Skip to main content

Helicobacter pylori, Cancer, and the Gastric Microbiota

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 908))

Abstract

Gastric adenocarcinoma is one of the leading causes of cancer-related death worldwide and Helicobacter pylori infection is the strongest known risk factor for this disease. Although the stomach was once thought to be a sterile environment, it is now known to house many bacterial species leading to a complex interplay between H. pylori and other residents of the gastric microbiota. In addition to the role of H. pylori virulence factors, host genetic polymorphisms, and diet, it is now becoming clear that components of the gastrointestinal microbiota may also influence H. pylori-induced pathogenesis. In this chapter, we discuss emerging data regarding the gastric microbiota in humans and animal models and alterations that occur to the composition of the gastric microbiota in the presence of H. pylori infection that may augment the risk of developing gastric cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferlay J, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. de Martel C, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 2012;13(6):607–15.

    Article  PubMed  Google Scholar 

  3. Parkin DM, et al. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55(2):74–108.

    Article  PubMed  Google Scholar 

  4. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process—First American Cancer Society Award Lecture on cancer epidemiology and prevention. Cancer Res. 1992;52(24):6735–40.

    CAS  PubMed  Google Scholar 

  5. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.

    Article  Google Scholar 

  6. Cristescu R, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21(5):449–56.

    Article  CAS  PubMed  Google Scholar 

  7. Fuchs CS, Mayer RJ. Gastric carcinoma. N Engl J Med. 1995;333(1):32–41.

    Article  CAS  PubMed  Google Scholar 

  8. Howson CP, Hiyama T, Wynder EL. The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol Rev. 1986;8:1–27.

    CAS  PubMed  Google Scholar 

  9. Blot WJ, et al. Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA. 1991;265(10):1287–9.

    Article  CAS  PubMed  Google Scholar 

  10. Pera M, et al. Increasing incidence of adenocarcinoma of the esophagus and esophagogastric junction. Gastroenterology. 1993;104(2):510–3.

    CAS  PubMed  Google Scholar 

  11. Plummer M, et al. Global burden of gastric cancer attributable to pylori. Int J Cancer. 2014.

    Google Scholar 

  12. Uemura N, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345(11):784–9.

    Article  CAS  PubMed  Google Scholar 

  13. Polk DB, Peek Jr RM. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer. 2010;10(6):403–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer. J Clin Invest. 2007;117(1):60–9.

    Article  CAS  PubMed  Google Scholar 

  15. Wroblewski LE, Peek Jr RM, Wilson KT. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev. 2010;23(4):713–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Linz B, et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature. 2007;445(7130):915–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Peek Jr RM, Crabtree JE. Helicobacter infection and gastric neoplasia. J Pathol. 2006;208(2):233–48.

    Article  CAS  PubMed  Google Scholar 

  18. Wroblewski LE, Peek Jr RM. Helicobacter pylori in gastric carcinogenesis: mechanisms. Gastroenterol Clin North Am. 2013;42(2):285–98.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Odenbreit S, et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science. 2000;287(5457):1497–500.

    Article  CAS  PubMed  Google Scholar 

  20. Fischer W, et al. Systematic mutagenesis of the Helicobacter pylori cag pathogenicity island: essential genes for CagA translocation in host cells and induction of interleukin-8. Mol Microbiol. 2001;42(5):1337–48.

    Article  CAS  PubMed  Google Scholar 

  21. Kwok T, et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature. 2007;449(7164):862–6.

    Article  CAS  PubMed  Google Scholar 

  22. Shaffer CL, et al. Helicobacter pylori exploits a unique repertoire of type IV secretion system components for pilus assembly at the bacteria-host cell interface. PLoS Pathog. 2011;7(9):e1002237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Parsonnet J, et al. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut. 1997;40(3):297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang JQ, et al. Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology. 2003;125(6):1636–44.

    Article  PubMed  Google Scholar 

  25. Hatakeyama M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer. 2004;4(9):688–94.

    Article  CAS  PubMed  Google Scholar 

  26. Higashi H, et al. EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. J Biol Chem. 2005;280(24):23130–7.

    Article  CAS  PubMed  Google Scholar 

  27. Naito M, et al. Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. Gastroenterology. 2006;130(4):1181–90.

    Article  CAS  PubMed  Google Scholar 

  28. Basso D, et al. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology. 2008;135(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  29. Argent RH, et al. Differences in Helicobacter pylori CagA tyrosine phosphorylation motif patterns between western and East Asian strains, and influences on interleukin-8 secretion. J Med Microbiol. 2008;57(Pt 9):1062–7.

    Article  PubMed  Google Scholar 

  30. Mimuro H, et al. Grb2 is a key mediator of helicobacter pylori CagA protein activities. Mol Cell. 2002;10(4):745–55.

    Article  CAS  PubMed  Google Scholar 

  31. Saadat I, et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature. 2007;447(7142):330–3.

    Article  CAS  PubMed  Google Scholar 

  32. Murata-Kamiya N, et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 2007;26(32):4617–26.

    Article  CAS  PubMed  Google Scholar 

  33. Churin Y, et al. Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol. 2003;161(2):249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Amieva MR, et al. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science. 2003;300(5624):1430–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Franco AT, et al. Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci U S A. 2005;102(30):10646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bagnoli F, et al. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci U S A. 2005;102(45):16339–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Suzuki M, et al. Interaction of CagA with Crk plays an important role in Helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med. 2005;202(9):1235–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wroblewski LE, et al. Helicobacter pylori dysregulation of gastric epithelial tight junctions by urease-mediated myosin II activation. Gastroenterology. 2009;136(1):236–46.

    Article  CAS  PubMed  Google Scholar 

  39. Wroblewski LE, et al. Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut. 2015;64(5):720–30.

    Article  CAS  PubMed  Google Scholar 

  40. Cover TL, Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol. 2005;3(4):320–32.

    Article  CAS  PubMed  Google Scholar 

  41. Boquet P, Ricci V. Intoxication strategy of Helicobacter pylori VacA toxin. Trends Microbiol. 2012;20(4):165–74.

    Article  CAS  PubMed  Google Scholar 

  42. Atherton JC, et al. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem. 1995;270(30):17771–7.

    Article  CAS  PubMed  Google Scholar 

  43. Rhead JL, et al. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology. 2007;133(3):926–36.

    Article  CAS  PubMed  Google Scholar 

  44. Atherton JC, et al. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology. 1997;112(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  45. Miehlke S, et al. The Helicobacter pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. Int J Cancer. 2000;87(3):322–7.

    Article  CAS  PubMed  Google Scholar 

  46. Memon AA, et al. Vacuolating cytotoxin genotypes are strong markers of gastric cancer and duodenal ulcer-associated Helicobacter pylori strains: a matched case/control study. J Clin Microbiol. 2014;52(8):2984–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Winter JA, et al. A role for the vacuolating cytotoxin, VacA, in colonization and Helicobacter pylori-induced metaplasia in the stomach. J Infect Dis. 2014;210(6):954–63.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Backert S, Tegtmeyer N. The versatility of the Helicobacter pylori vacuolating cytotoxin VacA in signal transduction and molecular crosstalk. Toxins (Basel). 2010;2(1):69–92.

    Article  CAS  Google Scholar 

  49. Barker N, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  50. Uehara T, et al. H. pylori infection is associated with DNA damage of Lgr5-positive epithelial stem cells in the stomach of patients with gastric cancer. Dig Dis Sci. 2013;58(1):140–9.

    Article  CAS  PubMed  Google Scholar 

  51. Tsugawa H, et al. Reactive oxygen species-induced autophagic degradation of Helicobacter pylori CagA is specifically suppressed in cancer stem-like cells. Cell Host Microbe. 2012;12(6):764–77.

    Article  CAS  PubMed  Google Scholar 

  52. El-Omar EM, et al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature. 2000;404(6776):398–402.

    Article  CAS  PubMed  Google Scholar 

  53. Figueiredo C, et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst. 2002;94(22):1680–7.

    Article  CAS  PubMed  Google Scholar 

  54. El-Omar EM, et al. Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology. 2003;124(5):1193–201.

    Article  CAS  PubMed  Google Scholar 

  55. Tsugane S, Sasazuki S. Diet and the risk of gastric cancer: review of epidemiological evidence. Gastric Cancer. 2007;10(2):75–83.

    Article  PubMed  Google Scholar 

  56. Epplein M, et al. Association of Helicobacter pylori infection and diet on the risk of gastric cancer: a case-control study in Hawaii. Cancer Causes Control. 2008;19(8):869–77.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gonzalez CA, et al. Meat intake and risk of stomach and esophageal adenocarcinoma within the European Prospective Investigation Into Cancer and Nutrition (EPIC). J Natl Cancer Inst. 2006;98(5):345–54.

    Article  PubMed  Google Scholar 

  58. Gonzalez CA, et al. Fruit and vegetable intake and the risk of gastric adenocarcinoma: a reanalysis of the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST) study after a longer follow-up. Int J Cancer. 2012;131(12):2910–9.

    Article  CAS  PubMed  Google Scholar 

  59. Kim HJ, et al. Fresh and pickled vegetable consumption and gastric cancer in Japanese and Korean populations: a meta-analysis of observational studies. Cancer Sci. 2010;101(2):508–16.

    Article  CAS  PubMed  Google Scholar 

  60. Ren JS, et al. Pickled food and risk of gastric cancer—a systematic review and meta-analysis of English and Chinese literature. Cancer Epidemiol Biomarkers Prev. 2012;21(6):905–15.

    Article  PubMed  Google Scholar 

  61. Kim MK, et al. Prospective study of three major dietary patterns and risk of gastric cancer in Japan. Int J Cancer. 2004;110(3):435–42.

    Article  CAS  PubMed  Google Scholar 

  62. Lee SA, et al. Effect of diet and Helicobacter pylori infection to the risk of early gastric cancer. J Epidemiol. 2003;13(3):162–8.

    Article  PubMed  Google Scholar 

  63. Shikata K, et al. A prospective study of dietary salt intake and gastric cancer incidence in a defined Japanese population: the Hisayama study. Int J Cancer. 2006;119(1):196–201.

    Article  CAS  PubMed  Google Scholar 

  64. Noto JM, et al. Iron deficiency accelerates Helicobacter pylori-induced carcinogenesis in rodents and humans. J Clin Invest. 2013;123(1):479–92.

    Article  CAS  PubMed  Google Scholar 

  65. Ma JL, et al. Fifteen-year effects of Helicobacter pylori, garlic, and vitamin treatments on gastric cancer incidence and mortality. J Natl Cancer Inst. 2012;104(6):488–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sheh A, Fox JG. The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes. 2013;4(6):505–31.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Abreu MT, Peek Jr RM. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146(6):1534–46. e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bik EM, et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci U S A. 2006;103(3):732–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Andersson AF, et al. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One. 2008;3(7):e2836.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Maldonado-Contreras A, et al. Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J. 2011;5(4):574–9.

    Article  CAS  PubMed  Google Scholar 

  72. Dicksved J, et al. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J Med Microbiol. 2009;58(Pt 4):509–16.

    Article  CAS  PubMed  Google Scholar 

  73. Eun CS, et al. Differences in gastric mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia, and gastric cancer using pyrosequencing methods. Helicobacter. 2014;19(6):407–16.

    Article  CAS  PubMed  Google Scholar 

  74. Peek Jr RM, Blaser MJ. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer. 2002;2(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  75. Watanabe T, et al. Helicobacter pylori infection induces gastric cancer in mongolian gerbils [see comments]. Gastroenterology. 1998;115(3):642–8.

    Article  CAS  PubMed  Google Scholar 

  76. Honda S, et al. Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. Cancer Res. 1998;58(19):4255–9.

    CAS  PubMed  Google Scholar 

  77. Ogura K, et al. Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J Exp Med. 2000;192(11):1601–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Peek RM, et al. Helicobacter pylori alters gastric epithelial cell cycle events and gastrin secretion in Mongolian gerbils. Gastroenterology. 2000;118(1):48–59.

    Article  CAS  PubMed  Google Scholar 

  79. Israel DA, et al. Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J Clin Invest. 2001;107(5):611–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Franco AT, et al. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res. 2008;68(2):379–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fox J, Sheh A. The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes. 2013;4(6):505–31.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yang I, Nell S, Suerbaum S. Survival in hostile territory: the microbiota of the stomach. FEMS Microbiol Rev. 2013;37(5):736–61.

    Article  CAS  PubMed  Google Scholar 

  83. Sun YQ, et al. Profiling and identification of eubacteria in the stomach of Mongolian gerbils with and without Helicobacter pylori infection. Helicobacter. 2003;8(2):149–57.

    Article  CAS  PubMed  Google Scholar 

  84. Osaki T, et al. Comparative analysis of gastric bacterial microbiota in Mongolian gerbils after long-term infection with Helicobacter pylori. Microb Pathog. 2012;53(1):12–8.

    Article  PubMed  Google Scholar 

  85. Zaman C, et al. Analysis of the microbial ecology between Helicobacter pylori and the gastric microbiota of Mongolian gerbils. J Med Microbiol. 2014;63(Pt 1):129–37.

    Article  CAS  PubMed  Google Scholar 

  86. Rolig AS, et al. The degree of Helicobacter pylori-triggered inflammation is manipulated by preinfection host microbiota. Infect Immun. 2013;81(5):1382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zavros Y, et al. Gastritis and hypergastrinemia due to Acinetobacter lwoffii in mice. Infect Immun. 2002;70(5):2630–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sigal M, et al. Helicobacter pylori activates and expands Lgr5 stem cells through direct colonization of the gastric glands. Gastroenterology. 2015;148(7):1392–404.e21.

    Article  CAS  PubMed  Google Scholar 

  89. Aebischer T, et al. Vaccination prevents Helicobacter pylori-induced alterations of the gastric flora in mice. FEMS Immunol Med Microbiol. 2006;46(2):221–9.

    Article  CAS  PubMed  Google Scholar 

  90. Tan MP, et al. Chronic Helicobacter pylori infection does not significantly alter the microbiota of the murine stomach. Appl Environ Microbiol. 2007;73(3):1010–3.

    Article  CAS  PubMed  Google Scholar 

  91. Lofgren JL, et al. Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology. 2011;140(1):210–20.

    Article  PubMed  Google Scholar 

  92. Thomson MJ, et al. Gastric Helicobacter infection induces iron deficiency in the INS-GAS mouse. PLoS One. 2012;7(11):e50194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang J, et al. Helicobacter pylori modulates lymphoepithelial cell interactions leading to epithelial cell damage through Fas/Fas ligand interactions. Infect Immun. 2000;68(7):4303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lertpiriyapong K, et al. Gastric colonisation with a restricted commensal microbiota replicates the promotion of neoplastic lesions by diverse intestinal microbiota in the Helicobacter pylori INS-GAS mouse model of gastric carcinogenesis. Gut. 2014;63(1):54–63.

    Article  CAS  PubMed  Google Scholar 

  95. Ge Z, et al. Coinfection with enterohepatic Helicobacter species can ameliorate or promote Helicobacter pylori-induced gastric pathology in C57BL/6 mice. Infect Immun. 2011;79(10):3861–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lemke LB, et al. Concurrent Helicobacter bilis infection in C57BL/6 mice attenuates proinflammatory H. pylori-induced gastric pathology. Infect Immun. 2009;77(5):2147–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Whary MT, et al. Helminth co-infection in Helicobacter pylori infected INS-GAS mice attenuates gastric premalignant lesions of epithelial dysplasia and glandular atrophy and preserves colonization resistance of the stomach to lower bowel microbiota. Microbes Infect. 2014;16(4):345–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Martin ME, et al. The impact of Helicobacter pylori infection on the gastric microbiota of the rhesus macaque. PLoS One. 2013;8(10):e76375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. DeWeerdt S. Microbiome: a complicated relationship status. Nature. 2014;508(7496):S61–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Disclosures/Conflict of Interest

The authors declare there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Peek Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wroblewski, L.E., Peek, R.M. (2016). Helicobacter pylori, Cancer, and the Gastric Microbiota. In: Jansen, M., Wright, N. (eds) Stem Cells, Pre-neoplasia, and Early Cancer of the Upper Gastrointestinal Tract. Advances in Experimental Medicine and Biology, vol 908. Springer, Cham. https://doi.org/10.1007/978-3-319-41388-4_19

Download citation

Publish with us

Policies and ethics