylori infection induces an apoptosis-resistant phenotype associated with decreased expression of p27(kip1). Infect Immun. 2000;68:5321–8.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Wen S, So Y, Singh K, Slingerland JM, Resnick MB, Zhang S, Ruiz V, Moss SF. Promotion of cytoplasmic mislocalization of p27 by Helicobacter pylori in gastric cancer. Oncogene. 2012;31:1771–80.PubMedCrossRefGoogle Scholar
  171. 171.
    Markowitz SD, Roberts AB. Tumor suppressor activity of the TGF-beta pathway in human cancers. Cytokine Growth Factor Rev. 1996;7:93–102.PubMedCrossRefGoogle Scholar
  172. 172.
    Yang HK, Kang SH, Kim YS, Won K, Bang YJ, Kim SJ. Truncation of the TGF-beta type II receptor gene results in insensitivity to TGF-beta in human gastric cancer cells. Oncogene. 1999;18:2213–9.PubMedCrossRefGoogle Scholar
  173. 173.
    Wu MS, Lee CW, Shun CT, Wang HP, Lee WJ, Chang MC, Sheu JC, Lin JT. Distinct clinicopathologic and genetic profiles in sporadic gastric cancer with different mutator phenotypes. Genes Chromosomes Cancer. 2000;27:403–11.PubMedCrossRefGoogle Scholar
  174. 174.
    Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature. 1992;359:693–9.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Crawford SE, Stellmach V, Murphy-Ullrich JE, Ribeiro SM, Lawler J, Hynes RO, Boivin GP, Bouck N. Thrombospondin-1 is a major activator of TGF-beta1 in vivo [In Process Citation]. Cell. 1998;93:1159–70.PubMedCrossRefGoogle Scholar
  176. 176.
    Ota M, Horiguchi M, Fang V, Shibahara K, Kadota K, Loomis C, Cammer M, Rifkin DB. Genetic suppression of inflammation blocks the tumor-promoting effects of TGF-beta in gastric tissue. Cancer Res. 2014;74:2642–51.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Hahm KB, Lee KM, Kim YB, Hong WS, Lee WH, Han SU, Kim MW, Ahn BO, Oh TY, Lee MH, et al. Conditional loss of TGF-beta signalling leads to increased susceptibility to gastrointestinal carcinogenesis in mice. Aliment Pharmacol Ther. 2002;16 Suppl 2:115–27.PubMedCrossRefGoogle Scholar
  178. 178.
    Nam KT, O’Neal R, Lee YS, Lee YC, Coffey RJ, Goldenring JR. Gastric tumor development in Smad3-deficient mice initiates from forestomach/glandular transition zone along the lesser curvature. Lab Invest. 2012;92:883–95.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Takaku K, Miyoshi H, Matsunaga A, Oshima M, Sasaki N, Taketo MM. Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Res. 1999;59:6113–7.PubMedGoogle Scholar
  180. 180.
    Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L, Zhou YX, Weinstein M, Kim SJ, Deng CX. Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene. 2000;19:1868–74.PubMedCrossRefGoogle Scholar
  181. 181.
    Kim BG, Li C, Qiao W, Mamura M, Kasprzak B, Anver M, Wolfraim L, Hong S, Mushinski E, Potter M, et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature. 2006;441:1015–9.PubMedCrossRefGoogle Scholar
  182. 182.
    Hahn JN, Falck VG, Jirik FR. Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice. J Clin Invest. 2011;121:4030–42.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Landgren AM, Landgren O, Gridley G, Dores GM, Linet MS, Morton LM. Autoimmune disease and subsequent risk of developing alimentary tract cancers among 4.5 million US male veterans. Cancer. 2011;117:1163–71.PubMedCrossRefGoogle Scholar
  184. 184.
    Hemminki K, Liu X, Ji J, Sundquist J, Sundquist K. Autoimmune disease and subsequent digestive tract cancer by histology. Ann Oncol. 2012;23:927–33.PubMedCrossRefGoogle Scholar
  185. 185.
    Nguyen TL, Khurana SS, Bellone CJ, Capoccia BJ, Sagartz JE, Kesman Jr RA, Mills JC, DiPaolo RJ. Autoimmune gastritis mediated by CD4+ T cells promotes the development of gastric cancer. Cancer Res. 2013;73:2117–26.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Nguyen TL, Dipaolo RJ. A new mouse model of inflammation and gastric cancer. Oncoimmunology. 2013;2:e25911.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    El-Omar EM, Carrington M, Chow WH, McColl KE, Bream JH, Young HA, Herrera J, Lissowska J, Yuan CC, Rothman N, et al. The role of interleukin-1 polymorphisms in the pathogenesis of gastric cancer. Nature. 2001;412:99.PubMedCrossRefGoogle Scholar
  188. 188.
    Figueiredo C, Machado JC, Pharoah P, Seruca R, Sousa S, Carvalho R, Capelinha AF, Quint W, Caldas C, van Doorn LJ, et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst. 2002;94:1680–7.PubMedCrossRefGoogle Scholar
  189. 189.
    Tu S, Bhagat G, Cui G, Takaishi S, Kurt-Jones EA, Rickman B, Betz KS, Penz-Oesterreicher M, Bjorkdahl O, Fox JG, et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 2008;14:408–19.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Shigematsu Y, Niwa T, Rehnberg E, Toyoda T, Yoshida S, Mori A, Wakabayashi M, Iwakura Y, Ichinose M, Kim YJ, et al. Interleukin-1beta induced by Helicobacter pylori infection enhances mouse gastric carcinogenesis. Cancer Lett. 2013;340:141–7.PubMedCrossRefGoogle Scholar
  191. 191.
    Goldenring JR, Ray GS, Coffey RJ, Meunier PC, Haley PJ, Barnes TB, Car BD. Reversible drug-induced oxyntic atrophy in rats. Gastroenterology. 2000;118:1080–93.PubMedCrossRefGoogle Scholar
  192. 192.
    Nomura S, Yamaguchi H, Ogawa M, Wang TC, Lee JR, Goldenring JR. Alterations in gastric mucosal lineages induced by acute oxyntic atrophy in wild-type and gastrin-deficient mice. Am J Physiol Gastrointest Liver Physiol. 2005;288:G362–75.PubMedCrossRefGoogle Scholar
  193. 193.
    Petersen CP, Weis VG, Nam KT, Sousa JF, Fingleton B, Goldenring JR. Macrophages promote progression of spasmolytic polypeptide-expressing metaplasia after acute loss of parietal cells. Gastroenterology. 2014;146:1727–38. e1728.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Li HC, Stoicov C, Rogers AB, Houghton J. Stem cells and cancer: evidence for bone marrow stem cells in epithelial cancers. World J Gastroenterol. 2006;12:363–71.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Liu C, Chen Z, Zhang T, Lu Y. Multiple tumor types may originate from bone marrow-derived cells. Neoplasia. 2006;8:716–24.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Hutchinson L, Stenstrom B, Chen D, Piperdi B, Levey S, Lyle S, Wang TC, Houghton J. Human Barrett’s adenocarcinoma of the esophagus, associated myofibroblasts, and endothelium can arise from bone marrow-derived cells after allogeneic stem cell transplant. Stem Cells Dev. 2011;20:11–7.PubMedCrossRefGoogle Scholar
  197. 197.
    Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JG, Goldenring JR, Wang TC. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–71.PubMedCrossRefGoogle Scholar
  198. 198.
    Yamamoto M, Furihata C, Ogiu T, Tsukamoto T, Inada K, Hirano K, Tatematsu M. Independent variation in susceptibilities of six different mouse strains to induction of pepsinogen-altered pyloric glands and gastric tumor intestinalization by N-methyl-N-nitrosourea. Cancer Lett. 2002;179:121–32.PubMedCrossRefGoogle Scholar
  199. 199.
    Han SU, Kim YB, Joo HJ, Hahm KB, Lee WH, Cho YK, Kim DY, Kim MW. Helicobacter pylori infection promotes gastric carcinogenesis in a mice model. J Gastroenterol Hepatol. 2002;17:253–61.PubMedCrossRefGoogle Scholar
  200. 200.
    Tomita H, Takaishi S, Menheniott TR, Yang X, Shibata W, Jin G, Betz KS, Kawakami K, Minamoto T, Tomasetto C, et al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology. 2011;140:879–91.PubMedCrossRefGoogle Scholar
  201. 201.
    Huh WJ, Khurana SS, Geahlen JH, Kohli K, Waller RA, Mills JC. Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology. 2012;142:21–4. e27.PubMedCrossRefGoogle Scholar
  202. 202.
    Fox JG, Wang TC, Rogers AB, Poutahidis T, Ge Z, Taylor N, Dangler CA, Israel DA, Krishna U, Gaus K, et al. Host and microbial constituents influence Helicobacter pylori-induced cancer in a murine model of hypergastrinemia. Gastroenterology. 2003;124:1879–90.PubMedCrossRefGoogle Scholar
  203. 203.
    Ito K, Chuang LS, Ito T, Chang TL, Fukamachi H, Salto-Tellez M, Ito Y. Loss of Runx3 is a key event in inducing precancerous state of the stomach. Gastroenterology. 2011;140:1536–46. e1538.PubMedCrossRefGoogle Scholar
  204. 204.
    Dempsey PJ, Goldenring JR, Soroka CJ, Modlin IM, McClure RW, Lind CD, Ahlquist DA, Pittelkow MR, Lee DC, Sandgren EP, et al. Possible role of transforming growth factor alpha in the pathogenesis of Ménétrier’s disease: supportive evidence from humans and transgenic mice. Gastroenterology. 1992;103:1950–63.PubMedCrossRefGoogle Scholar
  205. 205.
    Sharp R, Babyatsky MW, Takagi H, Tagerud S, Wang TC, Bockman DE, Brand SJ, Merlino G. Transforming growth factor alpha disrupts the normal program of cellular differentiation in the gastric mucosa of transgenic mice. Development. 1995;121:149–61.PubMedGoogle Scholar
  206. 206.
    Banerjee A, Thamphiwatana S, Carmona EM, Rickman B, Doran KS, Obonyo M. Deficiency of the myeloid differentiation primary response molecule MyD88 leads to an early and rapid development of Helicobacter-induced gastric malignancy. Infect Immun. 2014;82:356–63.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Veniaminova NA, Hayes MM, Varney JM, Merchant JL. Conditional deletion of menin results in antral G cell hyperplasia and hypergastrinemia. Am J Physiol Gastrointest Liver Physiol. 2012;303(6):G752–64.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Tsuzuki T, Egashira A, Igarashi H, Iwakuma T, Nakatsuru Y, Tominaga Y, Kawate H, Nakao K, Nakamura K, Ide F, et al. Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc Natl Acad Sci U S A. 2001;98:11456–61.PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Shimada S, Mimata A, Sekine M, Mogushi K, Akiyama Y, Fukamachi H, Jonkers J, Tanaka H, Eishi Y, Yuasa Y. Synergistic tumour suppressor activity of E-cadherin and p53 in a conditional mouse model for metastatic diffuse-type gastric cancer. Gut. 2012;61:344–53.PubMedCrossRefGoogle Scholar
  210. 210.
    Syder AJ, Karam SM, Mills JC, Ippolito JE, Ansari HR, Farook V, Gordon JI. A transgenic mouse model of metastatic carcinoma involving transdifferentiation of a gastric epithelial lineage progenitor to a neuroendocrine phenotype. Proc Natl Acad Sci U S A. 2004;101:4471–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Lin Ding
    • 1
  • Mohamad El Zaatari
    • 2
  • Juanita L. Merchant
    • 1
    Email author
  1. 1.Departments of Internal Medicine and Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUSA
  2. 2.Departments of Internal Medicine and Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborUSA

Personalised recommendations